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Recycled Pb/C-catalyzed one-pot synthesis of 1-carbonyl-1H-indoles
from 2-iodoanilines and calcium carbide
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Abstract. A series of 1-carbonyl-1H-indoles were prepared by 2-iodoanilines and calcium carbide in a one-

pot reaction catalyzed by recyclable10% Pb/C, resulting in the corresponding substituted indoles in good

yields. This protocol offers several advantages, including the utilization of sustainable, low-cost calcium

carbide, an easy-to-handle acetylene source, and recyclable Pb/C catalysts.
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1. Introduction

Indole, the most widely employed nitrogen-containing

hetero ring in medicinal chemical compounds and

natural products (Scheme 1), was initially obtained by

the reduction of indigo in 1866 by Adolf von Baeyer.

Indole compounds find diverse applications in chem-

ical, material, pesticide, and other fields, particularly

in biomedicine, where indole derivatives exhibit

structural diversity and serve as crucial sources of

bioactive molecules and lead compounds. In order to

make drugs active, an abundance of indole ring

structures are introduced in drug design, which enri-

ches the development of a wide range of synthetic

methods.1 The Fischer indole synthesis is the most

common method for indole synthesis. However, this

approach needs prefabricated arylhydrazine raw

materials and reacts under strong acidic conditions.2–8

In order to explore the synthesis of key heterocycles

for indole development, modern chemical research has

shifted its focus to the use of transition metal catalytic

methods, which can selectively catalyze the synthesis

of the required indole rings, while tolerating a variety

of functional groups. Among the transition metal cat-

alysts, palladium is the most well-studied and

employed metal for the construction of indole

skeletons.9–28

Alkyne compounds are used in the synthesis of

indole because of their rich variety and versatile

reactivities.29–33 Among the established synthetic

methods, Larock indole synthesis12,34–37 (Scheme 2A)

is a common method used in the laboratory, which

generates the Larock indole skeletons from

2-haloanilines and internal alkynes catalyzed by pal-

ladium catalyst.38–45 Although, this method greatly

expands the synthesis of indole structures, however,

there is a need of prefunctionalized terminal alkynes.

In 2008, Lebel’s team successfully developed a multi-

component one-pot synthesis of 2, 3-disubstituted

indoles by using cheap, readily available and

stable 2-iodobenzoic acid as the starting material

(Scheme 2B).46,47 However, this protocol has limita-

tions, with the main drawback being the use of

explosive sodium azide as the aminating agent. In

2013, Zhang’s group27 (Scheme 2C) used palladium

and copper as co-catalysts to catalyze the reaction of

N-arylhydroxamic acids/N-aryl-N-hydroxycarbamates

and a variety of alkynes to synthesize indole. In 2018,

Hu’s group22 (Scheme 2D) synthesized the indole ring

structure, using tert-butyl ((2-iodobenzoyl) oxy) car-

bamate as the initial raw material coupled with alky-

nes, and further decarboxylated/cyclized. In 2019,

Hoarau’s group28 (Scheme 2E) achieved the synthesis

of indoles via the intermolecular cyclization frame-

work from ortho iodoallenamide incorporated with
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alkynyl carboxylic acids. However, the reactions of

Zhang’s group, Hu’s group, and Hoarau’s group could

be limited in scope due to the preparation of com-

mercially unavailable substrates and their uneconom-

ical nature. Additionally, an acetylene source is

required for these reactions. Acetylene, a gas at

atmospheric pressure, which is inflammable, explosive

and difficult to handle, was used as the original source

for pre-synthesis. In 2022, Sarkar and his team

reported (Scheme 2F) gold(I)-catalyzed synthesis of

heterocycles via allene oxide from propargylic alco-

hols. This method offered significant advantages such

as being acetylene-free, and the substrate itself having

an acetylene unit. However, substrate synthesis still

requires the use of carbide, as well as the use of the

precious metal gold.28

Calcium carbide is a sustainable, cost-effective,

readily available, and safe-to-store solid material with

stable non-toxic properties, making it easy to handle in

experiments. Historically, it has primarily served as a

raw material for producing hydrolyzed acetylene gas

in the chemical industry. Over the last decade, there

has been an increasing number of reports on the direct

utilization of calcium carbide as a substitute for acet-

ylene in various synthetic transformations.48–70 Our

research group71,72 made great efforts to investigate

the direct application of calcium carbide in organic

synthesis, and reported the results of one-pot synthesis

of unsymmetrical 1,3-butadiyne derivatives by using

calcium carbide instead of acetylene raw materials,

and direct synthesis of unsymmetrical 1,3-butadiynes

from calcium carbide and aryl iodides. In 2022, Li’s

group73 reported an efficient method for the

construction of 1-sulfonyl-1H-indoles by the reactions

of N-(2-iodoaryl)sulfonamides with calcium carbide.

