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Changes in the abundance of selected planktic foraminiferal species and some sedimentological
parameters at ODP site 728A were examined to understand the fluctuations in the surface produc-
tivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased rela-
tive abundances of high fertility taxa, i.e., Globigerinita glutinata and Globigerina bulloides mainly
during interglacial intervals indicate intense upwelling. Strong SW summer monsoon probably
increased the upwelling in the western Arabian Sea during interglacial intervals and caused high
surface productivities due to the lateral transport of eutrophic waters. Most of the glacial periods
(i.e., MIS 2, 4, 6, 8 and 12) are characterized by higher relative abundances of Neogloboquadrina
pachyderma and Neogloboquadrina dutertrei associated with Globigerinoides ruber. The more strat-
ified condition and deep mixed layer due to increased NE winter monsoon are mainly responsible
for the higher relative abundances of N. pachyderma during glacial periods. Some of the glacial
intervals (i.e., MIS 6 and 8) are also characterized by pteropod spikes reflecting deepening of arag-
onite compensation depth (ACD) and relatively less intense oxygen minimum zone (OMZ) in this
region due to deep sea mixing and thermocline ventilation, and relatively less intense surface pro-
ductivity during winter monsoon. The interglacial periods are largely devoid of pteropod shells
indicating more aragonite dissolution due to increased intensity of OMZ in the northwestern
Arabian Sea.

In general, the interglacial periods are characterized by low sediment accumulation rates than
the glacial intervals. On an average, the total biogenic carbonate percentages were higher dur-
ing interglacial and during periods of higher surface productivity. Most terrigenous material was
trapped on shelf during intervals of high sea level stands of interglacial, whereas more erosion of
shelf increased the sedimentation rates during glacial periods. In addition, the fragmentation record
may be the result of changes in intensity and vertical distribution of the OMZ with time. During
glacial intervals, the lower boundary of the OMZ probably was in a shallower position than dur-
ing interglacial periods, when dissolution increased as a result of higher organic production. The
higher rates of sinking organic matter result into a stronger OMZ as oxygen is used to disintegrate
the organic matter. This process lowers the pH of water which results into increased dissolution of
calcium carbonate.
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1. Introduction

Strong variations in wind direction and intensity
(Hastenrath 1989) result into changes in precipita-
tion and aridity on the continents and influence the
hydrography and trophic conditions of the adjacent
oceans. The western Arabian Sea is characterized
by large seasonal variations in current direction,
upwelling intensity and mixed layer characteristics
such as temperature, nutrient content and produc-
tivity (Wyrtki 1971, 1973). These seasonal changes
are the oceanic response induced by the large scale
monsoonal winds. The monsoon, driven by the
strong atmospheric pressure gradient between land
and ocean, causes a biannual reversal of the cur-
rent patterns due to changing direction of monsoon
wind. The summer monsoon is driven by differen-
tial (land–sea) sensible heating and tropospheric
latent heating (Clemens et al 1991) which results
in a distinct atmospheric circulation system with
seasonally changing wind directions. Monsoonal
winds drag sea surface waters of the northwest Ara-
bian Sea influencing the surface circulation. The
prevailing clockwise surface circulation during the
SW monsoon causes coastal upwelling off Oman as
well as open-ocean upwelling associated with the
low level Findlater Jet, a northeast-trending stra-
tospheric wind that crosses the Arabian Sea about
400 km off the coast of Arabian peninsula (Find-
later 1974; Anderson and Prell 1991, 1993; Brock
et al 1992; Lee et al 2000). This seasonal upwelling
brings deep nutrient-rich, oxygen-poor and cold wa-
ters to the surface and increases the productivity
in the euphotic zone (Krey and Bauered 1976; Nair
et al 1989). Surface productivity has its annual
maximum during the summer monsoon (Nair et al
1989; Haake et al 1993). Recently, Naidu and
Malmgren (2005) suggested that the SST difference
between summer and winter seasons are directly
related to the upwelling intensity in the western
Arabian Sea.

