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Analytical solutions are obtained for one-dimensional advection–diffusion equation with variable
coefficients in a longitudinal finite initially solute free domain, for two dispersion problems. In the
first one, temporally dependent solute dispersion along uniform flow in homogeneous domain is
studied. In the second problem the velocity is considered spatially dependent due to the inhomo-
geneity of the domain and the dispersion is considered proportional to the square of the velocity.
The velocity is linearly interpolated to represent small increase in it along the finite domain. This
analytical solution is compared with the numerical solution in case the dispersion is proportional
to the same linearly interpolated velocity. The input condition is considered continuous of uniform
and of increasing nature both. The analytical solutions are obtained by using Laplace transforma-
tion technique. In that process new independent space and time variables have been introduced.
The effects of the dependency of dispersion with time and the inhomogeneity of the domain on the
solute transport are studied separately with the help of graphs.

1. Introduction

Advection–diffusion equation describes the solute
transport due to combined effect of diffusion and
convection in a medium. It is a partial differen-
tial equation of parabolic type, derived on the
principle of conservation of mass using Fick’s law.
Due to the growing surface and subsurface hydro-
environment degradation and the air pollution,
the advection–diffusion equation has drawn signif-
icant attention of hydrologists, civil engineers and
mathematical modelers. Its analytical/numerical
solutions along with an initial condition and two
boundary conditions help to understand the con-
taminant or pollutant concentration distribution
behaviour through an open medium like air, rivers,
lakes and porous medium like aquifer, on the basis
of which remedial processes to reduce or eliminate
the damages may be enforced. It has wide applica-
tions in other disciplines too, like soil physics,

petroleum engineering, chemical engineering and
biosciences.

In the initial works while obtaining the ana-
lytical solutions of dispersion problems in ideal
conditions, the basic approach was to reduce the
advection–diffusion equation into a diffusion equa-
tion by eliminating the convective term(s). It was
done either by introducing moving co-ordinates
(Ogata and Banks 1961; Harleman and Rumer
1963; Bear 1972; Guvanasen and Volker 1983;
Aral and Liao 1996; Marshal et al 1996) or by
introducing another dependent variable (Banks
and Ali 1964; Ogata 1970; Lai and Jurinak
1971; Marino 1974 and Al-Niami and Rushton
1977). Then Laplace transformation technique
has been used to get desired solutions. In addi-
tion to this method, Hankel transform method,
Aris moment method, perturbation approach,
method using Green’s function, superposition
method have also been used to get the analytical
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solutions of the advection–diffusion equations in
one, two and three dimensions. But Laplace trans-
formation technique has been commonly used
because of being simpler than other methods and
the analytical solutions using this method being
more reliable in verifying the numerical solutions
in terms of the accuracy and the stability.

Most of the works included the effects of adsorp-
tion, first order decay, zero order production
on the concentration attenuation as the solute
is transported down the stream. Such solutions
have been compiled (van Genuchten and Alves
1982 and Lindstrom and Boersma 1989). Coming
nearer to real problems layered porous medium
was considered (Shamir and Harleman 1967), inho-
mogeneity of the porous medium was defined
as a function of distance variable (Lin 1977),
and non-linear adsorption has been considered
(Liej et al 1993). Using the direct relationship
between dispersion coefficient and velocity through
porous medium (Ebach and White 1958), unsteady
flow through porous medium has been considered
to obtain the analytical solutions (Banks and
Jerasate 1962; Hunt 1978 and Kumar 1983). Some
one-dimensional analytical solutions have been
given (Tracy 1995) by transforming the non-linear
advection–diffusion equation into a linear one for
specific forms of the moisture content vs. pressure
head and relative hydraulic conductivity vs. pres-
sure head curves which allow both two-dimensional
and three-dimensional solutions to be derived.
A method has been given to solve the trans-
port equations for a kinetically adsorbing solute in
a porous medium with spatially varying velocity
field and dispersion coefficients (Van Kooten 1996).
A methodology was presented (Manoranjan and
Stauffer 1996) which enables to construct a closed
form exact solution for transport with Langmuir
sorption under nonequilibrium conditions without
making any kind of restrictive a priori assump-
tions. A stochastic model for one-dimensional virus
transport in homogeneous, saturated, semi-infinite
porous media was developed (Chrysikopoulos and
Sim 1996), the model accounts for first-order
inactivation of liquid-phase, adsorbed viruses with
different inactivation rate constants, and time
dependent distribution coefficient.