This protocol uses inexpensive and easy-to-handle

solid alkyne source instead of flammable and explo-

sive gaseous acetylene, cheap and readily available

starting materials. However, this method uses expen-

sive Pd2(dba)3 as the catalyst, and requires prefabri-

cated raw material, which increases the operation

procedure.

Palladium on carbon (Pd/C), a heterogeneous cata-

lyst system for the hydrogenation reaction, various

kinds of carbon–carbon,74–77 carbon–nitrogen78,79

bond forming reactions have recently been explored.

Among them, 2-substituted indole can be synthesized

from monosubstituted alkynes using commercial

heterogeneous palladium as a catalyst.80–82 Pd/C, as an

air-stable, recoverable, recyclable, cheaper than other

traditional Pd-complexes and salt, easily separable

(from the product), and convenient to store and handle,

has drawn our attention to extrapolate the course of

our ongoing research work. As an extension of our

group’s research on calcium carbide as an alternative

acetylene source, we try to directly synthesize 1-car-

bonyl-1H-indoles by using calcium carbide as an

acetylene source, recycled Pb/C as the catalyst,

2-iodoaniline, Boc2O as starting materials through a

one-pot procedure to try a new method of ‘‘upgraded

Larock indole synthesis’’.

2. Experimental

2.1 Materials and methods

All chemicals and solvents were obtained from the

commercial providers (Aladdin and Bokachem, China)

and used without further purification. Reactions were

monitored by Agilent GC Series 6890N and GCMS

7890A. Infra-red spectra were recorded on a Perkin-

Elmer Spectrum One FT-IR. Flash column chro-

matography was performed on silica gel 60 (particle

size 200–400 mesh ASTM, purchased from Aladdin,

China). Melting points were determined using Fisatom

430D equipment. All compounds were further char-

acterized by 1H, and 13C NMR spectra were measured

with a Bruker ACF400 in CDCl3.

2.2 General synthetic procedure

2-iodoaniline (0.5 mmol), N(iPr)2H (1.0 ml) and

Boc2O (0.6 mmol) in EtOH (5ml) was gradually added

Melatonin                    Serotonin

Indomethacin               L-tryptophane

Scheme 1. Drugs containing indole unit.
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Scheme 2. The construction of N-Boc indoles from alkyne.
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to the three-neck round-bottom reaction flask, then

stirred at 25�C for 2 h. The reaction was monitored

by GC. After the reaction was complete, without any

processing, CaC2 (1.5 mmol), H2O (2.0 mmol), 10%

Pd/C (0.05 mmol), (4-MeO-Ph)3P (0.10 mmol), CuI

(0.05 mmol) and NMP (3.0 ml) were added to the

reaction flask again, and the reaction temperature

was increased to reflux. Then 2.0 mmol of water was

added again after reflux to maintain the reaction for

4 hours, and the reaction temperature was main-

tained for 2 hours. After the reaction was complete,

the resulting mixture was cooled down to room

temperature and added to water. The resulting mix-

ture was filtered to remove the Pd/C (no processing,

can be recycled), and the liquor was extracted with

ethyl acetate (3930 ml), and washed with saturated

brine (3930 ml). The resulting organic phase was

dried with anhydrous sodium sulfate, and concen-

trated under reduced pressure. The residue was iso-

lated by flash column chromatography using

petroleum ether/ethyl acetate as eluent to give the

pure products.

2.3 Activation of palladium–carbon catalyst

First, stir with 5 times the amount (weight/volume) 2

N hydrochloric acid at room temperature for 30 min;

stew for 30 min and then filter; filter cake was washed

with purified water to neutral (pH = 7); drain and dry

at low temperature. Then, reflux with 5 times the

amount (weight/volume) ethanol for 2 hours and then

dry for the second time.