Several micropaleontological, sedimentological
and geochemical studies reveal that changes in
northern hemisphere summer insolation are the
primary factors in determining the timing and
intensity of monsoon winds (Clemens et al 1991;
Reichart et al 1998; Schulz et al 1998). Many
paleoceanographic studies have shown that the
increased paleoproductivity can be related to
the insolation maxima leading to enhanced SW
summer monsoon. Intense summer monsoon oc-
curred especially during interglacials forcing strong
winds and an enhanced upwelling off the coasts of
Somalia and Oman (Sirocko et al 1991). A rela-
tively weak surface current flows in anticlock-
wise direction during the NE winter monsoon
(Qasim 1982) which causes sea surface cooling

Figure 1. Surface hydrography in the Arabian Sea and loca-
tion of ODP site 728A (solid circle; after Rai et al 2008).
A strong clockwise surface ocean circulation (black arrows)
develops during the SW summer monsoon, which follows
the direction of the Findlater Jet (FJ, arrow with broken
line). Coastal upwelling area is indicated by dark grey;
and the open ocean upwelling area by light grey. Anti-
clockwise NE winter monsoonal circulation is indicated by
white arrows.

and convective overturning (Bartolacci and Luther
1999). The convection processes lead to the
injection of nutrient-rich water into the sur-
face waters (Banse 1994) and this mechanism
is supposed to be a dominant control on win-
ter productivity (Madhupratap et al 1996) which
is smaller than that in summer. Thus, both sum-
mer monsoonal upwelling and winter monsoonal
convective overturn cause significant increase in
surface productivity and zooplankton produc-
tivity in the Indian Ocean (Nair et al 1989; Conan
and Brummer 2000).

Planktic foraminifera are sensitive to the oceano-
graphic conditions in response to the monsoonal
variations in the Arabian Sea (Cullen and Prell
1984; Brock et al 1992; Naidu and Malmgren 1995,
1996; Gupta et al 2003, 2005; Ivanova et al 2003;
Schiebel et al 2004). Thus, the faunal composi-
tions of planktic foraminifera are widely used to
reconstruct the monsoonal variability. Site 728A
is located in the northwestern Arabian Sea on the
continental margin off Oman (lat. 17◦40.49′N;
long. 57◦49.55′E) in a water depth of 1428 m
(figure 1). The location of ODP site 728A is suit-
able to understand complicated pattern of past
upwelling and surface productivity conditions in



Late Quaternary surface productivity in the northwestern Arabian Sea 115

500

400

300

200

100

0
0 15 30 45 0 5 10 15 20 0 4 8 12 0 4 8 12 0 10 20 30 0 5 10 15 20

G. glutinata %

A
ge

 k
yr

s

N. pachyderma % G. menardii % N. dutertrei % G. bulloides % G. ruber % MIS

2

8

10

6

4

12

14

Figure 2. Time series plots of relative abundance of Globigerina bulloides, Globigerinita glutinata, Neogloboquadrina pachy-
derma, Neogloboquadrina dutertrei, Globigerinoides ruber and Globorotalia menardii at ODP site 728A (even numbered
horizontal bars with dots represent glacial stages).

response to the variations in the northern Indian
Ocean monsoon system.

2. Material and methods

The upper section of about 22.0 m thick was sam-
pled at 25 cm intervals with a time resolution of
approximately 6 kyr. Each core sample was treated
with 10% calgon solution for about 20 hours, wet
sieved by Tyler sieves through 125 μm and then oven
dried at 50◦C. After drying, samples of >125 μm
fraction were weighed and examined under stereo-
zoom microscope to pick the planktic foraminiferal
and pteropod shells. Each sample over 125 μm
size fraction was splitted with a microsplitter into
a suitable aliquot to contain about 300 planktic
foraminiferal specimens. The percentage data of
most abundant species were plotted against age in
ka. The total number of pteropod shells per gram
sediment was calculated. The average sediment
accumulation rates and percentage fragmenta-
tion record of foraminiferal tests were taken from
Steens et al (1991). The biogenic carbonate con-
tent of the bulk sediment samples determined by
treating measured amount of oven-dried sediment
samples with glacial acetic acid. The excess acid
was removed by washing with distilled water. The
organic matter content in the samples analyzed
by treating the acid treated residue with 30%
hydrogen peroxide. The remainder was thoroughly
washed with water and dried to get terrigenous

matter content. Age of each sample was calcu-
lated in ka following the time–depth relationship
provided by Steens et al (1991).