Later it has been shown that some large sub-
surface formations exhibit variable dispersivity
properties, either as a function of time or as a func-
tion of distance (Matheron and deMarsily 1980;
Sposito et al 1986; Gelhar et al 1992). Analytical
solutions were developed for describing the trans-
port of dissolved substances in heterogeneous semi-
infinite porous media with a distance dependent
dispersion of exponential nature along the uni-
form flow (Yates 1990, 1992). The work of Yates
was extended (Logan and Zlotnik 1995 and Logan

1996) by including the adsorption and decay effects
and by studying their interaction with the inhomo-
geneity caused by scale-dependent dispersion along
uniform flow for periodic input condition. One-
dimensional analytical solutions were presented for
the advection–diffusion equation for solute disper-
sion, being proportional to the square of velocity
and velocity proportional to the position variable
(Zoppou and Knight 1997). Time dependent dis-
persion along uniform flow has been considered
(Aral and Liao 1996) to solve two-dimensional
advection–diffusion equation. An analytical solu-
tion has been obtained for two dimensional steady
state mass transports in a trapezoidal embank-
ment in a spatially varying velocity field through its
replacement with a hydrologically equivalent rect-
angular embankment (Tartakovsky and Federico
1997).

The temporal moment solution for one dimen-
sional advective-dispersive solute transport with
linear equilibrium sorption and first order degra-
dation for time pulse sources has been applied
to analyze soil column experimental data (Pang
et al 2003). An analytical approach was developed
for nonequilibrium transport of reactive solutes
in the unsaturated zone during an infiltration–
redistribution cycle (Severino and Indelman 2004).
The solute is transported by advection and obeys
linear kinetics. Analytical solutions were pre-
sented for solute transport in rivers including the
effects of transient storage and first order decay
(Smedt 2006). Pore flow velocity was assumed
to be a nondivergence – free, unsteady and non-
stationary random function of space and time for
ground water contaminant transport in a hetero-
geneous media (Sirin 2006). A two-dimensional
semi-analytical solution was presented to analyze
stream–aquifer interactions in a coastal aquifer
where groundwater level responds to tidal effects
(Kim et al 2007).

In the present paper analytical solutions are
obtained for two solute dispersion problems in a
longitudinal finite domain, organized in sections 2
and 3, respectively. In the first problem time depen-
dent solute dispersion of increasing or decreasing
nature along a uniform flow through a homo-
geneous domain is studied. In the second problem
the medium is considered inhomogeneous hence
the velocity is considered dependent on position
variable. The velocity is linearly interpolated in
position variable which represents a small increase
in the velocity from one end to the other end of
the domain. This expression contains a parameter
to represent a change in inhomogeneity from one
medium to other medium. Dispersion is assumed
proportional to square of velocity. In each problem
the domain is initially solute free. The input condi-
tion is of uniform and varying nature, respectively.



Analytical solutions of advection–diffusion equation 541

Numerical solution has also been obtained for the
case in which dispersion varies linearly with velo-
city and has been compared with the analytical
solution obtained in the former case.

