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This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff
modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff-
erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural
network (GRNN) methods are compared with one EC method, Gene Expression Programming
(GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydro-
meteorological data of three rainfall stations and one streamflow station for Juniata River Basin
in Pennsylvania state of USA are taken into consideration in the model development. Statistical
parameters such as average, standard deviation, coefficient of variation, skewness, minimum and
maximum values, as well as criteria such as mean square error (MSE) and determination coefficient
(R2) are used to measure the performance of the models. The results indicate that the proposed
genetic programming (GP) formulation performs quite well compared to results obtained by ANNs
and is quite practical for use. It is concluded from the results that GEP can be proposed as an
alternative to ANN models.

1. Introduction

The advances in the field of artificial intelligence
influence many science topics as well as water
resources engineering applications. New algorithms
and models, especially those based on soft comput-
ing, enable researchers to solve the most complex
systems in different ways. The use of forecast meth-
ods not based on physics equations, such as ANN
and EC methods are becoming widespread in var-
ious engineering fields. The relationship between
rainfall and runoff is an important issue in sur-
face hydrology. The accurate amount of streamflow
from rainfall occupies an important place in the
hydrological cycle. The need to predict the quanti-
tative amount of rainfall and runoff is necessary to
avoid risks of rain on the catchments and to warn
the floods.

In the last decade, ANNs have been success-
fully employed in modeling a wide range of

hydrologic processes, including rainfall–runoff
processes; Smith and Eli (1995); Hsu et al (1995);
Minns and Hall (1996); Shamseldin (1997); Dawson
and Wilby (1998); Cigizoglu and Alp (2004) stu-
died on neural-network models of rainfall–runoff
process, Mason et al (1996) used radial basis
function (RBF) ANN for rainfall–runoff model-
ing, Shamseldin et al (1997) have presented meth-
ods for combining the outputs of the different
rainfall–runoff models, Loke et al (1997) stud-
ied the application of an ANN for prediction of
runoff coefficient by the use of simple catchment
data. Fernando and Jayawardena (1998) studied
on runoff forecasting using RBF networks with
OLS algorithm, Tokar and Johnson (1999) deve-
loped an ANN model to predict daily runoff
as a function of daily precipitation, tempera-
ture, and snowmelt for a watershed in Maryland,
USA. Sajikumara and Thandaveswara (1999) pre-
sented a non-linear rainfall–runoff model using
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an ANN, Tokar and Markus (2000) applied an
ANN to predict monthly streamflow for the Fraser
River Watershed in Colorado, Tayfur and Singh
(2006) used ANN and fuzzy logic models for
simulating event-based rainfall–runoff, Garbrecht
(2006) compared three alternative ANN designs
for monthly rainfall–runoff simulation, Antar et al
(2006) applied rainfall–runoff modeling using ANN
technique using the Nile catchment as case study,
Chiang et al (2004) compared the static-feed
forward and dynamic-feedback neural networks
for rainfall–runoff modeling, Srinivasulu and Jain
(2006) presented a comparative analysis of train-
ing methods for ANN rainfall–runoff models, Riad
and Mania (2004) studied on rainfall–runoff mod-
els using an ANN approach, Rajurkar et al
(2004) modeled the daily rainfall–runoff relation-
ship with ANN, Agarwal and Singh (2004) mod-
eled the runoff through back propagation ANN
with variable rainfall–runoff data, Tayfur et al
(2007) presented a model to predict and forecast
flow discharge at sites receiving significant lateral
inflow.

GP has been applied to a wide range of problems
in artificial intelligence, engineering and science
applications, industrial, and mechanical models.
GP can be successfully applied to areas where:

• the interrelationships among the relevant vari-
ables are poorly understood (or where it is sus-
pected that the current understanding may well
be wrong),

• finding the size and shape of the ultimate solu-
tion is hard and is a major part of the problem,

• conventional mathematical analysis does not, or
cannot, provide analytical solutions,

• an approximate solution is acceptable (or is the
only result that is ever likely to be obtained),

• small improvements in performance are routinely
measured (or easily measurable) and highly
prized,

• there is a large amount of data, in computer
readable form, that require examination, classi-
fication, and integration (Banzhaf et al 1998).