3. Results

3.1 Relative abundance of planktic foraminifera

At ODP site 728A Globigerinita glutinata, Globige-
rina bulloides, Neogloboquadrina pachyderma, Glo-
bigerinoides ruber, N. dutertrei and Globorotalia
menardii are the abundant planktic foraminiferal
species. In general, G. glutinata and G. bulloides are
the most dominant faunal elements constituting
about 50% of the total assemblage. The abundance
of G. glutinata remained relatively low during last
∼175 kyr whereas, this species was more abun-
dant prior to ∼175 ka (figure 2). However, this
species showed relatively higher relative abundance
during most of the isotopic interglacial stages.
The relative abundance of G. bulloides varies
between ∼5 and 28%. We could not mark much
definite trend in the relative abundance of this
species with respect to the interglacial and glacial
isotopic stages. However, this species increased
significantly during glacial/interglacial transitions
(figure 2). The relative abundance of N. pachy-
derma showed almost opposite trend to that of G.
glutinata abundance mainly during glacial inter-
vals. This species increased its abundance mostly
during glacial stages such as MIS 4, 6, 8 and 12 with
maximum abundance during MIS 6 (figure 2).
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Figure 3. Time series plots of relative abundances of G. glutinata, N. pachyderma and G. menardii; number of pteropods/
gm; planktic foraminiferal δ18O values and foraminiferal fragmentation (Steens et al 1991) at ODP site 728A (even numbered
horizontal bars with dots represent glacial stages).

Neogloboquadrina dutertrei also showed its rela-
tively higher abundances during glacial MIS 2, 8,
10 and 12 (figure 2). Globigerinoides ruber occurred
with relatively more abundance in sediments older
than ∼300 kyr (figure 2). In general, the relative
abundance of G. menardii remained higher during
most of the interglacial periods (figure 3).

3.2 Fragmentation, pteropod accumulation and
Globorotalia menardii %

Fragmentation of foraminiferal tests was most pro-
nounced during interglacial intervals which also
had the higher relative abundances of the resistant
species G. menardii mainly during MIS 1, 5, 9, 11
and 13 (figure 3). Aragonite preservation is also
estimated by the total number of pteropod shells
per gram which remains high during some younger
glacial intervals, i.e., MIS 6 and 8 whereas older
glacial intervals (i.e., 10, 12 and 14) and interglacial
intervals are almost devoid of pteropod shell. Dur-
ing MIS 6, pteropods showed few prominent peaks
of abundance which also correspond with the maxi-
mum relative abundances of polar–subpolar plank-
tic foraminifer, N. pachyderma.

3.3 Sediment accumulation rates, biogenic
carbonate and terrigenous matter input

Characteristic fluctuations in the sediment accu-
mulation rates were observed during last ∼540 kyr
at site 728A. In general, interglacial intervals are
marked with lower sediment accumulation as com-
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Figure 4. Sediment accumulation rates (even numbers on
the curve indicate intervals of glacial stages).

pared to the glacial periods (figure 4). The higher
percentages of terrigenous matter during glacial
interval than interglacial (figure 5) are explained
by the changing sea levels and eolian deposits. The
terrigenous matter content showed antithetic rela-
tionship with the biogenic carbonate. The biogenic
carbonate content at this site is characterized by
higher percentages during most of the interglacial
stages for the last 540 kyr. The organic matter con-
tent showed almost identical variation pattern to
that of biogenic carbonate content (figure 5).
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Figure 5. Time series plots of biogenic carbonate (%), terrigenous matter (%) and organic matter (%) at ODP site 728A
(even numbered horizontal shaded bars represent glacial stages).