2. Temporally dependent dispersion
along uniform flow

2.1 Uniform continuous input

Advection–diffusion equation in one dimension
with variable coefficients is:

∂C

∂t
=

∂

∂x

(
D(x, t)

∂C

∂x
− u(x, t)C

)
, (1)

where C represents the solute concentration at
position x along the longitudinal direction at time
t, D is the solute dispersion, if it is independent of
position and time, is called dispersion coefficient,
and u is the medium’s flow velocity. To study the
temporally dependent solute dispersion of a uni-
form input concentration of continuous nature in
an initially solute free finite domain, we consider

D(x, t) = D0f(mt) and u(x, t) = u0, (2)

where m is a coefficient whose dimension is inverse
of that of the time variable. Thus f(mt) is
an expression in non-dimensional variable (mt).
The expressions of f(mt) are chosen such that
f(mt) = 1 for m = 0 or t = 0. The former case
represents the uniform solute dispersion and
the latter case represents the initial dispersion.
The coefficients D0 and u0 in equation (2) may be
defined as initial dispersion coefficient and uniform
flow velocity, respectively. Thus the partial differ-
ential equation (1) along with initial condition and
boundary conditions may be written as:

∂C

∂t
= D0f(mt)

∂2C

∂x2
− u0

∂C

∂x
, (3)

C(x, t) = 0, 0 ≤ x ≤ L, t = 0, (4)

C(x, t) = C0, x = 0, t > 0, (5)

∂C(x, t)
∂x

= 0, x = L, t ≥ 0, (6)

where the input condition is assumed at the origin
and a second type or flux type homogeneous

condition is assumed at the other end x = L, of the
domain. C0 is a reference concentration.

To use the Laplace transform technique con-
veniently, it is necessary to bring the time depen-
dent coefficient in differential equation (3) on the
left hand side. For this purpose we introduce a new
independent variable by a transformation

X =
∫

dx

f(mt)
or

dX

dx
=

1
f(mt)

. (7)

As mt is a non-dimensional term so the dimension
of X will be that x hence is referred to as a new
space variable, a moving co-ordinate, though it is
different from those considered in the references
cited at the outset of the first section. The initial
and boundary value problem in new space variable
may be expressed as:

f(mt)
∂C

∂t
= D0

∂2C

∂X2
− u0

∂C

∂X
, (8)

C(X, t) = 0, 0 ≤ X ≤ X0,

t = 0; X0 =
L

f(mt)
, (9)

C(X, t) = C0, X = 0, t > 0, (10)

∂C(X, t)
∂X

= 0, X = X0, t ≥ 0. (11)

To get rid of the time dependent coeffi-
cient following transformation (Crank 1975) is
used:

T =

t∫
0

dt

f(mt)
. (12)

The dimension of T will be that of the variable t
so it is referred to as a new time variable. Further
it should also be ensured while choosing f(mt)
that T = 0 at t = 0 so that the nature of ini-
tial condition does not change in the new time
domain. The initial and boundary value problem
(equations 8–11) may be expressed in new time
variable as:

∂C

∂T
= D0

∂2C

∂X2
− u0

∂C

∂X
, (13)

C(X,T ) = 0, 0 ≤ X ≤ X0,

T = 0; X0 =
L

f(mt)
, (14)
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C(X,T ) = C0, X = 0, T > 0, (15)

∂C(X,T )
∂X

= 0, X = X0, T ≥ 0. (16)

Now the initial and boundary value problem
(equations 13–16) in the (X,T ) domain becomes
similar to that of Cleary and Adrian (1973) in
(x, t), quoted as problem A3 (van Genuchten and
Alves 1982), hence or otherwise using Laplace
transformation technique, the desired analytical
solution may be written as follows:

C(X,T ) = C0A(X,T ), (17)

where

A(X,T )

=
1
2

erfc
(

X − u0T

2
√

D0T

)

+
1
2

exp
(

u0X

D0

)
erfc

(
X + u0T

2
√

D0T

)

+
1
2

[
2 +

u0(2X0 − X)
D0

+
u2

0T

D0

]

× exp
(

u0X0

D0

)
erfc

(
(2X0 − X) + u0T

2
√

D0T

)

−
(

u2
0T

πD0

)1/2

exp
[
u0X0

D0

− (2X0−X+u0T )2

4D0T

]
,

X = x/f(mt), X0 = L/f(mt) and T may be
obtained from transformation (equation 12).

