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Abstract. The Eosin Y photocatalyzed Biginelli protocol has been established by a cascade one-pot three-

component reaction of primary alcohols, a-ketoester, and urea to provide pharmacologically promising 3,4-

dihydropyrimidin-2(1H)-ones in high yields. The key benefits of the present scheme are the capability to

allow operational simplicity, readily available substrates, straightforward workup and high yields. This Eosin

Y based photocatalytic approach can permit conquering traditional metal-catalyzed reactions in a sustainable

manner, thus delivering economic and environmental rewards.

Keywords. Biginelli reaction; Photocatalysis; Eosin Y; 3,4-dihydropyrimidin-2(1H)-ones; Multicomponent

reaction.

1. Introduction

The gradually increasing demand for greener

methodology for concurrent chemical synthesis has

enforced chemists to develop atomic economically and

environmentally benign synthetic routes for producing

well usable chemicals.1 Visible-light-assisted trans-

formations have especially attracted growing interest

due to their green and beneficial properties, sustain-

ability, readily availability and ease of handling.2 In

addition, compared to the conventional catalytic pro-

tocols, photo-catalysis under visible-light irradiation

has been revealed as a powerful synthetic tool that

produces mild and eco-friendly organic conver-

sions.3–6 Exhilarate by this, various dyes and metal-

complexes; bearing ruthenium and iridium, are

reported as photocatalysts in the last couple of years

especially.7–16

The controlled oxidation of alcohols is one of the

important transformations in organic synthetic

chemistry as their products play an important inter-

mediate role in the formation of fine chemicals,

important agrochemicals, pharmaceutical entities and

other high-value products.17–19 Oxidation of primary

aromatic alcohols are mostly achieved using rather

strong oxidizing agents, that are toxic and hazardous

to the environment i.e. hyperchlorite, permanganate,

etc. and expensive noble metal catalysts including

Au, Pt, Pd.20–25 As the alternative route, oxygen

plays an important role as an excellent oxidant

because of prevention of toxic, hazardous and stoi-

chiometric by-products.26 Based on the perspective,

various homogenous and heterogeneous metal cata-

lysts have been reported. In equality, transition-metal

free photocatalysts are greener and striking, because

of inexpensive, easy departure from the reaction

mixture and non-poisonous.27,28 So far, several

photocatalytic methods have also been reported for

the oxidation of primary aromatic alcohols.29–34

Notably, 3,4-dihydropyrimidin-2(1H)-one (DHPMs)

are the core structural motifs formany potentially active

biological molecules such as calcium channel blockers,

ant-inflammatory and antitumor.35 DHPMs are identi-

fied as encouraging anticancer agents (Figure 1)
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especially monastrol, responsible to block the bipolar-

mitotic-spindle in mammalian cells that results in trig-

gering the arrest of G2/M mitotic phase further leading

to cell apoptosis.36,37

Various methods have been published in the lit-

erature for the composite of 3,4-dihydropyrimidi-

nones by using ultrasonic irradiation, microwaves,

ionic liquids, Thermal methods and metal catalysts

(i.e. copper (II) sulfamate, Dendrimer-PWA).38–48

These methods and catalysts mentioned above have

the common drawbacks of difficult work-up, lower

product yield, noxious and steep catalysts, acidic

circumstance and long-time reactions.49

The reported literature prompted us to explore a

tandem cascade methodology for the fabrication of

DHPMs utilizing primary aromatic alcohols. For a

tandem cascade approach, a photooxidative system

is required to be established that is selective and

high yielding.

Here, we developed a greener and environmentally

benign protocol for the synthesis of 3,4-DHPMs using

molecular oxygen,28,50–52 visible light irradiation as a

green energy source,53 eosin Y as photoreceptor and

sensitizer, silver nitrate as an add-on photoreaction

enhancer and inorganic salt K2S2O8 as a strong oxi-

dizing agent.54 Eosin Y revealed unique properties like

as rapid intersystem crossing to the lowest triplet state,

high photo and chemical stability, ease of separation

from the reaction mixture and high catalytic effi-

ciency.55 This strategy embraces two distinct features

involving activation of the system using visible light

and initial activation of the dye through light absorp-

tion followed by system activation. Our investigated

style has a prominent quality like easy workup, inex-

pensive catalyst, simple filtration, high yield and easy

scalability. Our approach combines a dye i.e. Eosin Y,

a light energy acceptor, with an electron acceptor

photocatalyst, silver nitrate.