It was observed that only a few studies existed
in the literature related to the use of GP in the
field of water resources engineering. Cousin and
Savic (1997); Savic et al (1999); Drecourt (1999);
Whigham and Crapper (1999, 2001); Babovic and
Keijzer (2002) applied GP to rainfall–runoff model-
ing. Dorado et al (2003) studied on prediction and
modeling of the rainfall–runoff transformation of a
typical urban basin using ANNs and GP. Rabunal
et al (2007) determined the unit hydrograph of a
typical urban basin using GP and ANNs, Harris
et al (2003) studied on velocity predictions in com-
pound channels with vegetated floodplains using

GP, Giustolisi (2004) determined Chezy resistance
coefficient in corrugated channels by using GP,
Guven et al (2008) applied GP for estimation of
reference evapotranspiration and recently Aytek
and Kişi (2008) modeled suspended sediment by
using GP. Researchers continue to develop new
algorithms and models for rainfall–runoff modeling
due to the importance of the subject. Therefore,
the purpose of this study is to develop a mathe-
matical model for rainfall–runoff prediction based
on GEP and to compare it with ANN techniques.
Towards this aim, three rainfall meteorological sta-
tions for Juniata catchment (Lewistown, station
no: 364992, Mapleton Depot, station no: 365381,
Newport River, station no: 366297) from National
Climatic Data Center, NCDC and one streamflow
station (Juniata river, station no: 01567000) from
USGS, are used as case studies

2. Artificial intelligence

Generally, AI methods can be divided into two
main categories:

(1) symbolic AI, which deals with the develop-
ment of knowledge-based systems, and

(2) computational intelligence, which includes
neural networks (NN), fuzzy systems (FS), and
evolutionary computing.

The most important of AI application areas are:

• system identification and function approxima-
tion, which is concerned with building empirical
dynamic models of systems from measured data,
or mapping system inputs to outputs,

• nonlinear prediction focuses on the prediction of
the behavior of systems where the relationship
between input and output is not linear,

• control focuses on controlling a system so as to
achieve a desired output,

• pattern recognition or classification describing a
broad range of problems where the goal is to
classify an object or put it in its right class or
category,

• clustering which refers to the problem of group-
ing cases with similar characteristics together,
and identifying the number of groups or classes,

• planning which refers to the act of formulating a
program for a definite course of action intended
to achieve a desired goal.

Evolutionary computation is a computational
technology made up of a collection of randomized
global search paradigms for finding the optimal
solutions to a given problem. The term evolution-
ary is borrowed from the terminology introduced
by Charles Darwin (1864), describing the process



Artificial intelligence for rainfall–runoff modeling 147

of adaptation of survival capabilities through nat-
ural selection, fitness improvement of individual
species, etc. To achieve this, evolutionary compu-
tation tries to model the natural evolution process
for a successful survival battle, where reproduc-
tion and fitness play predominant roles. Being an
evolutionary process, it is essentially based on the
genetic material of offspring inherited from the par-
ents. Therefore, if this material is of bad qual-
ity then the offspring cannot win the battle of
survival. The evolutionary process considers the
population of individuals represented by chromo-
somes, each chromosome bearing its characteristics
called genes. The genes are assigned their individ-
ual values. Through the process of crossover the
offspring are generated by combining the gene val-
ues of their parents. During the combination, the
genes can undergo a (low probability) mutation
process consisting of random changes of gene value
in a chromosome, in order to insert fresh genetic
material into the chromosomes. Finally, the win-
ner will be the offspring with the highest value of
fitness, i.e., with the best characteristics inherited
from the parents.