2.2 Input condition of increasing nature

The source of input concentration may increase
with time due to variety of reasons. One way to
represent such a condition is to consider a factor
C0F (t) on right hand side of the input condi-
tion (equation 5) where F (t) may be an increasing
function. But this type of situation may also be
described by a mixed type or third type condition
written as follows:

−D(x, t)
∂C

∂x
+ u(x, t)C = u0C0 at x = 0, t > 0.

(18)

Using equations (2), (7) and (12) the above condi-
tion may be written in (X,T ) domain as:

−D0

∂C

∂X
+ u0C = u0C0 at X = 0, T > 0. (19)

Now the initial and boundary value problem
composed of advection–diffusion equation (13),
initial condition (14), input condition (19) and
second boundary condition (16), in the (X,T )
domain becomes similar to that of Bastian and
Lapidus (1956) and Brenner (1962) in (x, t)
domain, quoted as the problem A4 (van Genuchten
and Alves 1982) hence or otherwise using Laplace
transformation technique, the desired analytical
solution may be written as follows:

C(X,T ) = C0A(X,T ) (20)

where

A(X,T )

=
1
2

erfc
(

X − u0T

2
√

D0T

)
+

(
u2

0T

πD0

)1/2

× exp
[
−(X + u0T )2

4D0T

]
− 1

2

(
1 +

u0X

D0

+
u2

0T

D0

)

× exp
(

u0X

D0

)
erfc

(
X + u0T

2
√

D0T

)

+
(

4u0T

πD0

)1/2 [
1 +

u0

4D0

(2X0 − X + u0T )
]

× exp
[
u0X0

D0

− (2X0 − X + u0T )
4D0T

]
− u0

D0

×
[
(2X0−X)+

3u0T

2
+

u0

4D0

(2X0−X+u0T )2
]

× exp
(

u0X0

D0

)
erfc

(
(2X0 − X) + u0T

2
√

D0T

)
,

X = x/f(mt), X0 = L/f(mt) and T may be
obtained from transformation (12).
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3. Spatially dependent dispersion along
non-uniform flow

3.1 Uniform input

Though inhomogeneity of porous domain was
defined by scale dependent dispersion and flow
through the medium has been considered uniform
(Yates 1992; Logan 1996) but the flow velocity
may also depend upon position variable in case
the domain is inhomogeneous. Zoppou and Knight
(1997) have considered the velocity as u = βx,
and the solute dispersion proportional to square of
velocity, i.e., as D = αx2; in a semi-infinite domain
x0 ≤ x < ∞. But these expressions do not reflect
real variations due to inhomogeneity of the medium
because as x → ∞, dispersion and velocity also
become too large. In fact the variation in velocity
due to inhomogeneity should be small so that the
velocity at each position satisfies the Darcy’s law in
case the medium is porous or satisfies the laminar
condition of the flow in a non-porous medium, an
essential condition for the velocity parameter, u
in the advection–diffusion equation. This factor is
taken care of in the present work and velocity is
linearly interpolated in position variable such that
it increases from a value u0 at x = 0 to a value
(1 + b)u0 at x = L, where b may be a real constant.
Thus

u(x, t) = u0(1 + ax), (21)

where a = b/L, is the parameter accounting for the
inhomogeneity of the medium. It should be small
so that the increase in velocity is of small order.
Solute dispersion is assumed proportional to square
of the velocity so we consider

D(x, t) = D0(1 + ax)2. (22)

As ax is a non-dimensional term hence D0 and
u0 are dispersion coefficient and velocity, respec-
tively at the origin (x = 0) of the medium. The
domain is assumed initially solute free. An input
concentration is assumed at the origin and a
flux type homogeneous condition is assumed at
the other end of the domain. Now to solve
advection–diffusion equation (1) for the expres-
sions in (21) and (22) along with the conditions
(4–6) we introduce a new space variable, X by a
transformation