4. Discussion

4.1 Monsoonal upwelling and surface
productivity

The understanding of modern foraminiferal ecology
is necessary for the paleoceanographic and paleo-
climatic reconstruction employing the fossil
record. The common planktic foraminiferal species
recorded at ODP site 728A are also reported from
the upwelling areas of the Indian Ocean (Conan
and Brummer 2000; Ivanova et al 2003). Globigeri-
noides bulloides thrives in subpolar regions and
tropical upwelling areas and is widely used as a pro-
ductivity indicator in monsoon-led upwelling re-
gions like the Oman margin (Curry et al 1992;
Naidu and Malmgren 1996; Overpeck et al 1996;
Gupta et al 2003, 2008). Conan and Brummer
(2000) reported that G. glutinata and G. bulloides
are typical SW monsoonal upwelling species abun-
dant in the upwelling areas off Somalia. Globigeri-
nita glutinata is marked with higher abundances
in the areas of open-ocean upwelling whereas G.
bulloides is dominant in the regions of coastal
upwelling (Anderson and Prell 1993; Ishikawa and
Oda 2007). The abundant occurrences of both the
species (mainly G. glutinata) at site 728A during
most of the interglacial intervals suggest intense
upwelling. Enhanced interglacial SW summer mon-
soon probably increased the upwelling in the west-
ern Arabian Sea (Sirocko et al 1991; Emeis et al
1995) and caused high surface productivities in

the entire Arabian Sea due to the lateral transport
of eutrophic waters (Rogalla and Andruleit 2005).
The scenario of interglacial interval was possibly
closely similar to the present day conditions with
a strong seasonality, high and low interannual pro-
ductivity phases, and a distinct variation in surface
water stratification. Ishikawa and Oda (2007) also
suggested that the increased productivity due to
intensified SW monsoonal upwelling was responsi-
ble for peaks in total planktic foraminiferal tests
along with higher abundances of G. glutinata and
G. bulloides in the western Arabian Sea during
interglacial intervals. These events of high surface
productivity were correlated with maximum inso-
lation in July at 45◦N (Berger 1978). Anderson
and Prell (1993) suggested that intense SW sum-
mer monsoon occurred during interglacial times
when the perihelion was aligned with the sum-
mer solstice, an orbital constellation that causes
increased summer insolation in the Northern
Hemisphere.

Most of the glacial periods (i.e., MIS 2, 4, 6, 8
and 12) are characterized by higher relative abun-
dances of N. pachyderma and N. dutertrei associ-
ated with G. ruber (figure 2). Neogloboquadrina
pachyderma, a common species in subpolar and
polar ocean sediments, is commonly used to recons-
truct paleoenvironmental conditions in cold oceans
(Bé and Hutson 1977; Hemleben et al 1989).
Kuroyanagi and Kawahata (2004) observed the
dominance of this species below the pycnocline
(∼20–40 m water depth) and at <12◦C temperature.
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Sedimentary data suggest that the distribution
of N. pachyderma is influenced by stratification
and deep chlorophyll maxima (DCM) (Hilbrecht
1997; Schiebel et al 2001). The NE winter monsoon
is also characterized by enhanced surface produc-
tivity due to transportation of nutrients by deep
wind-driven mixing and winter cooling (Veldhuis
et al 1997). Thus, the more stratified conditions
and deep mixed layer due to increased NE winter
monsoon are mainly responsible for the higher rel-
ative abundances of N. pachyderma during glacial
periods. Ishikawa and Oda (2007) also recorded
higher surface productivity during glacial intervals
in the northwestern Arabian Sea.

During glacial periods weaker pressure gradients
between land and sea probably resulted into less
upwelling in relatively weaker SW summer mon-
soons (Prell 1984). However, NE winter monsoons
of glacial intervals were possibly stronger than dur-
ing the interglacials due to higher pressure gra-
dients. During glacial intervals the intense NE
winter monsoon intensified the convective over-
turn which moderately increased the overall sur-
face productivity (Rostek et al 1997; den Dulk
et al 1998; Reichart et al 1998; Ivanova et al 2003).
Benthic foraminiferal assemblages in the Gulf of
Aden, an area strongly influenced by NE mon-
soon, also reflected enhanced surface productivity
during glacial intervals (Almogi-Labin et al 2000).
Thus, the variations in the distribution of plank-
tic foraminiferal assemblage with respect to the
glacial and interglacial periods reflected that the
northwestern Arabian Sea was alternatively influ-
enced by enhanced SW summer monsoon during
interglacials and higher NE winter monsoon dur-
ing glacial intervals. Recently, Gupta et al (2010)
for the first time reported the evidence of mid-
Brunhes (∼300–250 kyr) climatic event from the
equatorial Indian Ocean and established a relation
between Indian Ocean Dipole (IOD) dynamics
and climate of the Indian Ocean. They suggested
that weakening of Indian Ocean equatorial wester-
lies (IEW) and strengthening of IOD during 300–
250 kyr BP coincides with a shift towards dry
conditions in Australasia, wet conditions in equa-
torial East Africa and a stronger Indian summer
monsoon. We could also record the increase in G.
bulloides and decline in G. ruber population dur-
ing mid-Brunhes time (∼300–250 kyr) reflecting
stronger Indian summer monsoon possibly due to
strengthened Indian Ocean Dipole (IOD).