In the meantime, various evolutionary algo-
rithms and their modifications are found. But still,
the following variants are only considered as basic
evolutionary algorithms: genetic algorithms, which
model genetic evolutionary processes in a gener-
ation of individuals genetic programming, which
is an extension of genetic algorithms to the pop-
ulation in which the individuals are themselves
computer program evolutionary strategies, which
deal with ‘evolution of evolution’ by modeling
the strategic parameters that control variations
in evolutionary process evolutionary programming,
which models adaptive evolutionary phenomena
(Palit and Popovic 2005).

2.1 Overview of genetic programming

There are five major preliminary steps for solving
a problem by using GP:

• set of terminals,
• set of functions,
• fitness measure,
• values of the numerical parameters and qualita-

tive variables for controlling the run, and
• criterion for designating a result and terminating

a run (Koza 1992).

The first major step in preparing to employ the
GP paradigm is to identify the set of terminals to
be used in the individual computer programs in
the population. The major types of terminal sets
contain the independent variables of the problem,
the state variables of the system and the functions

with no arguments. These types of terminal sets are
given in a table by Koza (1992). The second major
step is the set of functions; arithmetic operations,
testing functions (such as IF and CASE state-
ments) and boolean functions. The third major
step is fitness measure which identifies the way
of evaluating how good a given program solves a
particular problem. The terminals and the func-
tions are components of the programs which form
the junctions in the tree. The choice of compo-
nents of terminals and functions (the program) and
the fitness function establishes the space that GP
searches for. The fourth major step is the selec-
tion of certain parameters to control the runs. The
control parameters contain the size of the popula-
tion, the rate of crossover, etc. The fifth and last
step is the criteria to terminate the run. For most of
the problems, if the sum of the differences becomes
zero (or reasonably close to zero), then, the solution
is considered acceptable. The termination criterion
is basically a rule for stopping. Characteristically
the rule is to stop either on finding a program which
solves the problem or after a certain number of
generations.

2.2 Overview of gene expression programming

Gene expression programming (GEP) is an exten-
sion of GP that evolves computer programs of
different sizes and shapes encoded in linear chro-
mosomes of fixed length. The chromosomes are
composed of multiple genes, each gene encoding
a smaller subprogram. Furthermore, the struc-
tural and functional organization of the linear
chromosomes allows the unconstrained operation
of important genetic operators such as mutation,
transposition, and recombination. One strength
of the GEP approach is that the creation of
genetic diversity is extremely simplified as genetic
operators work at the chromosome level. Another
strength of GEP consists of its unique, multi-
genic nature which allows the evolution of more
complex programs composed of several subpro-
grams. As a result GEP surpasses the old GP
system in 100–10,000 times (Ferreira 2001a and
2001b). GP starts with an initial population of
randomly generated computer programs composed
of functions and terminals appropriate to the
problem domain. The functions may be stan-
dard arithmetic operations, standard program-
ming operations, standard mathematical functions,
logical functions, or domain-specific functions.
Depending on the particular problem, the com-
puter program may be Boolean-valued, integer-
valued, real-valued, complex-valued, vector-valued,
symbolic-valued, or multiple-valued. GEP is, like
GAs and GP, a genetic algorithm as it uses pop-
ulations of individuals, selects them according to
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Figure 1. The structure of the FFBF.

fitness, and introduces genetic variation using one
or more genetic operators (Ferreira 2006). The
fundamental difference between Genetic Algorithm
(GA), GP and GEP is due to the nature of the indi-
viduals: in GAs the individuals are linear strings
of fixed length (chromosomes); in GP the individ-
uals are nonlinear entities of different sizes and
shapes (parse trees); and in GEP the individu-
als are encoded as linear strings of fixed length
(the genome or chromosomes) which are afterwards
expressed as nonlinear entities of different sizes
and shapes (i.e., simple diagram representations or
expression trees). Thus the two main parameters
of GEP are the chromosomes and expression trees
(ETs). The process of information decoding (from
the chromosomes to the ETs) is called translation
which is based on a set of rules. The genetic code is
very simple where there exist one-to-one relation-
ships between the symbols of the chromosome and
the functions or terminals they represent (Ferreira
2006).