X = −
∫

dx

(1 + ax)2
=

1
a(1 + ax)

, (23)

in terms of which the advection–diffusion
equation (1) assumes the form

∂C

∂t
= a2D0X

2 ∂2C

∂X2
+ au0X

∂C

∂X
− au0C. (24)

It is further reduced into a partial differential
equation with constant coefficients by using a
transformation

Z = − log aX = log(1 + ax). (25)

Ultimately we get the present initial and boundary
value dispersion problem reduced in following
equations:

∂C

∂t
= a2D0

∂2C

∂Z2
− (au0 − a2D0)

∂C

∂Z

− au0C, (26)

C(Z, t) = 0, 0 ≤ Z ≤ Z0,

t = 0; Z0 = log(1 + aL), (27)

C(Z, t) = C0, Z = 0, t > 0, (28)

∂C

∂Z
= 0, Z = Z0, t ≥ 0. (29)

It is similar to the problem of Selim and Mansell
(1976) quoted as the problem C7 (van Genuchten
and Alves 1982) hence or otherwise (using Laplace
transformation technique) the desired analytical
solution may be written as follows

C(Z, t) = C0A(Z, t)/B(Z), (30)

where

A(Z, t)

=
1
2

exp
{

(v − w)Z
2D

}
erfc

(
Z − wt

2
√

Dt

)

+
1
2

exp
{

(v + w)Z
2D

}
erfc

(
Z + wt

2
√

Dt

)

+
(w − v)
2(w + v)

exp
{

(v + w)Z − 2wZ0

2D

}
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× erfc
(

2Z0 − Z − wt

2
√

Dt

)
+

(w + v)
2(w − v)

× exp
{

(v − w)Z + 2wZ0

2D

}

× erfc
(

2Z0 − Z + wt

2
√

Dt

)
− v2

2μD

× exp
(

vZ0

D
− μt

)
erfc

(
2Z0 − Z + vt

2
√

Dt

)
,

B(Z) = 1 +
(w − v)
2(w + v)

exp
(

wZ0

D

)
,

w = v +
(

1 +
4μD

v2

) 1
2

and

Z = log(1 + ax); Z0 = log(1 + aL);

D = a2D0; v = (au0 − a2D0); μ = au0.

3.2 Input condition of increasing nature

The input condition of increasing nature intro-
duced at the origin of the domain is of same type as
condition (18) but is defined with slightly different
coefficients as follows:

− D(x, t)
∂C

∂x
+ {u(x, t) − aD(x, t)}C

= (u0 − aD0)C0 at x = 0, t > 0. (31)

This condition may be reduced in terms of new
space variable Z defined by equation (25) as:

− a2D0

∂C

∂Z
+ (au0 − a2D0)C = (au0 − a2D0)C0,

Z = 0, t > 0. (32)

Now the initial and boundary value problem
composed of advection–diffusion equation (26),
initial condition (equation 27), input condition

(equation 32) and second boundary condition
(equation 29), in the (X,T ) domain becomes simi-
lar to that problem C8 (van Genuchten and Alves
1982) hence or otherwise (using Laplace transfor-
mation technique) the desired analytical solution
may be written as follows:

C(Z, t) = C0A(Z, t)/B(Z), (33)

where

A(Z, t)

=
v

(v + w)
exp

{
(v − w)Z

2D

}
erfc

(
Z − wt

2
√

Dt

)

+
v

(v − w)
exp

{
(v + w)Z

2D

}
erfc

(
Z + wt

2
√

Dt

)

+
v2

2μD
exp

{
vZ

D
− μt

}
erfc

(
Z + vt

2
√

Dt

)

+
v2

2μD

[
v(2Z0 − Z)

D
+

v2t

D
+ 3 +

v2

μD

]

× exp
{

vZ0

D
− μt

}
erfc

(
2Z0 − Z + vt

2
√

Dt

)