3. Results and discussion

Initially, we examined the catalytic activity of the

different Pd catalysts for the synthesis of N-tert-bu-

toxycarbonyl-indoles starting from 2-iodoaniline (0.5

mmol), Boc2O (0.5 mmol) and CaC2 (1.0 mmol). The

same reaction conditions {H2O (4.0 mmol), 10% Pd/C

(0.02 mmol), (4-MeO-Ph)3P (0.04 mmol), CuI (0.02

mmol), TEA (1.0 ml), DMF (8.0 ml), 100�C, 5 hours}

were applied for all substrates. The results are sum-

marized in Table 1.

Table 1. Optimization of 1-Boc-1H-indoles coupling reactiona.

Entry Catalyst Base

Yieldb

2a 3a 4a

1 Pd(PPh3)4 TEA 25 0 0
2 Pd2(PPh3)2Cl2 TEA 57 10 6
3 Pd(OAc)2 TEA 48 0 12
4 10% Pd/C,(4-MeO-Ph)3P TEA 41 0 0
5c 10% Pd/C,(4-MeO-Ph)3P TEA 45 0 0
6d 10% Pd/C,(4-MeO-Ph)3P TEA 49 0 0
7 10% Pd/C,(4-MeO-Ph)3P N(iPr)2H 56(54) 0 0
8 10% Pd/C,(4-MeO-Ph)3P DBU 62 10 0
9 10% Pd/C,(4-MeO-Ph)3P DABCO 14 15 3
10 10% Pd/C,(4-MeO-Ph)3P KOAc 0 0 63
11 10% Pd/C,(4-MeO-Ph)3P NaOAc 0 0 59
12 10% Pd/C,(4-MeO-Ph)3P K2CO3 9 0 65
13 10% Pd/C,(4-MeO-Ph)3P Na2CO3 31 20 7
14 10% Pd/C,(4-MeO-Ph)3P Cs2CO3 14 25 3

aReaction conditions: 2-Iodoaniline (0.5 mmol), Boc2O (0.5 mmol), CaC2 (1.0 mmol), H2O (4.0 mmol), 10% Pd/C (0.02
mmol), (4-MeO-Ph)3P (0.04 mmol), CuI (0.02 mmol), TEA (1.0 ml), DMF (8.0 ml), 100 Æ C, 5 hours.
bGC yields calibrated against tridecane as an internal standard; the isolated yields are given in parentheses.
c10% Pd/C (0.03 mmol), (4-MeO-Ph)3P (0.06 mmol), CuI (0.05 mmol).
d10% Pd/C (0.05 mmol), (4-MeO-Ph)3P (0.10 mmol), CuI (0.05 mmol).
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The initial attempt using Pd(PPh3)4 as the palladium

catalyst and triethylamine as the base yielded the

corresponding product N-tert-butoxycarbonyl-indoles

(2a) in 25% yield (Table 1, entry 1). Pd2(PPh3)2Cl2
showed high catalytic activities (Table 1, entry 2),

gave a mixture of indole (3a) and N-acetyl-2-(1-

hexynyl)aniline (4a). Pd(OAc)2 as catalyst affording

N-tert-butoxycarbonyl-indoles (2a) in 48% yield

(Table 1, entry 3) along with an amount of the com-

peting N-acetyl-2-(1-hexynyl)aniline product (4a).
10% Pd/C with (4-MeO-Ph)3P phosphate ligand

played a key catalytic role in the reaction, and the

reaction gave 41% yield of product 2a (Table 1, entry

4). The optimum effect was achieved when the ratio of

catalyst to ligand was increased to 0.05 to 0.10

(Table 1, entries 4–6). Various bases, such as TEA,

N(iPr)2H, DBU, DABCO, KOAc, NaOAc, K2CO3,

Na2CO3 and Cs2CO3 were also tested for the reaction

(Table 1, entries 6–14). Replacing triethylamine by

N(iPr)2H afforded satisfactory results (Table 1, entry

7), while other organic bases and all inorganic bases

showed poor reactivity (Table 1, entries 8–14).