2.3 Feed forward back propagation ANN

The neural network structure in this study pos-
sess a three-layer learning network consisting of an
input layer, a hidden layer and an output layer as
shown in figure 1. Given a training set of input-
output data, the most common learning rule for
multi-layer perceptrons is the back-propagation
algorithm (BPA). Back propagation involves two
phases: a feed forward phase in which the external
input information at the input nodes is propagated
forward to compute the output information signal
at the output unit, and a backward phase in which
modifications to the connection strengths are made
based on the differences between the computed and
observed information signals at the output units
(Eberhart and Dobbins 1990).

2.4 Generalized regression neural network

Generalized Regression Neural Network (GRNN)
proposed by Specht (1991) does not require an
iterative training procedure as in the back prop-
agation method. It approximates any arbitrary
function between input and output vectors, draw-
ing the function estimate directly from the train-
ing data. Furthermore, it is consistent; that is, as
the training set size becomes large, the estimation
error approaches zero, with only mild restrictions
on the function. The GRNN is used for estima-
tion of continuous variables, as in standard regres-
sion techniques. It is related to the radial basis
function network and is based on a standard sta-
tistical technique called kernel regression. By defi-
nition, the regression of a dependent variable y
on an independent x estimates the most probable
value for y, given x and a training set. The regres-
sion method will produce the estimated value of y
which minimizes the mean-squared error. GRNN is
a method for estimating the joint probability den-
sity function (pdf) of x and y, given only a train-
ing set. Because the pdf is derived from the data
with no preconceptions about its form, the system
is perfectly general.

If f(x, y) represents the known joint continu-
ous probability density function of a vector ran-
dom variable, x, and a scalar random variable, y,
the conditional mean of y given X (also called the
regression of y on X) is given by

E[y|X] =

∫∞
−∞ yf(X, y)dy∫∞
−∞ f(X, y)dy

. (1)

When the density f(x, y) is not known, it must
usually be estimated from a sample of observations
of x and y. The probability estimator f̂(X,Y ) is
based upon sample values Xi and Y i of the random
variables x and y, where n is the number of sample
observations and p is the dimension of the vector
variable x:

f̂(X,Y ) =
1

(2π)(p+1)/2σ(p+1)

1
n

×
n∑

i=1

exp
[
−(X −Xi)T (X −Xi)

2σ2

]

× exp
[
−(Y − Y i)2

2σ2

]
. (2)

A physical interpretation of the probability esti-
mate f̂(X,Y ) is that it assigns sample probabil-
ity of width σ for each sample Xi and Y i, and



Artificial intelligence for rainfall–runoff modeling 149

Figure 2. Map of the study area.

the probability estimate is the sum of those sample
probabilities (Specht 1991). Defining the scalar
function D2

i

D2
i = (X −Xi)T (X −Xi) (3)

and performing the indicated integrations yields
the following:

Ŷ (X) =

∑n

i=1 Y i exp
(
− D2

i

2σ2

)
∑n

i=1 exp
(
− D2

i

2σ2

) . (4)

The resulting regression (equation 4) is directly
applicable to problems involving numerical data.
When the smoothing parameter σ is made large,
the estimated density is forced to be smooth and
in the limit becomes a multivariate Gaussian with
covariance σ2I. On the other hand, a smaller
value of σ allows the estimated density to assume
non-Gaussian shapes, but with the hazard that
wild points may have too great an effect on
the estimate (Specht 1991). Differing from the
FFBP, the GRNN consists of four layers: input
layer, pattern layer, summation layer and output
layer.

3. A brief description of the
study area and data

As shown in figure 2, the study area is located
in Pennsylvania state, USA. The dataset used
in this study was obtained from USGS (Juniata
river, station no: 01567000) and NCDC (Juniata
catchment (Lewistown, station no: 364992, Maple-
ton Depot, station no: 365381, Newport River,
station no: 366297). The averages of daily total
precipitation values were computed using the
Thiessen Method. The Thiessen weights for rain-
fall stations are computed as 0.41 for Maple-
ton Depot, 0.39 for Lewistown, and 0.20 for
Newport River. Information for these stations
can be acquired from the USGS web server
(http://webserver.cr.usgs.gov) and NCDC web
server http://www.ncdc.noaa.gov/oa/ncdc.html
respectively. The data of January 01, 1983–June
22, 1988 were chosen for calibration and data of
June 23, 1988–September 23, 1989 were chosen
for validation. The training set comprises the first
2000 values of daily data and the testing set covers
the last 458 values.