− v3

μD

√
t

πD
exp

[
vZ0

D
−μt− (2Z0−Z+vt)2

4Dt

]

+
v(w − v)
(w + v)2

exp
{

(v + w)Z − 2wZ0

2D

}

× erfc
(

2Z0 − Z − wt

2
√

Dt

)

− v(w + v)
(w − v)2

exp
{

(v − w)Z + 2wZ0

2D

}

× erfc
(

2Z0 − Z + wt

2
√

Dt

)

B(Z) = 1 − (w − v)2

2(w + v)2
exp

(
−wZ0

D

)
,

w = v +
(

1 +
4μD

v2

) 1
2



Analytical solutions of advection–diffusion equation 545

Figure 1. Temporal dependent solute dispersion along
uniform flow of uniform input described by solution
(equation 17). The four solid curves are drawn for
D = D0 exp(−mt). The two dotted curves are drawn for
D = D0 exp(mt) and D = D0, respectively.

and

Z = log(1 + ax); Z0 = log(1 + aL);

D = a2D0; v = (au0 − a2D0); μ = au0.

4. Results and discussions

Concentration values are evaluated from the four
analytical solutions discussed in the sections 2 and
3, in a finite domain 0 ≤ x ≤ 1 (i.e., L = 1.0 km
is chosen) at times t (years) = 0.1, 0.4, 0.7 and
1.0, for input values C0 = 1.0, u0 = 0.11 (km/year),
D0 = 0.21 (km2

/year).
Figures 1 and 2 represent temporal depen-

dent concentration dispersion pattern of uniform
input and input of increasing nature, respectively
along a uniform flow through a homogeneous
medium, described by the analytical solutions,
equations (17) and (20), respectively. In figure 1,
the uniform input concentration value is 1.0 at
all times. In figure 2, the concentration value at
x = 0 increases with time. Thus the respective
input boundary conditions are satisfied. In both
the figures the solid curves represent the solu-
tions for an expression f(mt) = exp(−mt) which
is of decreasing nature. In both the figures
the dotted curve represents the respective solu-
tions at t = 1.0 (year), for another expression
f(mt) = exp(mt), which is of increasing nature.
It may be observed that in case of uniform
input the concentration value at a particular
position is higher for the latter expression of
f(mt) than that for the former expression of

Figure 2. Temporal dependent solute dispersion along uni-
form flow of input of increasing nature described by solu-
tion (equation 20). The four solid curves are drawn for
D = D0 exp(−mt). The only dotted curve is drawn for
D = D0 exp(mt).

f(mt). The difference increases with the dis-
tance along the domain. But in case of an input
concentration of increasing nature its value is
less for increasing nature of f(mt) than that
for decreasing nature of f(mt). This trend is of
diminishing nature up to x = 0.4, beyond which
the trend reverses. For all the curves drawn in
figures 1 and 2, a value m(year)−1 = 0.1 is chosen.
Both the analytical solutions of section 2 may
be solved using other expressions of f(mt) which
satisfy the conditions stated at the outset of the
section 2.

Figures 3 and 4 depict the concentration values
evaluated from analytical solutions (equations 30
and 33) for spatially dependent dispersion of
uniform input and input of increasing nature,
respectively, along non-uniform flow, through
an inhomogeneous domain. The solid curves in
figure 3 represent the solution (equation 30) in
which a value a = 1.0 (km)−1 is taken. Using
expressions (21–22) it may be evaluated that due
to the inhomogeneity of the medium, the velo-
city u varies from a value of 0.11 (km/year) to a
value of 0.22 (km/year) and dispersion D varies
from a value of 0.21 (km/year) to a value of
0.42 (km/year), along the domain 0 ≤ x(km) ≤ 1.
This figure also shows the effect of inhomogeneity
on the dispersion pattern. A dotted curve is drawn
for the value a = 0.1 (km)−1. It may be observed
that the concentration values evaluated from the
solution (equation 30) along a medium of lesser
inhomogeneity (which introduces lesser variation
in velocity and dispersion along the column), are
slightly higher than those at the respective posi-
tions of a medium of higher inhomogeneity, near
the origin but decrease at faster rate as the other
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Figure 3. Spatially dependent solute dispersion along
non-uniform flow of uniform input when D ∝ u2, described
by solution (equation 30). The four solid curves are drawn

for a = 1.0 (km)−1. The only dotted curve is drawn for

a = 0.1 (km)−1.