2. Experimental

2.1 General information and materials

General standard methods were used to purify and

dry the solvents. Reagents and solvents (procured

from Spectrochem, Aldrich, Acros and Merck) were

used as such without added purification unless

otherwise required. TLC (Analytical thin layer

chromatography) was performed on Merck Kiesel-

gel-60 F-254. Silica-gel 100-200 mesh was used to

perform column chromatography. M.P. (Melting

points) were recorded on Mel-Temp apparatus in

Figure 1. Some DHPM derivatives with anticancer activity.
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capillary tubes and are uncorrected. Proton NMR

spectra were attained at Bruker spectrometer (400

MHz) using CDCl3 as solvent (7.26 ppm- referenced

to residual chloroform) or d6-DMSO (2.50 ppm –

referenced to residual and 3.34 ppm – referenced to

residual water in DMSO-d6). Chemical shift values

are articulated in ppm (parts per million) downfield

with respect to TMS. Coupling constant values

(J values) are presented in Hz. 13C NMR spectra

were obtained at 75 MHz in using Bruker spec-

trometers using CDCl3 as solvent (77.0 ppm – ref-

erenced to residual chloroform) or d6-DMSO (39.5

ppm – referenced to residual DMSO). Perkin Elmer

(Spectrum-II) used for IR spectra. Mass spec-

trophotometer (Brucker-micrOTOF-QII) used for

mass spectra.

2.2 Experimental procedures

2.2a General procedure of the synthesis of
3,4-dihydropyrimidin-2(1H)-ones: Alcohol 1b
(1.0 mmol), a-ketoester 2b (1.0 mmol) and urea 3b
(1.2 mmol) was dissolved in a mixture of acetonitrile

and water (1:1) at room temperature in the presence of

air bubble. Eosin Y (1.0 mmol), Silver nitrate (2.0

mol%) and potassium persulphate (1.0 mmol) was

added and the reactionmixturewas stirred for 48 h under

visible light at room temperature. The reaction was

monitored using TLC. After the completion of reaction,

the reaction mixture was partitioned between water and

ethyl acetate. The separated organic layer was washed

with saturated brine solution, dried over anhydrous

sodium sulfate, concentrated in vacuo to afford

compounds DHPM with excellent yields (upto 88%).

The compounds DHPM were further purified by using

column chromatography over silica gel with themixture

of ethylacetate/hexane to get the pure DHPMs.

Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate 4a: Yield 88%; white

solid, M.p. 203–204 �C; IR (ATR) m cm-1 3243 (N-

H), 1701 (C=O), 1638 (C=C). 1H NMR (400 MHz,

DMSO-d6) d 9.22 (1H, s, NH), 7.75 (1H, s, NH), 7.27

(5H, m, ArH), 5.15 (1H, d, J = 4.0 Hz, CH), 3.98 (2H,

q, J = 15.2, 8.0 Hz, CH2), 2.26 (3H, s, CH3), 1.10 (3H,

t, J = 8.0 Hz, CH3);
13C NMR (75 MHz, DMSO-d6) d

165.9, 153.1, 148.3, 145.3, 129.1, 128.2, 127.8, 98.2,

60.2, 55.5, 19.0, 14.7. MS m/z 261 (M?1); Anal. Calc.

for C14H16N2O3: C, 64.60; H, 6.20; N, 10.76; found:

C, 64.59; H, 6.23; N, 10.73.

Methyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate, 4b: Yield 80%; White

solid; M.p. 208–210 �C; IR (ATR) m cm-1 3228 (N-

H), 1697 (C=O), 1653 (C=C).1HNMR (400 MHz,

DMSO-d6) d 9.20 (1H, s, NH), 7.70 (1H, s, NH), 7.29

(5H, m, ArH), 5.13 (1H, d, J = 4.0 Hz, CH), 3.70 (s,

OCH3), 2.28 (3H, CH3);
13C NMR (75 MHz, DMSO-

d6) d 164.3, 152.7, 148.9, 145.1, 128.9, 128.2, 127.5,

100.2, 55.6, 54.1, 15.7. MS m/z247 (M?1); Anal.

