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Abstract. Many known and unknown factors play significant roles in the persistence of an infectious

disease, but two that are often ignored in theoretical modelling are the distributions of (i) inherent suscep-
tibility (rinh) and (ii) external infectivity (iext), in a population. While the former is determined by the

immunity of an individual towards a disease, the latter depends on the exposure of a susceptible person to the

infection. We model the spatio-temporal propagation of a pandemic as a chemical reaction kinetics on a
network using a modified SAIR (Susceptible-Asymptomatic-Infected-Removed) model to include these two

distributions. The resulting integro-differential equations are solved using Kinetic Monte Carlo Cellular

Automata (KMC-CA) simulations. Coupling between rinh and iext are combined into a new parameter X,
defined as X ¼ rinh � iext; infection occurs only if the value of X is greater than a Pandemic Infection

Parameter (PIP), X0. Not only does this parameter provide a microscopic viewpoint of the reproduction

number R0 advocated by the conventional SIR model, but it also takes into consideration the viral load

experienced by a susceptible person. We find that the neglect of this coupling could compromise quantitative

predictions and lead to incorrect estimates of the infections required to achieve the herd immunity threshold.
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1. Introduction

In any pandemic, the distinct immunity of an indi-

vidual, and its distribution in a given population, play

important role in fostering or retarding the spread of

the infectious disease. Yet these aspects have remained

less discussed and poorly understood. Immunity is an

intrinsic individual property that determines the sus-

ceptibility of an individual to a certain disease. The

fraction of resilient and vulnerable populations mod-

ulates the herd immunity threshold in a region.1,2

Hence, in order to understand the progression of an

epidemic, one needs to consider the inherent distri-

bution of susceptibility in the population.3 Quantifying

this distribution is a difficult problem because of the

heterogeneity in the population in every aspect.4 An

otherwise healthy population might possess low

immunity towards a novel disease, while a relatively

unhealthy person/population could possess high

immunity. The coronavirus, which is responsible for

the SARS-CoV-2 pandemic, seems to display some of

these features. Another issue is the extent of vacci-

nation of a population. There would be a transient

period, extending even upto a year or more, where

vaccination increases the immunity of a population.

In a recent work, Roy and coworkers attempted to

develop a statistical mechanical approach to define an

immune response function called IMRF.5 They

defined IMRF as the mean square fluctuation in

effector T-cell (the killer cell).6 IMRF can vary from

individual to individual and disease-to-disease. It can

be quantified through standard repeated blood tests on

a healthy person, as mentioned in our earlier publi-

cations.5,6 It can therefore serve as a quantitative

indicator, allowing us to grade the immunity of an

individual according to a scale. This is more advanced

than the one-shot value obtained by a test that can be
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either positive or negative and can miss the actual

situation.

We face further complications in modeling conta-

gious diseases with large but slow recovery rates.
These features may give rise to time-dependent pat-

terns that hinge on many factors which are hard to

understand and even harder to control and model. One

important factor oft-ignored is the infectivity of an

individual that depends on the external exposure of an

individual. The external infectivity may depend on the

lifestyle, travel requirement, climate, etc. Thus, a

person with low susceptibility (for example, a young

person) can get infected if exposed to the virus for a

long time, and an older person with high susceptibility

can escape, owing to low exposure. Like susceptibil-

ity, this also needs to be treated as a distribution.

In addition to the above features, the time evolution

of new infections also depends on migration and

clustering of diseases, making the evolution both space

and time-dependent. These aspects are not included in

the classical SIR (Susceptible-Infected-Removed)

model. There have been several generalizations of the

SIR model, like SAIR, SEIR, etc., which include

additional variables and compartments such as

asymptomatic, exposed, resilient, etc. However, they

prove to be inadequate to address the complexities

mentioned above. Very few theoretical studies have

addressed the occurrence of the multiple peaks.7 The

endless growth and decay seem to have a pattern, at

least at the intermediate times.