Figure 4. Spatially dependent solute dispersion along
non-uniform flow of input of increasing nature when D ∝ u2

described by solution (equation 33). The four solid curves

are drawn for a = 1.0 (km)−1.

end of the medium is approached. This comparison
is done at t = 0.4 (year). Such comparison is not
shown in figure 4, in which all the four solid curves
represent the concentration values in case of the
input of increasing nature along a medium of inho-
mogeneity defined by a value a = 0.1 (km)−1. This
value is chosen to ensure that the factor (u0 − aD0)
in condition (32) remains positive for the values
chosen for u0 and D0.

Numerical solutions are also been obtained
using a two-level explicit finite difference scheme
in case of uniform input and for the input
of increasing nature. Step-sizes Δx = 0.1 and
Δt = 0.001 along x-domain and t-domain, respec-
tively, are chosen to ensure the stability criterion,
0 < Δt/(Δx)2 < 0.5, is satisfied. The numerical

solutions have been obtained at t = 1.0 (year)
using the same other input values, for temporally
dependent problems for uniform and increasing
inputs and spatially dependent dispersion prob-
lem for uniform input. These numerical solutions
have been compared with the respective analyti-
cal solutions (equations 17, 20 and 30). A complete
agreement between them has been found between
the respective numerical and analytical solu-
tions. So the same difference scheme has been
used to obtain numerical solutions for spatially
dependent dispersion of uniform input concentra-
tion along non-uniform velocity assuming disper-
sion being proportional to the velocity. In other
words, in place of the expression in equation (22),
D(x, t) = D0(1 + ax), has been considered. In this
case analytical solution appears to be not possi-
ble. The numerical solutions are compared with the
analytical solution (equation 30) at t = 0.4 (year)
and t = 1.0 (years), respectively. The compari-
sons are explained with the help of table 1 and
figure 5. It may be observed that the difference
between the concentration values is almost negli-
gible near the origin, those numerically obtained
are slightly higher than the respective analytical
values but beyond that region the trend reverses
more evidently and increases with position. Thus
the attenuation process along the column is slower
in case the dispersion is directly proportional to
velocity than that in case the dispersion is propor-
tional to square of velocity, i.e., in the latter case,
more solute concentration are driven away from its
source than that in the former case. Such solutions
are useful in predicting the danger level of pollu-
tants concentration at a particular position/region
away from its source. Due to human activi-
ties and other reasons, pollutants are reaching
surface and subsurface hydro-environment at a
particular poison and are transported down the
stream degrading the water quality and deplet-
ing the health of flora and fauna. Usually the
causes are of increasing nature. Similarly move-
ment of particulate particles in the air, their effects
on human health can also be understood by such
studies.

Substituting m = 0, we get f(mt) = 1 and
T = t, the initial and boundary value problem
(equations 13–16) and its solution (equation 17)
reduce to those for uniform dispersion along uni-
form velocity reported in the problem A3 (van
Genuchten and Alves 1982), respectively. The
concentration values are also evaluated from solu-
tion (equation 30) for m = 0 and are depicted
in figure 1. It may be observed that these values
are less than the values obtained for solute dis-
persion increasing with time and are higher than
those obtained for the dispersion decreasing with
time. The same substituting reduces the solution
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Table 1. Comparison of spatially dependent concentration dispersion along non-uniform flow of uniform input in
cases (i) D ∝ u2 (analytical solution) and (ii) D ∝ u (numerical solution). In both the cases a = 1.0 (km)−1.