Calc. for C13H14N2O3: C, 63.40; H, 5.73; N, 11.38;

found: C, 63.42; H, 5.76; N, 11.33.

Ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate, 4c: Yield 75%;

white solid; M.p. 213-215 �C; IR (ATR) m cm-1 3239

(N-H), 1701 (C=O), 1638 (C=C).1H NMR (400 MHz

CDCl3) d 7.98 (s,1H, NH), 5.81 (s, 1H, NH), 7.27-7.33
(m, 4H, ArH), 5.41 (s, 1H, CH), 4.10 (2H, q, CH2),

2.38 (3H, s, CH3), 1.21 (3H, t, CH3);
13C NMR

(75MHz, CDCl3) d 165.4, 153.0, 146.3, 142.1, 133.7,

128.9, 128.0,101.1, 60.2, 55.17, 18.7; MS m/z 296

(M?2); Anal. Calc. for C14H15ClN2O3: C, 57.05; H,

5.13; N, 9.50; found: C, 57.04; H, 5.18; N, 9.42.

Methyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate, 4d: Yield 73%;

white solid; M.p. 180-181 �C; IR (ATR) m cm-1 3225

(N-H), 1706 (C=O), 1635 (C=C).1H NMR (400 MHz

DMSO-d6) d 9.30 (s,1H, NH), 7.72 (s, 1H, NH), 7.39

(m, 4H, ArH), 5.12 (s, 1H, CH), 3.59 (s, 3H, OCH3),

2.25 (s, 3H, CH3);
13C NMR (75MHz, DMSO-d6) d

165.3, 152.8, 149.5, 132.8, 132.3, 129.5, 128.4, 128.0,

127.7, 98.9, 51.5, 51.4, 18.7; MS m/z 282 (M?2);

Anal. Calc. for C13H13ClN2O3: C, 55.62; H, 4.67; N,

9.98; found: C, 55.64; H, 4.71; N, 9.94.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydropyrimidine-5-carboxylate, 4e: Yield
85%; light brown solid; M.p. 205-206 �C; IR (ATR) m
cm-1 3227 (N-H), 1705 (C=O), 1643 (C=C).1H NMR

(400 MHz, DMSO-d6) d 10.11 (s, 1H, NH), 8.30 (s,

1H, NH), 7.30 (m, 2H, ArH), 6.79 (m, 2H, ArH), 5.25

(s, 1H, CH), 3.95 (2H, q, J = 16.0, 8.0 Hz, CH2), 3.84

(s, 3H, Ar-OCH3), 2.30 (3H, s, CH3), 1.09 (3H, t, J =

8.0 Hz, CH3).
13C NMR (75MHz, DMSO-d6) d 165.6,

160.5, 153.8, 134.5, 127.9, 113.8, 106.6, 55.8, 52.5,

52.9, 19.3; MS m/z291 (M?1); Anal. Calc. for

C15H18N2O4: C, 62.06; H, 6.25; N, 9.65; found: C, C,

62.08; H, 6.28; N, 9.60.

Methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydropyrimidine-5-carboxylate, 4f: Yield
82%; light brown solid; M.p. 187-188 �C; IR (ATR) m
cm-1 3226 (N-H), 1708 (C=O), 1653 (C=C). 1H NMR

(400 MHz, DMSO-d6) d 10.24 (s, 1H, NH), 8.57 (s,

1H, NH), 7.36 (m, 2H, ArH), 6.83 (m, 2H, ArH), 5.28

(s, 1H, CH), 3.83 (s, 3H, Ar-OCH3), 3.45 (s, 3H,

OCH3), 2.30 (s, 3H, CH3).
13C NMR (75MHz, DMSO-

d6) d 166.0, 160.8, 154.2, 134.8, 127.4, 113.2, 106.5,

56.5, 51.8, 51.2, 19.9; MS m/z 277 (M?1); Anal. Calc.
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for C14H16N2O4: C, 60.86; H, 5.84; N, 10.14; found:

C, 60.90; H, 5.81; N, 10.10.

