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Abstract. A novel strategy for the chemoselective conversion of sulfoxides to sulfide utilizing D-cam-

phorsulfonic acid (D-CSA) as a reducing reagent has been developed under metal and additive-free condi-

tions. A variety of sulfoxides such as alkyl–aryl, allyl–aryl, benzyl–aryl, aryl–ethyl sulfoxides have been

effectively utilized to achieve the corresponding reduced products in good to excellent yields under mild

conditions without any additive. The proposed method offers a practical solution for the deoxygenation of

sulfoxides, which has potential applications in various fields such as pharmaceuticals, materials science, and

organic synthesis.
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1. Introduction

Organosulfur chemistry is one of the important

areas of research in organic synthesis. Numerous

pharmacological compounds and bioactive natural

products contain ‘S’ atom and such moieties serve

as the building block for synthesizing many bio-

logically active compounds.1 Reduction reaction is

one of the most fundamental reactions in organic

chemistry, which generally involves relatively

spotless reagents like molecular hydrogen with

extremely heavy metal salts or different phos-

phines.2 The deoxygenation strategies of diverse

sulfoxides have been summarized in a few

reviews.3 Significant progress has been achieved

during the last two decades in the field of thioether

synthesis through the reduction of sulfoxides using

various deoxygenation reagents such as metal

complexes, oxo and phosphines containing metal

complexes, cyanuric chlorides, triflic anhydride,

phosphines, electrophilic chlorine, and strong acids

with additives, etc.4–6 Among various reducing

agents, acids have gained profound attention in

reducing sulfoxides in combination with different

additives. It was extracted from the literature that

various acids, such as 3-mercaptopropionic, thioa-

cetic, ascorbic, sulfuric, hydrochloric, and Lewis

acid (anhyd AlCl3), etc., have been utilized as a

deoxygenating agent in combination with different

additives such as I2, NBS, TMCS, NaI, H2O2, etc.,

for the reduction of various sulfoxides.7–12 How-

ever, these reactions are generally conducted under

harsh conditions utilizing toxic and expensive

reagents where chemoselective conversion can’t be

carried out always due to the reduction of a few

functional groups (C=O, NO2, C:N, C=C) during

the course of reactions. In addition, using phosphine-

based ligands affords phosphonium oxide as the side

product, which creates difficulties in the purification

of the products. To address the above hurdles, herein,

we report a novel and chemoselective deoxygenation

strategy of diverse sulfoxides using common organic

reagent D-camphorsulfonic acid (D-CSA) as the

reducing agent without any additive. This reagent is

well known as a promising organocatalyst with low

sensitivity to air and moisture.13
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2. Experimental procedure

2.1 General procedure for deoxygenation
of sulfoxides

A mixture of corresponding sulfoxide derivative (1)
(0.72 mmol) and D-Camphorsulfonic acid (1.8 mmol)

in dry acetonitrile (2 mL) was stirred at 90�C for 12 h.

After completion of the reaction (monitored by TLC),

the solvent was removed under reduced pressure, and

the residue was extracted with EtOAc (2 9 40 mL)

and washed with H2O (2 9 20 mL). The combined

organic layer was washed with brine (2 9 15 mL),

dried over anhydrous Na2SO4, filtered, and concen-

trated under reduced pressure. The residue was puri-

fied by flash chromatography to obtain the desired

sulfide (3).

3. Results and discussion

Initially, 1-methoxy-4-[(phenylsulfinyl)methyl]ben-

zene (1a) was considered as the model substrate, and it

was treated with 1 equiv. of various acids such as

Table 1.Optimization of the reaction conditions.

Entry No. Acid (2) Solvent Temperature (°C) Yield (%) b

1 a Benzoic acid DCE 90 24 0

2 a Triflouromethane 

sulfonic acid
DCE 90 24 0

3 a Trifluoroacetic acid DCE 90 24 0

4 a Pivalic acid DCE 90 24 11

5 a D-CSA DCE 90 24 41

6c D-CSA DCE 90 24 53

7d D-CSA DCE 90 24 62

8d D-CSA DMF 90 24 17

9d D-CSA DMSO 90 24 18

10d D-CSA Ethanol 90 24 21

11d D-CSA Toluene 90 24 14

12d D-CSA CH3CN 90 12 85

13d D-CSA CH3CN 50 12 43

14d D-CSA CH3CN 60 12 51

15d D-CSA CH3CN Room temp. 24 22

Reaction conditions: aCompound 1a (0.82 mmol, 1.0 equiv.), Acid (1.0 equiv.), solvent (2.0 mL) was stirred 

at 90 oC under air for 12–24 h; bIsolated yield; c2.0 equiv.of D-CSA was used, d2.5 equiv.of D-CSA was 

used; D-CSA = D-camphorsulfonic acid.

Time (h)
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aReaction conditions: Compound 1 ( 0.72 mmol), D-CSA (1.8 mmol) in CH3CN (2 ml) were
stirred at 90oC under air for 12 h; bcat. amount of NBS was used; isolated yield after column
chromatography; D-CSA �D-camphorsulfonic Acid; NBS � N-bromosuccinimide.
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Scheme 1. Substrates scope.a
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benzoic acid, trifluoromethane sulfonic acids, trifluoro

acetic acid, pivalic acid, and D-camphorsulfonic acid

(D-CSA) in dichloroethane at 90�C for 24 h (Table 1,

Entries 1–5). It was found that D-camphorsulfonic

acid afforded the best result to obtain the deoxy-

genated product (3a) in 41% yield (Table 1, Entry 5).