A systematic increase in the equivalent amount of

Boc2O resulted in an enhanced yield of 2a (Table 2,

entries 1–3). Similar yields were obtained with Boc2O

amounts ranging from 0.5 to 0.7 equivalents, whereas

0.4 equivalents of Boc2O yielded sluggish results

(Table 2, entry 1). In addition, the choice of solvents

was also quite important. It was observed that calcium

carbide nearly did not participate in the reaction under

PhMe, EtOH, and THF because of the poor solubility

for calcium carbide (Table 2, entries 8–10). In con-

trast, DMF, DMA, DMSO, NMP and DMPU (Table 2,

entries 2, 4–7) were practicable solvents, and the ratio

of mixed solvent NMP to EtOH is 3 to 5 and was

proved to be the best choice in this reaction system,

which could provide 2a in 83% yield (Table 2, entry

12). Moreover, the amount of calcium carbide and

Table 2. Optimizing the reaction conditionsa.

Entry Solvent Boc2O CaC2/H2O Temperature time Yield(%)b

1 DMF 0.4 1:4 100 5 41
2 DMF 0.6 1:4 100 5 65
3 DMF 0.7 1:4 100 5 62
4 DMA 0.6 1:4 100 5 64
5 DMSO 0.6 1:4 100 5 69
6 NMP 0.6 1:4 100 5 73
7 DMPU 0.6 1:4 100 5 55
8 2-Me-THF 0.6 1:4 100 5 5
9 1,4-Dioxane 0.6 1:4 100 5 2
10 EtOH 0.6 1:4 100 5 14
11 NMP/EtOH (6:2) 0.6 1:4 100 5 75
12 NMP/EtOH (3:5) 0.6 1:4 100 5 83
13 NMP/EtOH (2:6) 0.6 1:4 100 5 79
14 NMP/EtOH (3:5) 0.6 0.5:4 100 5 71
15 NMP/EtOH (3:5) 0.6 1.5:4 100 5 87
16 NMP/EtOH (3:5) 0.6 2.0:4 100 5 84
17 NMP/EtOH (3:5) 0.6 1.5:4 Reflux 5 90
18 NMP/EtOH (3:5) 0.6 1.5:4 80 5 69
19 NMP/EtOH (3:5) 0.6 1.5:4 Reflux 8 93(91)
20 NMP/EtOH (3:5) 0.6 1.5:4 Reflux 6 91

aReaction conditions: 2-Iodoaniline (0.5 mmol), Boc2O (0.6 mmol), CaC2 (1.0 mmol), H2O
(4.0 mmol), 10% Pd/C (0.05 mmol), (4-MeO-Ph)3P (0.10 mmol), CuI (0.05 mmol), N(iPr)2H
(1.0 ml), Solvent (8.0 ml).
bGC yields calibrated against tridecane as an internal standard, the isolated yields are given in
parentheses.
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water could also affect the yield of the reaction

(Table 2, entries 14–16), and a total of 3 equivalents of

calcium carbide and 8 equivalents of water based on

1a is an appropriate amount for the reaction. Any

increase or decrease in the amounts of calcium carbide

and water led to a drop in yield (Table 2, entry 15).

Finally, we also investigated the effects of reaction

temperature and reaction time. On rising the temper-

ature to 120�C, the yield actually showed an

improvement to 90% (Table 2, entry 17). Lowering of

Table 3. Synthesis of 1-carbonyl-1H-indoles by Pd/C-catalyzed the 2-iodoaniline, Boc2O and CaC2.
ab

 

2a, 91%

 

2b, 79%

 

2c, 89% 

 

2d, 85%

 

2e, 82%  

2f, 76%

 

2g, 85%

 

2h, 89%

 

2i, 90%

 

2j, 86%

 

2k, 86%

 

2l, 83%

2m, 84%

 

2n, 82%  

2o, 79%

 

2p, 87%

2q, 82% 2r, 86% 2s, 83%

 

2t, 82%

aReaction conditions: 1 (0.5 mmol), Boc2O (0.6 mmol), CaC2 (1.5 mmol), H2O (4.0 mmol),10%
Pd/C (0.05 mmol), (4-MeO-Ph)3P (0.10 mmol), CuI (0.05 mmol), N(iPr)2H (1.0 ml), NMP/EtOH
(3:5) (8.0 ml), at reflux.
bThe isolated yields.
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the temperature to 80�C, however, resulted in a drop in

yield. The optimal time was determined to be 8h.