Ethyl 6-methyl-2-oxo-4-(p-tolyl)-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate 4g: Yield 78%; light

brown solid; M.p. 209-210 �C; IR (ATR) m cm-1 3241

(N-H), 1700 (C=O), 1641 (C=C).1H NMR (400 MHz,

DMSO-d6,) d 10.36 (s, 1H, NH), 8.47 (s, 1H, NH),

7.20 (m, 2H, ArH), 6.72 (m, 2H, ArH), 5.31 (s, 1H,

CH), 3.91 (2H, q, J = 16.0, 8.0 Hz, CH2), 2.32 (3H, s,

CH3), 2.21 (s, 3H, Ar-CH3), 1.11 (3H, t, J = 8.0 Hz,

CH3);
13C NMR (75MHz, DMSO-d6) d 165.2, 152.7,

151.1, 139.9, 134.7, 129.9, 128.5, 107.7, 53.9, 51.7,

21.0, 19.1; MS m/z275 (M?1); Anal. Calc. for

C15H18N2O3: C, 65.68; H, 6.61; N, 10.21; found: C,

65.70; H, 6.66; N, 10.19.

Methyl 6-methyl-2-oxo-4-(p-tolyl)-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate 4h: Yield 80%; light

brown solid; M.p. 214-215 �C; IR (ATR) m cm-1 3245

(N-H), 1703 (C=O), 1632 (C=C).1H NMR (400 MHz,

DMSO-d6,) d 10.50 (s, 1H, NH), 8.35 (s, 1H, NH),

7.01 (m, 4H, ArH), 5.20 (s, 1H, CH), 3.54 (s, 3H,

OCH3), 2.28 (s, 3H, CH3), 2.24 (s, 3H, Ar-CH3);
13C

NMR (75MHz, DMSO-d6) d 165.3, 152.2, 151.0,

139.6, 134.0, 129.2, 128.4, 107.0, 53.3, 51.5, 21.7,

19.5; MS m/z 261 (M?1); Anal. Calc. for

C14H16N2O3: C, 64.60; H, 6.20; N, 10.76; found: C,

64.53; H, 6.23; N, 10.68.

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate, 4i: Yield 82%;

white solid; M.p. 230-232 �C; IR (ATR) m cm-1 3229

(N-H), 1706 (C=O), 1639 (C=C).1H NMR (400 MHz

DMSO-d6) d 9.53 (s,1H, NH), 7.84 (s, 1H, NH), 7.13

(m, 2H, ArH), 6.79 (m, 2H, ArH), 5.10 (s, 1H, CH),

3.87 (2H, q, J = 16.0, 8.0 Hz, CH2), 2.28 (3H, s, CH3),

1.07 (3H, t, J = 8.0 Hz, CH3);
13C NMR (75MHz,

DMSO-d6) d 165.1, 152.7, 149.8, 132.4, 132.8, 129.7,

Table 1. Optimization of reaction conditions.

Entry Eosin Y (mole %) K2S2O8 (eq.) AgNO3 (mole %) Solvent Time (h) Yield (%)b

1 - 1 - CH3CN/H2O 48 0c

2 - 1 1 CH3CN/H2O 48 0
3 - 1 1 CH3CN/H2O 48 0d

4 - 1 1 CH3CN/H2O 48 Trace
5 1 1 1 CH3CN/H2O 48 45
6 2 1 1 CH3CN/H2O 48 46
7 1 - 1 CH3CN/H2O 48 30
8 1 2 1 CH3CN/H2O 48 35
9 1 1 1.5 CH3CN/H2O 48 75
10 1 1 2 CH3CN/H2O 40 88
11 1 1 3 CH3CN/H2O 40 85
12 1 1 2 DMSO 40 Trace
13 1 1 2 EtOH 40 Trace
14 1 1 2 H2O 40 0
15 1 1 2 Chloroform 40 0
16 1 1 2 CH3CN 40 25
17 1 (RhodamineB) 1 2 CH3CN/H2O 48 Trace
18 1 (Methylene Blue) 1 2 CH3CN/H2O 48 Trace

aAll reaction were carried out with benzyl alcohol (1 eq.), ethyl acetoacetate (1 eq.) and urea (1.2 eq.) in presence of
solvents. byield of isolated product.cReaction performed in dark. dsilver acetate and TiO2 used instead of AgNO3.

eAll the
reactions were performed in air bubbling. fThe white LED lamp is used as the source of visible light.
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128.1, 128.0, 127.7, 98.7, 51.7, 51.4, 18.9; MS m/z277
(M?1); Anal. Calc. for C14H16N2O4: C, 60.86; H,

5.84; N, 10.14; found: C, 60.88; H, 5.94; N, 10.08.

Methyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydropyrimidine-5-carboxylate, 4j: Yield
80%; white solid; M.p. 240-242 �C; IR (ATR) m cm-1

3231 (N-H), 1704 (C=O), 1636 (C=C).1H NMR (400

MHz DMSO-d6) d 9.43 (s,1H, NH), 7.77 (s, 1H, NH),

7.00 (m, 4H, ArH), 5.08 (s, 1H, CH), 3.60 (s, 3H,

OCH3), 2.27 (s, 3H, CH3);
13C NMR (75MHz,

DMSO-d6) d 166.5, 152.9, 149.8, 132.5, 132.4, 129.7,

128.9, 128.4, 127.8, 98.7, 51.7, 51.6, 18.6; MS m/z263
(M?1); Anal. Calc. for C13H14N2O4: C, 59.54; H,

5.38; N, 10.68; found: C, 59.55; H, 5.47; N, 10.60.

Ethyl 6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate, 4k: Yield 5%; White

solid; M.p. 154-156 �C IR (ATR) m cm-1 3246 (N-H),

1708 (C=O), 1632 (C=C).1HNMR (400 MHz, CDCl3)

d7.65 (1H, s, NH), 5.60 (1H, s, NH), 4.25 (1H, t, CH),

4.11 (2H, q, CH2), 2.22 (3H, s, CH3), 1.64 (4H, m,

CH2-CH2), 1.21 (t, 3H, -CH3), 0.85 (t, 3H, CH3);
13C

NMR (75 MHz, CDCl3) d165.9, 154.2, 146.5, 101.7,
59.9, 51.4, 39.1, 18.6, 17.6, 14.3.MS m/z227 (M?1);

Anal. Calc. for C11H18N2O3: C, 58.39; H, 8.02; N,

12.38; found: C, 58.43; H, 8.14; N, 12.31.

Ethyl 4-ethynyl-6-methyl-2-oxo-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate, 4l: Yield 22%; White

solid; IR (ATR) m cm-1 3247 (N-H), 1705 (C=O),

1635 (C=C).1HNMR (400 MHz, DMSO-d6) d 9.30

(1H, s, NH), 7.69 (1H, s, NH), 5.03 (1H, s, CH), 3.90

(2H, q, J = 16.0, 8.0 Hz, CH2), 3.16 (1H, s, CH), 2.27

(3H, s, CH3), 1.25 (t, 3H, -CH3);
13C NMR (75 MHz,

DMSO-d6) d 167.1, 150.4, 147.9, 106.5, 81.1, 72.9,

65.7, 45.2, 17.4, 15.1. MS m/z209 (M?1); Anal. Calc.

for C10H12N2O3: C, 57.68; H, 5.81; N, 13.45; found:

C, 57.66; H, 5.85; N, 13.39.

Ethyl 4-(3-nitrophenyl)-6-methyl-2-oxo-1,2,3,4-te-
trahydropyrimidine-5-carboxylate, 4m: Yield 72%;

yellow solid; M.p. 228-230 �C; IR (ATR) m cm-1

3333 (N-H), 1707 (C=O), 1621(C=C).1H NMR (400

MHz DMSO-d6) d9.38 (s,1H, NH), 8.16 (s, 1H, NH),

7.6-8.10 (m, 4H, ArH), 5.31 (s, 1H, CH), 4.0 (2H, q,

CH2), 2.28 (3H, s, CH3), 1.11 (3H, t, CH3);
13C NMR

(75MHz, DMSO -d6) d165.5, 152.2, 149.9, 148.2,

147.4133.4, 130.7, 122.8, 121.4,98.8, 59.8, 54.0, 18.3,

14.4.