On increasing the loading of D-CSA up to 2 equiv. and

subsequently, up to 2.5 equiv., enhanced yield of the

corresponding sulfide (3a) could be attained (53% and

62%, respectively) (Table 1, Entries 6 and 7). Further

enhancement of D-CSA loading up to 3 equiv. did not

increase the yield of the product. Sequentially, the

reaction was optimized by screening various solvents

such as DMF, DMSO, ethanol, toluene, and acetoni-

trile (Table 1, Entries 8–12). It was observed that

CH3CN afforded the best yield (85%) within 12 h,

probably due to the lowering of the activation energy

through coordination with the polar sulfoxide

(Table 1, Entry 12). The product yields decreased

when the deoxygenations were carried out at 50�C and

60�C instead of 90�C (Table 1, Entries 13 and 14).

Subsequently, the conduction of the reaction at room

temperature afforded the deoxygenation product (3a)
in only 22% yield (Table 1, Entry 15). Thus, the

optimal reaction conditions were established as fol-

lows: 2.5 equiv. of D-CSA in CH3CN (2 mL) at 90�C
for 12 h. With the optimized conditions in hand, we

attempted the deoxygenation reaction of several other

benzylphenyl sulfoxides under the standardized reac-

tion conditions (Scheme 1). Different electron-donat-

ing and -withdrawing substituents (OMe, Me, OPh,

CO2Me, CN, NO2, F, Br, Cl) on the benzyl ring of

benzylphenyl sulfoxides were well tolerated under the

optimized reaction conditions and provided moderate

to good yields of corresponding sulfides (66–85%).

Benzylphenyl sulfoxide (1e) without substituents

afforded the desired product (3e) in 64% yield.

Notably, the presence of ortho-substituents (F, Cl, Br,
Me, CN, CO2Me) on the benzyl ring did not hamper

the reaction yields (3h-3m). Meta-substituted sulfox-

ides (1n-1p) also afforded good yields of corre-

sponding thioethers (69–74%, 3n-3p). In addition,

chloro and methyl groups at the para-position on the

phenyl ring of benzylphenyl sulfoxides also produced

target thioethers (3q-3s) in good yields (Scheme 1).

Next, we explored the substrate scopes for aryl–

ethyl (1t–1v), aryl–alkyl (1w, 1x), aryl–allyl (1y)
sulfoxides under optimal conditions. Notably,

1-chloro-4-(methylsulfinyl)benzene (1w), 1-methoxy-

3-(methylsulfinyl)benzene (1x), and 1-(allylsulfinyl)-

4-methylbenzene (1y), afforded the related thioethers

(3w, 3x, 3y) in 62%, 42%, and 73% yields, respec-

tively (Scheme 1). Whereas, in the case of

(phenethylsulfinyl)benzenes (1t–1v), the reduction

reactions were found to be very sluggish and provided

the corresponding sulphides (3t–3v) in 31%, 16%, and

28% yields under standard conditions even after

D-CSA (2.5 equiv.)

CH3CN, 90oC,
12 hOMe

SOPh

OMe

SPh

1a (4.0 mmol) 3a, 84%, (0.785 gm)

Scheme 2. Gram scale reaction of 1a.
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Scheme 3. Electronic effect on the reaction.
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Scheme 4. Proposed pathway of deoxygenation.
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treatment for 24 h. In all cases, starting materials

remained, which were recovered. Surprisingly, these

reactions almost proceeded to completion (58–80%)

within just 5 h upon the addition of a catalytic amount

of NBS under the standardized conditions (Scheme 1,

compounds 3t–3v). The remaining starting materials

were recovered without any side product in all cases.

The presence of NBS in this reaction was examined in

a few cases. The addition of a catalytic amount of NBS

under standard conditions enhanced the reaction rate

to complete within 4 h with a slight increase in the

yields of the products along with remaining starting

materials (3a, 3e, and 3f). Unfortunately, the estab-

lished protocol did not work with diaryl sulfoxides (1z
and 1za).
The scalability of this protocol was verified by a

gram-scale reaction where 84% yield of the target

product (3a) was obtained (Scheme 2).

A competition experiment was carried out to

determine the electronic preference of this transfor-

mation. The reaction between equimolar mixtures of

1-methoxy-4-[(phenylsulfinyl)methyl]benzene (1a)
and methyl 4-[(phenylsulfinyl)methyl]benzoate (1f)
favored both the electron-rich (1a) and electron-defi-

cient (1f) sulfoxides in an equal (1:1) ratio under

optimal conditions (Scheme 3).

A mechanism for this deoxygenation reaction is

proposed in Scheme 4. Benzylphenyl sulfoxide (1e)
reacts with D-CSA to form intermediate A, which,
after intramolecular rearrangement followed by S–O

bond cleavage, generates benzylphenyl sulfide (3e)
along with dioxirane species (B).

4. Conclusions

In conclusion, we have successfully developed a

strategy for the deoxygenation reaction of diverse

sulfoxides under mild reaction conditions. This strat-

egy using D-camphorsulfonic acid is an efficient

reducing agent for deoxygenating diverse sulfoxides

under metal and additive-free conditions. This proto-

col might have broad synthetic applications in organic

synthesis because of the mild reaction conditions, high

chemoselectivity, simplicity in operation, and broad

substrate scope for synthesizing drug intermediates

and biologically active products.
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