The emergence of multiple peaks in the COVID-19

pandemic has raised a grave concern. It has turned out

to be difficult to model this phenomenon because of

many factors involved. At the simplest level, one uses

the following two approaches. (i) Application of time

series regression analysis provides a reasonably cor-

rect estimate of the new infections on a short time

window, although it could become unreliable in the

long run. Such regression analyses also fail to predict

the subsequent infection peaks after the curve flattens

for the first time. (ii) Application of the standard SIR

model or its variants, where one starts with a master

equation describing inter-conversions between sus-

ceptible (S), infected (I) and removed (R) populations.

While the second approach is based on a mathematical

model, it also requires the data to be fitted into the

model to correct the conversion rates. As the disease

evolves, one finds that the results need to be fitted

repeatedly over varying time windows for improved

predictive power.

The naive SIR model consists of three coupled

differential equations as described in Eq. (1).8–10

According to this model, ‘S’ may become ‘I’, and ‘I’

eventually becomes ‘R’. However, ‘R’ can never

become ‘S’ or ‘I’ because of the acquired immunity.

The model imposes an additional constraint that at a

given time t, S(t)?I(t)?R(t) = N = constant,

dS tð Þ
dt

¼ � b S tð Þ I tð Þ

dI tð Þ
dt

¼ b S tð Þ I tð Þ � cI tð Þ

dR tð Þ
dt

¼ cI tð Þ

ð1Þ

Equation (1) describes the three coupled non-linear

differential equations of the Kermack–McKendrick

(KM) model,11 where b is the rate of infection and c is

the rate of removal (recovery and death). In principle,

the rate constants should be time and space-dependent,

that is, non-local. The naive SIR model is similar to

the kinetic description of a consecutive chemical

reaction.

It is important to note that the rate parameters, b and

c are obtained by fitting to the available data. It is often

found that one set of these parameters cannot describe

the full progression. One then takes the advantage of

the existing data to obtain a new rate parameter set

valid over a certain future for predictive purposes.

From the above description, we see that the naive

SIR model is too simple to describe the complex

evolution we are witnessing in the progression of

COVID-19. The SIR model needs to be improved

upon in the following directions.

(i) First, there is a need to include in the model a

time-dependent influx of infected population

created by long-distance migration. This could

become a critical issue in large countries, like

India and the USA where such migration is hard

to control. This leads to nucleation of the

infection in a yet unaffected region, which

results in multiple peaks.

(ii) Another difficulty lies in the uncertainty due to

the distribution of inherent susceptibility or

immunity among the population. It is well

discussed that senior citizens have lower immu-

nity and are more susceptible to infection on

exposure.12 However, it is known that different

countries have different immunity due to prior

exposure.

(iii) Yet another complex issue is the variation in the

infectivity of a person with a given susceptibil-

ity, due to exposure. A part of the population

undergoes repeated exposures through travels to

offices and attending schools and colleges or
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other areas of public gathering. These exposed

people are more prone to infection than the ones

who either stay at home or work in isolated

environments like fields as in agriculture.

The effects of susceptibility distribution have been

treated in several recent papers. To the best of our

knowledge, Hickson and Roberts first addressed this

issue of the hidden role that a susceptibility distribu-

tion can play in the progression of an epidemic.3 More

recently, Britton et al. and Aguas et al., have explicitly

treated the effects of this distribution in the context of

COVID-19.2,4 In the latter case, the overriding concern

about the vulnerability of the older cross-section of the

population has driven these studies. However, even in

the age group of 11–65 years, there could be a large

number of people who have low susceptibility or

higher immunity.

In our studies, we include the distributions of

inherent susceptibility (rinh) and external infectivity

(iext) in a population. The distributions can vary from

population to population and from region to region.