During most of the transitional intervals from
glacial to interglacial (e.g., MIS 2/1, 6/5, 8/7, 10/9
and 12/11) the planktic foraminiferal species such
as N. pachyderma, N. dutertrei and G. ruber were
replaced by the dominance of G. glutinata and
G. bulloides (figure 2). This change in the assem-

blage of planktic foraminifera from dominance of
NE monsoonal fauna to upwelling species suggests
changing monsoonal condition during transitions
from glacial to interglacial intervals. These tran-
sitional periods correspond well with the sudden
increase in the sea surface temperature as indi-
cated by decreased planktic foraminiferal δ18O val-
ues (figure 4). Abrupt increase in temperature
causes a rapid melting of the inland glaciers, an
extreme intensification of the summer monsoon
and a weakening of the winter monsoon (Rogalla
and Andruleit 2005). Thus, the changing foramini-
feral assemblages suggested that the glacial/
interglacial transitional intervals are characterized
by the reduced NE winter monsoon and accelerated
SW summer monsoonal conditions which result
into intense upwelling and surface productivity.

4.2 Carbonate dissolution and OMZ
fluctuations

Although ODP site 728A (water depth 1428 m)
is located well above the present day lysocline,
dissolution of CaCO3 may occur even when the
overlying water is supersaturated with respect to
calcite. Release of CO2 during oxic decomposition
of organic matter below the sediment–water inter-
face can result in supralysoclinal CaCO3 dissolu-
tion (Morse and Meckenzie 1990). The biogenic
carbonate content at this site varies between 50
and 70 (wt%), and shows major peaks during inter-
glacial stages for the last 540 kyr. The deposition
of calcium carbonate on the sea floor is domi-
nantly controlled by biological productivity in sur-
face water, rate of dissolution through the water
column as well as on the sea floor, and dilution by
terrigenous matter. A negative correlation between
biogenic carbonate and terrigenous matter may be
due to the fact that the biogenic carbonate was
diluted by the terrigenous matter supply. Closely
similar relationships are also observed in the west-
ern, northwestern and southeastern Arabian Sea
(Murray and Prell 1992; Clemens and Prell 1990;
Pattan et al 2003; Das et al 2008). The organic
matter content is also characterized by higher per-
centages during most of the interglacial intervals.

Since aragonite is more soluble than calcite,
pteropod shells (made up of aragonite) dissolve
rapidly when sinking through the CO2-rich water of
OMZ. The regional aragonite compensation depth
(ACD), therefore, lies nearly at the middle of the
OMZ at about 500 m (Berger 1977) preventing
good pteropod preservation at site 728A. Preser-
vation of pteropod shells at this site thus, requires
a substantial lowering of the ACD. It is there-
fore suggested that variations in the number of
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pteropod shells at site 728A should be attributed
to the changes in the CO2 content of the OMZ. It
is significant that the higher pteropod preservation
values are associated with relatively less intense
surface productivity during glacial intervals (Rai et
al 2008). This suggests that glacial periods of rel-
atively less intense surface productivity are char-
acterized by a substantially deeper ACD, and thus
by a weakened OMZ. Reichart et al (1997) have
reported that high pteropod preservation index
values are associated with low values of Corg dur-
ing glacial intervals due to low surface productiv-
ity. Thus, intervals of distinct peaks of pteropod
abundance represent substantial deepening of the
ACD and weakened OMZ in the NW Arabian Sea,
possibly due to low surface productivity combined
with the intense rates of thermocline ventilation.
However, poor or no pteropod preservation dur-
ing interglacials suggest a more strengthened OMZ
and a shallow ACD during periods of higher sur-
face productivity. This inference is also supported
by the overall higher foraminiferal fragmentation
during most of the interglacial intervals (figure 3).
Recently, based on foraminiferal and organic car-
bon data, Gupta et al (2008) suggested a relatively
well oxygenated OMZ during early Holocene where
the influence of intense monsoon related produc-
tion was reduced due to incursion of Circumpolar
Deep Water (CDW).