The daily statistical parameters of the rain-
fall and run-off data for the stations are given in
table 1. In the table, the xmean, Sx, Cv, Csx, xmax

and xmin denote the mean, standard deviation,
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Table 1. Statistical parameters of the rainfall and runoff data.

Rainfall (mm) Runoff (m3s−1)

Training Testing Whole data Training Testing Whole data

xmean 2.78 2.88 2.79 120.81 120.56 120.69

Sx 5.29 5.06 5.24 154.75 145.77 153.09

Csx 3.80 2.59 3.60 4.58 2.81 4.30

xmin 0.00 0.00 0.00 13.70 19.70 13.70

xmax 72.33 35.64 72.33 2470.00 1050.00 2470.00

Cv 1.90 1.76 1.88 1.28 1.21 1.27

coefficient of variation, skewness, maximum and
minimum, respectively. In the calibration flow
data, xmin and xmax values for run-off fall in the
ranges 13.70–2470m3s−1 for the Juniata station.
However, the testing flow dataset extremes are
xmin = 19.70m3s−1, xmax = 1050m3s−1. The range
between two series of flow data is higher and this
may cause extrapolation difficulties in the estima-
tion of peak and low flow values.

4. Model development

The rainfall–runoff process was assumed to be a
Markovian process for developing the proposed
models, which means that the run-off value at
a given location in space and time is a function
of a finite set of previous realizations. With this
assumption, a model structure can be mathemati-
cally expressed as;

Q(t) = f(R(t), R(t− 1), R(t− 2), . . . ,

R(t− k + 1), . . . , Q(t− 1), Q(t− 2), . . . ,

Q(t− k + 1)) + ε(t) (5)

where R(t) and Q(t) represent rainfall and runoff
respectively, ε(t) is an error function (to be mini-
mized), and k is the number of past rainfall realiza-
tions contributing to rainfall at the next time-step;
usually, k refers to the lag of the network; if k = 1,
the rainfall at the next time-step is related only to
the present rainfall, thus giving a lag-l network.

4.1 Rainfall–runoff modeling using GEP

Generally, selection of input parameters does not
completely define the environment from which the
system will learn. The researcher must also choose
specific past examples from the learning domain.
Each example should contain data that represent
one instance of the relationship between the chosen
inputs and the outputs. These examples are often

referred to as ‘training cases’ or ‘training instances’
while they are called ‘fitness cases’ in the case of
GP. Collectively, all of the training instances are
referred to as the ‘training set’. Once the training
set is selected, one could say that the learning envi-
ronment of the system is defined (Banzhaf et al
1998).

There are five major steps for constructing a
model by using gene expression programming. The
first is the fitness function. For this problem, the
fitness, fi of an individual program, i is measured
by

fi =
Ct∑

j=1

(M − |C(i,j) − Tj|), (6)

where M is the range of selection, C(i,j) is the value
returned by the individual chromosome i for fitness
case j (out of Ct fitness cases) and Tj is the target
value for fitness case j. If |C(i,j)–Tj| (the precision)
is less than or equal to 0.01, then the precision is
equal to zero, and fi = fmax = CtM . In this case,
M = 100 was used, therefore, fmax = 1000. The
advantage of this kind of fitness function is that
the system can find the optimal solution by itself
(Ferreira 2002).