The values of inherent susceptibility and external

infectivity together determine infection. The coupling

between the effects of the two distributions is included

by considering a coupled parameter which is given by

X ¼ rinh � iext ð2Þ

A susceptible person in contact with an infective will

get infected if X is greater than the Pandemic Infection
Parameter (PIP), X0. There are certain limiting con-

ditions, which the PIP must satisfy. A person, even if

highly susceptible, may not be prone to infection, if

he/she is isolated (home quarantine, for example) and

does not come in contact with a highly infective

individual. On the other hand, a person with lower

susceptibly may get infected easily if he frequents

regions surrounded by persons with high infectivity.

These limiting conditions rule out the possibility of X
being defined by an additive rule between rinh and iext.
Hence, we use a multiplicative definition, which

appears to satisfy the aforementioned limits. However,

defining X using a proper functional form is nontrivial

and can only be obtained empirically by comparing it

with the real-world scenario.

The PIP gives a microscopic view into the basic

origin of the reproduction number (R0) advocated by

the SIR model. R0 is the number of susceptible persons

one infected person can infect. It is variable and

changes during the course of the pandemic. Compar-

ing this with our model, the value of R0 is dependent

on the PIP since the latter determines the progress of

the disease. This is a highly nonlinear process, which

is partly responsible for the persistence of the pan-

demic over a long period of time.

The main result of the work is that the presence of

the distributions can significantly alter the time-de-

pendent progression of infection from the predictions

of the simple or naive SIR model. In particular, the

presence of distributions could reduce the infection

peak height. Secondly, the distributions combined

with the migration induced ‘injection’ of the disease

can give rise to multiple peaks, as has been indeed

observed. This in itself is not surprising, except the

present generalized formalism might enable a more

quantitative description than usually employed.

The rest of the paper is organized as follows. In

Sect. 2, we lay out the theoretical formulation used in

this study. The first part of this section deals with the

spatio-temporal dependence of the different compart-

ments of the population and the associated differential

equations that define their dynamics. This is followed

by a thorough description of the Kinetic Monte Carlo

Cellular Automata (KMC-CA) simulation scheme,

which is used to study the infection dynamics. In Sect.

3, we present the results obtained from the simulations

and discuss the consequent implications and infer-

ences. The disease starts spreading throughout the

community via a percolation network, starting from an

infection nucleus. We obtain the multiple peak nature

like a real-world pandemic (for example, Spanish flu,

COVID-19, etc.). Finally, we conclude the work in

Sect. 4.

2. Stochastic formulation: distribution based
model

The central quantities in our discussion are space and

time-dependent densities of susceptible (S), infected

(I), asymptomatic (A), cured (C) and dead (D) persons.

In Figure 1, we schematically represent the complex

network that is involved in such a disease transmis-

sion. The model is inspired by the celebrated Sus-

ceptible-Infected-Removed (SIR) model proposed

long ago by Kermack and McKendrick.11,13–15 It is

noteworthy that many recent studies have employed

this model and its variants in the context of the

COVID-19 pandemic.16–20

According to the present model, a susceptible (S)

individual (with an inherent susceptibility index rinh)
can either become infected (I) with symptoms or

become asymptomatic (A), by getting exposed to an

infected or asymptomatic individual (with an external

infectivity index, iext or iAext respectively). When the

product of the susceptibility and infectivity indices
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(X ¼ rinh � iext) reaches a threshold value (X0), the

susceptible individual gets infected.

The I compartment of the population might be cured

(C) or dead (D) with time. There is also a probability

that a fraction of the A category develops symptoms

and becomes I. The rest of A becomes cured without

any fatality. To incorporate the effect of spatial

migration of infection, we consider a random seeding

event that increases the infected population by dI.
The densities of these aforementioned variables all

depend on space and time. We note that due to the

inclusion of migration, the density of the system is not

locally conserved, but globally conserved. Hence,

there are five density terms with the following global

conservation constraint

qSðr; tÞ þ qAðr; tÞ þ qIðr; tÞ þ qCðr; tÞ þ qDðr; tÞ
¼ qðr; tÞ ð3Þ

It is important to note that the total density qðr; tÞ itself

is a local variable and introduces a degree of hetero-

geneity in the overall population. This could vary from

region to region, like from a city dwelling to a village

or rural surrounding. Even within a city, there could be

vastly different densities, like those in slums and

affluent localities. The density can vary more than one

order of magnitude.