Significant changes in sediment accumulation
rates were observed for the past ∼540 kyr, with re-
latively low accumulation rates during the inter-
glacial periods compared to the glacial intervals.
Due to low sea-level stands during glacial peri-
ods terrigenous materials were eroded away from
the shelf which increased the sediment acumu-
lation rates. However, during higher sea level
stands of the interglacial terrigenous materials are
trapped on the shelf causing reduced sedimen-
tation rates. Also more aridity and less vegeta-
tion cover during glacial intervals in the dust-
source areas possibly resulted into higher influx
of eolian particles (Steens et al 1991). The prox-
imal position of the ODP site 728A on the
Oman margin also provides the possibility to
study the influence of OMZ at its lower extreme.
Presently, the lower limit of this zone extends up
to a water depth of 1500 m (Wyrtki 1971). Since
this site is located at a water depth of about 1400 m,
small fluctuations in the OMZ may strongly influ-
ence the depositional environment. The higher
fragmentation and increased abundance of disso-
lution resistant species, G. menardii during inter-
glacial intervals suggest strong dissolution. Also
the changes in intensity and vertical distribution
of OMZ with time influence the fragmentation
record. In the OMZ, dissolution processes may

affect the foraminiferal tests caused by undersat-
uration of calcium carbonate (Steens et al 1991).
The lower boundary of OMZ became shallower dur-
ing interglacial intervals when dissolution increased
as a result of higher influx of organic matter. The
increased supply of organic matter in the water
column enhanced the intensity of OMZ as more
oxygen is utilized to disintegrate the organic mat-
ter. Higher surface productivity during interglacial
periods must have occurred as a response to stron-
ger southwestern monsoon winds. The increase of
sinking organic matter leads to a stronger OMZ as
oxygen is used to disintergrate the organic matter.
This process reduces the pH of the water result-
ing an increased dissolution of calcium carbonate.
The connection between low surface productiv-
ity and a weak OMZ indicates that variations in
the intensity of OMZ are controlled by mid-water
oxygen consumption rates, although changes in
mid-water oxygen advection cannot be completely
disregarded. Schmiedl and Leuschner (2005) and
Schmiedl and Mackensen (2006) also suggested
that the vertical extent and intensity of the lower
part of the OMZ were not only influenced by
changes in monsoonal upwelling and associated
organic matter flux but also by changes in the deep
sea ventilation.

5. Conclusions

The distinct planktic foraminiferal assemblages at
ODP site 728A during glacial and interglacial inter-
vals reflect changes in the surface productivity
and oxygen minimum zone during past ∼540 kyr.
The strong SW summer monsoon causing intense
upwelling in this region was mainly responsible
for more pronounced surface productivity during
interglacial periods. During glacial intervals weaker
SW summer monsoons lower the pressure gradients
between land and sea resulting into less upwelling.
Whereas, strong NE winter monsoon of glacial
period was responsible for more effective surface
water convection and surface productivity. The
changing planktic foraminiferal assemblages dur-
ing transitional intervals from glacial to interglacial
showed extreme intensification of SW summer
monsoon and reduced NE winter monsoon result-
ing into intense upwelling and surface productivity.
The increased abundance of pteropods during some
glacial intervals (i.e., MIS 6 and 8) reflected signif-
icant lowering of the ACD along with less intense
OMZ possibly in response to relatively low surface
productivity and/or enhanced thermocline ventila-
tion. Strong dissolution during interglacial periods
was responsible for the higher abundances of disso-
lution resistant species, G. menardii and increased
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fragmentation. The higher influx of organic matter
in the water column during interglacial intervals
enhanced the intensity and vertical distribution of
OMZ which was responsible for more dissolution.
Thus, the microfaunal and sedimentologic data
in the present study suggested that the changing
monsoonal pattern during glacial and interglacial
intervals influenced the surface productivity and
OMZ in the NW Arabian Sea.
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