3. Results and Discussion

The exploration was started by performing the reaction

of benzyl alcohol (1a), ethyl acetoacetate (2a), urea
(3a) and K2S2O8 (1 eq.) in acetonitrile/water (1:1)

mixture under an open atmosphere and in a dark place

at room temperature. The entire substrate was unre-

acted (Table 1, entry 1) and did not proceed at all even

after 48 h. The above testing reaction was also per-

formed at an elevated temperature of 50 �C but could

not enhance the result of the reaction. The above test

reaction was further studied in the presence of silver

nitrate which does not afford any product (Table 1,

entry 2). Silver nitrate was replaced with silver acetate

and TiO2 but the formation of the product may not be

realized (Table 1, entry 3). Following, we examined a

similar investigation in visible light (source: white

LED bulb), which enabled the formation of traces of

the final product on spending 48 h with 1a (Table 1,

entry 4). Besides, a similar model reaction was con-

ducted using Eosin Y as photocatalyst (1 mol%),

which provided the synthesis of desired 3,4-DHPM 4a
was obtained in 48 h with 45% yield under photore-

action (Table 1, entry 5). The characterization of 4a
was furnished by 1H NMR, 13C NMR, Mass-Spectrum

and IR spectral studies, and found to be matched

identically with the previously reported compounds.

The above outcome was extremely encouraging, for

further optimization of the reaction to get an elevated

yield of required product 4a. Subsequently, the tem-

plate reaction was executed by varying amounts of

photocatalyst Eosin Y, which does not improve the

yield of the wanted product 4a (Table 1, entry 6). We

used an organic dye Eosin Y as a photo-catalyst to

initiate the reaction, which leads to the dehydrogena-

tion of alcohol into desired carbonyl compound.53

R1

OHH
R2O

O

H3C O
NH2

H2N O

1b
2b

3b

R1

N

NHR2O

H3C O

O

H

4

K2S2O8 ,Eosin Y , AgNO3

Visible light, CH3CN/H2O
Air bubbling

Scheme 1. Synthesis of various derivatives of 3,4-dihydropyrimidin-2(1H)-ones.
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Table 2. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPM) (Scheme 1)a.

aFor reaction condition see supporting information. byield of isolated product.
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Eosin Y worked as photocatalyst in the reaction. Then,

we performed the reaction with varying amounts of

K2S2O8 which revealed a decline in the yield of the

desired product 4a (Table 1, entries 7 & 8). Potassium

persulphate (K2S2O8) used in this protocol is not a

photocatalyst, but photolysis of S2O8
2- to generate

sulphate radical anion (SO4
. -), which acts as a strong

oxidizing agent in an aqueous system.54 The activity

of K2S2O8 also depends on the amount of K2S2O8 used

in the reaction. The reaction with a high amount of

K2S2O8 reduced the desired yield by over-oxidation of

alcohol into a carboxylic acid.

To improve the effectiveness of this reaction, we

examined the altering amount of AgNO3 commencing

1.0 to 3.0 mol % (Table 1, entries 9-11). It was

detected that 2.0 mol % was found as the best possible

protocol, which facilitated the yield of the avidity

product 4a to 88% in 40 h (Table 1, entry 10). Further

increase in the quantity of silver nitrate could not get

better yield (Table 1, entry 11). Silver nitrate helps in

increasing the oxidation in reaction.56 The role of

silver is to activate the molecular oxygen by adsorbing

on their surface. It also enhanced the efficiency of

eosin Y under the aqueous phase.57–59

Afterwards, we carefully evaluated the model

reaction with different solvent systems such as

DMSO, ethanol, H2O, chloroform, CH3CN and

found that the CH3CN/H2O mixture was the most

suitable solvent for this reaction as it increases the

yield to 88% (Table 1, entries 12-16). Acetonitrile is

a good solvent for photo-oxidation.60 It does not

only possess strong polarity but also have a good

dissolvent capacity of oxygen. To find out the

impact of other photocatalysts, we examined the

model reaction with different organic photocatalysts

(Table 1, entries 17 & 18), which did not enhance

the yield of the product.