The second major step consists of choosing the
set of terminals T and the set of functions F
to create the chromosomes. In this problem, the
terminal set consists obviously of the indepen-
dent variables, i.e., Qt = {Rt, Rt−1, Rt−2 . . . Qt−1,
Qt−2 . . .} where Rt and Qt denote the rainfall and
runoff at time t. The choice of the appropriate func-
tion set is not so obvious; however, a good guess
can always be helpful in order to include all the
necessary functions. In this study, four basic arith-
metic operators (+,−, ∗, /) and some basic mathe-
matical functions (

√
, ln(x), log(x), ex, 10x, power)

were utilized.
The third major step is to choose the chromoso-

mal architecture, i.e., the length of the head and
the number of genes. Length of the head, h = 8,
and three genes per chromosome were employed.
The fourth major step is to choose the linking
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Table 2. Parameters of the training of the GEP model.

P1 Function set +,−, ∗, /,
√

, ln(x), log(x), ex

P2 Chromosomes 50

P3 Head size 8

P4 Number of genes 3

P5 Linking function Addition

P6 Fitness function error type MSE (mean square error),

P7 Mutation rate 0.044

P8 Inversion rate 0.1

P9 One-point recombination rate 0.3

P10 Two-point recombination rate 0.3

P11 Gene recombination rate 0.1

P12 Gene transposition rate 0.1

Table 3. The MSE and determination coefficients of AI models for rainfall–runoff relation in test period.

GEP FFBP GRNN

MSE Nodes MSE MSE
Input combinations m6s−2 R2 in layer m6s−2 R2 s m6s−2 R2

(i) Rt 22082 0.057 1 20622 0.028 0.02 19923 0.080

(ii) Rt, Rt−1 17958 0.234 2 16238 0.252 0.03 16081 0.247

(iii) Rt, Rt−1, Rt−2 15341 0.346 2 14009 0.343 0.02 15217 0.285

(iv) Rt, Rt−1, Rt−2, Rt−3 14615 0.376 3 18510 0.271 0.04 15122 0.302

(v) Rt, Rt−1, Rt−2, Qt−1 2249 0.905 3 2800 0.900 0.03 4742 0.784

(vi) Rt, Rt−1, Rt−2, Qt−1, Qt−2 2285 0.903 3 3834 0.869 0.03 4549 0.802

(vii) Rt, Rt−1, Qt−1, Qt−2 2301 0.897 3 3255 0.876 0.03 4857 0.763

function. In this study, the subexpression trees
(ETs) were linked by addition. Finally, the fifth
major step is to choose the set of genetic operators
that cause variation and their rates.

5. Application and results

A combination of all genetic operators (muta-
tion, transposition and recombination) is used for
this purpose (table 2). Several input combinations
(table 3) are tried using GEP, FFBP and GRNN
to estimate rainfall–runoff relation for the used
station.

5.1 Modeling the daily flow from the rainfall

The MSE and determination coefficient of GEP
models in test period are given in table 3 for
Juniata station. As seen from the table, the GEP
model whose inputs are current rainfall, one previ-
ous rainfall, two previous rainfalls and one previous
runoff (input combination (v)) has the lowest
MSE (2249) and the highest R2 (0.905). Simi-
larly the best combination is alternative (v) for
FFBP in which MSE = 2800 and determination
coefficient (R2) = 0.900. However, two previous

runoffs are needed for GRNN application which
still has low statistics performance with respect
to FFBP and GEP; (MSE = 4549 and R2 =
0.802). The results indicate that using only rainfall
data (Rt, Rt−1, Rt−2, Rt−3, . . .) is not adequate for
rainfall–runoff modeling.

The best of generation individual, by setting 30
chromosomes and 4 gene, has fitness 763. The best
model was found after 80000 generations. The best
model that describes the dynamics of the Juniata
river flow using GEP is presented as:

Qt =
Rt−1 − 9.80

3.65
× (2Rt + 9.8)

+ 0.39(Rt−1 −Qt−1 −Rt − 22.3)

+ (Rt−1 + Rt−2) + (Rt + 14.83) ×Q1/3
t−1

+
Qt−1 − 9.45R2

t−1 + Rt ×Rt−1

Qt−1

. (7)

The runoff estimations from rainfall by the
GEP method is given in figure 3 in the form of
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Figure 3. The observed and estimated flow in the validation period for the GEP model (equation 7).