Under the optimized reaction conditions, we tried to

use various 2-iodoanilines as the reaction substrate to

test the universality and scope of application of this

methodology, and the research results were summa-

rized in Table 3. In the process of the experiment, it

was found that the effect of two-phase reaction and

reaction in the same reaction pot after two steps was

unexpectedly good, a variety of 2-iodoanilines were

used as raw materials to generate a series of corre-

sponding1-carbonyl-1H-indoles products, and the

yield was very high. Both electron donating groups or

electron withdrawing groups were well tolerated. The

R2 could be 2-iodoaniline groups optionally substi-

tuted, such as electron donating groups Me (entries

2b–2e), OMe (entries 2f and 2g), or electron with-

drawing groups F (entry 2h), Cl (entry 2i), CF3 (entry

2j). The R2 could also be functional groups such as

ether (entries 2k, 2l and 2s), cyanide (entries 2n and

2p), ester (entry 2m), ketone (entries 2o and 2q) etc.,

or heterocyclic group (2r). Finally, we extended the N-

substituent group to the acetyl group, obtaining N-

acetyl-indoles in an 82% yield.

In addition to the use of readily available CaC2 as an

alternative raw material for acetylene, another

Table 4. The catalytic efficiency of reusable catalysts.a

Entry 10% Pd/C Reaction time (hour) Yield (%)b

1 Fresh-2 8 93
2 Recycled 1 time (First activation) 10 90
3 Recycled 2 times (Second activation) 12 88
4 Recycled 3 times (Third activation) 24 87
5 Recycled 4 times (Fourth activation) 36 65
6 Recycled 5 times (Fifth activation) 60 51

aReaction conditions: 2-iodoaniline (0.5 mmol), Boc2O (0.6 mmol), CaC2 (1.5 mmol), H2O
(4.0 mmol), 10% Pd/C (0.05 mmol), (4-MeO-Ph)3P (0.10 mmol), CuI (0.05 mmol), N(iPr)2H
(1.0 ml), NMP/EtOH (3:5) (8.0 ml), at reflux.
bGC yields calibrated against tridecane as an internal standard.
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important finding is that Pd/C catalysts can be reused

in this study. The Pd/C catalyst at the end of the

reaction was separated by funnel filter and then

washed with EtOH, and activated (see the supporting

information for details). The results show that the

activated catalyst has better reaction activity, shorter

reaction time and higher yield than the unactivated

catalyst. Although the catalyst can still be used after

four cycles, the reaction time should be significantly

extended if satisfactory yield is to be obtained.

The experimental results of reuse were summarized

in Table 4. While the catalytic activity of the recov-

ered Pd/C catalyst was inferior to that of the fresh

catalyst, it still exhibited good activity for the indole

ring synthesis reaction. However, it should be noted

that the drawback is the longer reaction time compared

to that of the fresh Pd/C catalyst. The more times the

catalyst was recovered, the longer the reaction time

was required to achieve satisfactory catalytic yield.

To explore the possible mechanism, the reaction

was initiated with the acylation of 2-iodoaniline,

forming the initial compound A. Meanwhile, it was

followed by the formation of aryl palladium iodides

B by the oxidative addition of A to Pd(0), generated by

the reaction of Palladium/carbon with (4-MePh)3P83

(Scheme 3). At the same time, calcium carbide was

gradually and slowly hydrolyzed to form calcium

acetylene hydroxide C,84 which then reacted with the

intermediate B, and the resulting product D underwent

reducing to eliminate the loss of palladium (0) and

converted to calcium arylacetylene hydroxides E,

whose subsequent hydrolysis provided aryl acetylenes

F.85,86 Aryl acetylenes reacted with CuI to produce

Cu(I) N-tert-butylcarbonyl indole complexes G, which

finally produced the target N-tert-butylcarbonyl indole

H and released the Cu(I) species.

4. Conclusion

In summary, an effective method was successfully

developed to obtain indole and its derivatives by the

reaction of the various of 2-iodoanilines with calcium

carbonate in a Pd/C catalytic system. This protocol

facilitates the easy synthesis of essential indole units

under laboratory conditions. The use of recycled Pd/C

catalyst, along with the utilization of cheap calcium

carbide as a sustainable and economical acetylene gas

replacement, contributes to making this a highly

attractive reaction.
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