x (km) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t = 0.4 (yr)

(i) 1.0 0.794 0.626 0.492 0.388 0.310 0.254 0.216 0.193 0.183 0.182

(ii) 1.0 0.810 0.642 0.498 0.379 0.285 0.213 0.163 0.131 0.115 0.114

t = 1.0 (yr)

(i) 1.0 0.881 0.785 0.707 0.647 0.601 0.568 0.545 0.531 0.525 0.524

(ii) 1.0 0.887 0.786 0.697 0.622 0.559 0.510 0.474 0.450 0.438 0.438

Figure 5. Comparison of spatially dependent concentration
dispersion along non-uniform flow of uniform input in cases
(i) D ∝ u2 (analytical solution) and (ii) D ∝ u (numerical

solution). In both the cases, a = 1.0 (km)−1.

(equation 20) to that of the problem A4 (van
Genuchten and Alves 1982). But it may be noted
that although for a = 0, from equations (21 and
22) we get u = u0 and D = D0, respectively, hence
the advection–diffusion equation with spatially
dependent coefficients reduces to that with con-
stant coefficients but the solution of the latter
along with the same initial and boundary condi-
tions cannot be obtained by substituting a = 0 in
the solution (equation 30 or 33) (as the case for the
input may be). It may be verified and understood
from the solutions of the two ordinary differential
equations (1 + ax)2y′′ − 3(1 + ax)y′ + 2y = 0 and
y′′ − 3y′ + 2y = 0.

It may be observed that while getting the ana-
lytical solutions in section 2, the transformation
equation (7) has played a key role. A similar trans-
formation has been used in section 3 also. In fact
in the advection–diffusion equation

∂C

∂t
=

∂

∂x

(
D0f1(x, t)

∂C

∂x
− u0f2(x, t)C

)
,

a substitution like

∂C

∂X
= f1(x, t)

∂C

∂x
− f2(x, t)C,

is a linear partial differential equation of first order
hence it is equivalent to an auxilliary system of
ordinary differential equations, one of which is

dX

−1
=

dx

f1(x, t)
.

Its solution is both the transformations
(equations 7 and 23) for f1(x, t) = f(mt) and
f1(x, t) = (1 + ax)2, respectively. Though minus
sign is omitted in transformation (equation 7) it
cannot be omitted in equation (23) otherwise the
position x = L in condition (12) will correspond
to Z0 = log(−1 − aL) in equation (27). In case the
velocity is linearly interpolated as u = u0(1 − ax)
to represent the decrease in it along the medium
column 0 ≤ x ≤ L, one has to proceed with posi-
tive sign in (equation 23).

5. Conclusions

Analytical solutions to one-dimensional advection–
diffusion equation with variable coefficients along
with two sets of boundary conditions (in one set
input condition is uniform while in other it is of
increasing nature while the second condition in
each set is homogeneous of flux type) in an initially
solute free finite domain have been obtained in two
cases:

(i) temporal dependent dispersion along uniform
flow through homogeneous medium and

(ii) spatially dependent dispersion along non-
uniform flow through inhomogeneous medium
in which solute dispersion is assumed propor-
tional to the square of velocity.

The application of a new transformation
which introduces another space variable, on the
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advection–diffusion equation makes it possible to
use Laplace transformation technique in getting
the analytical solutions. Numerical solutions have
also been obtained using a two-level explicit finite
difference scheme. The respective analytical and
numerical solutions have also been compared and
very good agreement between the two has been
found. The analytical solution of the second prob-
lem in case of uniform input has been compared
with the numerical solution of same problem but
assuming dispersion varying with velocity. Such
analytical solutions may serve as tools in validat-
ing numerical solutions in more realistic dispersion
problems facilitating to assess the transport of pol-
lutants solute concentration away from its source
along a flow through soil medium, through aquifers
and through oil reservoirs.
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