Figure 4. The observed and estimated flow in the validation period for the FFBP model.

hydrograph and scatterplot for the best combina-
tion given in table 3 (combination v). As seen from
the figure, the GEP model approximates the cor-
responding observed runoff values and are as good
as those obtained by ANN techniques. The hydro-
graph and scatter plots for FFBP are given in
figure 4 for test periods.

5.2 Modeling the daily flow

Most of the ANNs employed only daily or monthly
hydrometeorological data in the input vector for
predicting long term estimations. Rajurkar et al
(2002) applied an ANN for predicting daily flows
during monsoon flood events for a large size catch-
ment in India by using only daily rainfall data. In
this study, three artificial intelligence techniques;
two ANNs (FFBP and GRNN) and one CE (GEP)
is applied to data obtained by the USGS data-
base for modeling daily runoff. Input combinations
for the three models are given in table 4. The
best combination based determination coefficient
and MSE is as follows; input combination (iii) for
GEP (MSE = 3389 and R2 = 0.858), (v) for FFBP

(MSE = 2779 and R2 = 0.872) and (i) for GRNN
(MSE = 3901 and R2 = 0.818). The observed and
estimated flows in the validation period for GEP
model (equation 8) and for FFBP were given in
figures 5 and 6 respectively. It is obviously seen that
the GEP and FFBP models compute the floods
successfully. The forecasted hydrographs generally
agree well with the observed hydrographs that
included all storms.

The best of generation individual, by setting 30
chromosomes and 3 gene, has fitness 721. The best
model was found after 37000 generations. After
putting the corresponding values, the best model
that describes the dynamics of the Juniata river
flow using GEP is presented as;

Qt =
(Qt−2 + Qt−3)
(Qt−1 + Qt−2)

(
Q2

t−1

Qt−2

)

+ 3.07Q−0.5
t−2 (Qt−1 −Qt−3)

+ 0.000213(Qt−1 − 7.025) · (Qt−2 −Qt−1).
(8)
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Table 4. The MSE and determination coefficients of AI models for flow estimation in test period.

GEP FFBP GRNN

Min Max. MSE MSE MSE
Input combinations m3s−1 m3s−1 m6s−2 R2 m6s−2 R2 m6s−2 R2

(i) Qt−1 20.62 902.05 3540 0.833 3551 0.833 3901 0.818

(ii) Qt−1, Qt−2 23.56 1048.42 3420 0.839 3568 0.835 4128 0.809

(iii) Qt−1, Qt−2, Qt−3 17.37 1258.74 3389 0.858 3537 0.839 4476 0.790

(iv) Qt−1, Qt−2, Qt−3, Qt−4 10.04 999.72 3145 0.852 2800 0.871 5028 0.765

(v) Qt−1, Qt−2, Qt−3, Qt−4, Qt−5 20.09 1008.11 3545 0.834 2779 0.872 4992 0.767

(vi) Qt−1, Qt−2, Qt−3, Qt−4, Qt−5, Qt−6 23.32 1232.91 3492 0.839 3087 0.864 5131 0.762

Figure 5. The observed and estimated flow in the validation period for the GEP model (equation 8).

Figure 6. The observed and estimated flow in the validation period for the FFBP model.

6. Conclusions

This study indicates the ability of genetic pro-
gramming (GP) technique to model the rainfall–
runoff modeling. The GP model is explicit and
simple that can be used by anyone not necessar-
ily being familiar with GP. The model gives a
practical method for rainfall–runoff estimation to
obtain accurate results and encourages the use of

GP in other aspects of water resources engineer-
ing studies. The rainfall–runoff estimations based
on GP models are compared with two different
ANN-based models. The results obtained with GP
models are as successful as those obtained using
the ANN techniques and confirm the ability of this
approach to provide a useful tool in solving spe-
cific problems in hydrology, such as rainfall–runoff
estimation.
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