Hence, the evaluated eosin Y (1.0 mol %), K2S2O8

(1.0 equiv.), AgNO3 (2.0 mol %) were the best choices

Scheme 2. Proposed mechanism step-I in-situ oxidation
of primary alcohol.

Scheme 3. Proposed mechanism step-II formation of 3,4-DHPMs.
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with visible light irradiation at room temperature

under an oxygen atmosphere.

With the optimized reaction conditions in hand, the

substrate coverage of this photocatalytic oxidation

system was explored (Scheme 1). Based on our initial

efforts to obtain the high efficiency of photocatalytic

conversion into the desired product, different primary

aromatic and aliphatic alcohols were evaluated

(Table 2). All the substituted benzyl alcohols with

electron-donating and electron-withdrawing groups

were easily utilized in this cascade approach in getting

substituted 3,4-DHPMs in high yields (Table 2, com-

pound 4a-4j, 4m). Electron-releasing substituents at

para, position on the phenyl group were found to be

efficient in accelerating the reaction, while electron-

withdrawing groups substituents at meta and para
position on phenyl group needed longer reaction times

for their optimized conversions. Compared with the

primary aromatic alcohols, primary aliphatic alcohols

are found to be very less reactive.

We evaluated various derivatives by using different

types of primary alcohol (Benzyl alcohol,

4-chlorobenzyl alcohol, propargyl alcohol, methanol

and butanol etc.) and a-ketoester (ethyl acetoacetate

and methyl acetoacetate) in the reaction (Scheme 1).

We used benzyl alcohol with ethyl acetoacetate and

urea under similar reaction conditions, which gave

88% yield (4a) and reaction accomplished in 48 h

(entry 1, Table 2).

Further benzyl alcohol treated with methyl ace-

toacetate and reaction conditions remained same

which obtained 80% yield of the product (4b) in 48 h

(entry 2, Table 2). We also found that both methyl

acetoacetate and ethyl acetoacetate under similar

optimized conditions gave good to excellent yields

between 73-88% with aromatic alcohols (Table 2,

entries 4c-4j, 4m). Further, we also treated aliphatic

alcohols under similar reaction condition with ethyl

acetoacetate that yielded in poor (Table 2, entries 4k-
4l) even after an extended duration of time up to 72 h.

A plausible mechanism has been proposed for the

in-situ oxidation of alcohol and the formation of 3,4-

DHPMs which is summarized in Scheme 2. The

sulphate radical anion (SO4
. -) acts as an oxidizing

agent under photo-irradiative conditions.54,67 It

accepts one electron from 3EY* forming sulphate

anion (SO4
2-) and converts it into radical cation

(EY1.) Subsequently, EY?• accepts an electron from

benzyl alcohol (1b) to regenerate EY and produce

benzyl alcohol radical cation (5, Scheme 2). Further,

benzyl alcohol radical (6) is formed due to the

removal of a proton from 5.53 The Ag(I) activates

the molecular oxygen (O2) and transforms it into

radical anion (O2
-.)58 that further accepts proton

form superoxide radical (.OOH). The .OOH trans-

forms 6 into carbonyl compound (7) (Scheme 2).17

The eosin Y gets involve in both the reductive and

oxidative quenching cycles.68,69 The eosin Y activates

both 7 and b-keto ester (2b) by donating and accepting
one electron respectively. The activated aldehyde (8)
further interacts with urea to form imine (11) and

releases a molecule of H2O. The activated b-keto ester

(9) attacks on imine (11) to form 3,4-DHPM by

releasing water molecule (Scheme 3).47,70

4. Conclusions

We have disclosed a robust, efficient, and domino

multicomponent cascade novel protocol to design

3,4-dihydropyrimidin-2(1H)-one derivative utilizing

Biginelli reaction of primary alcohols using visible-

light as green energy source. The key features of the

present protocol include the capability to allow an

operational simplicity, readily available substrates,

straightforward workup, and high yields of the

products. The synthetic efficacy and practicality of

this Eosin Y based photocatalytic approach can

allow in capacitating conventional metal-catalyzed

reactions and could be rousing towards functional-

ization of a broad variety of C-C, and C-N bonds in

a sustainable manner.

Supplementary Information (SI)

Supplementary information related to this article is avail-

able at www.ias.ac.in/chemsci.
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