A surprising initial observation is that susceptibility

is different not just between different age groups but

also between different localities. In India, for example,

the susceptibility appears to be smaller in slums.21,22 If

indeed true, one could explain invoking immunity, but

the origin is not clear.

It is clear from the above discussion that any pre-

dictive theory needs to include a large number of

parameters and that neither the time series expansion

method nor the simple SIR model can possibly capture

the complex dynamics. Given that we need at least a

semi-quantitative understanding it is perhaps prudent

to attempt a theory of intermediate complexity. Of

particular importance are the following. (i) A distri-

bution of inherent susceptibility in population, (ii) a

distribution of external infectivity which is dependent

on seasonal changes and time of exposure, (iii) local

population density, and (iv) long-range disease trans-

fer by travel or migration. Inclusion of these factors in

a kinetic Monte Carlo Cellular Autamata simulation

algorithm indeed yields the multi-peak scenario of a

pandemic as shown in Figure 2. The details of the

simulation technique and the results are discussed in

the subsequent sections.

As discussed before, we introduce two parameters,

namely, the inherent susceptibility index (rinh) and the

external infectivity index (iext), respectively. These two

Figure 1. A schematic representation of our stochastic pandemic model where the susceptible (S) population, after being
exposed to the virus, can either become Infected (I, with symptom) or Asymptomatic (A). For an uninfected individual, if
the product (X) of the inherent susceptibility and external infectivity reaches a certain threshold value (X0) (Pandemic
Infection Parameter, PIP) then the person becomes infected. The I compartment can either become Cured (C) or Dead (D).
On the other hand, a fraction of the A compartment might develop symptom and become (I). The other fraction gets
naturally cured. The cured population, after some time, may develop susceptibility towards the disease (reinfection). In
addition to these, we consider a random seeding event to incorporate the effect of spatial migration of infection into the
simulated locality (r) from outside (r0). This makes the total density globally conserved, but not locally conserved. The rate
constants associated with these processes are written on/below the corresponding arrows.
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parameters together control the probability of a sus-

ceptible individual to get infected from an infected

individual. For example, infected (or asymptomatic)

individuals who wear mask, practice good respiratory

hygiene, and avoid crowds possess a low value of iext.
On the other hand, susceptible individuals with high

intrinsic immunity possess a low rinh. Hence, the

quantity (X ¼ rinh � iext) must be above a certain

threshold, X0, for the infection to spread. These two

values are randomly sampled from a pre-existing dis-

tribution.v is another parameter that we introduce to

scale the strength of infection in the case of A category

people.

2.1 Equations of motion for densities

We now present the equations for the time dependence

of the dynamical variables as mentioned above [in

Eq. (3)]. The density terms should ideally also be

dependent on rinh and iext, and needs to be written as

qS r; tjrinh; iextð Þ. However, for simplicity we drop the

indices corresponding to susceptibility and infectivity.

Therefore, we can write the following coupled non-

local differential equations where ka!b denotes the

rate-constant of transition from compartment a to

compartment b.

o

ot
qSðr; tÞ ¼ �qSðr; tÞ

Z
dr0

X
rinh; iext

kS!I r� r0; tjrinh; iextð ÞqIðr� r0; tÞ

þ
Z

dr0
X
rinh;iAext

kS!A r� r0; tjrinh; iAext
� �

qAðr� r0; tÞ

2
66664

3
77775 ð4Þ

Figure 2. Time evolution of the fraction of population infected, showing multiple peaks in six separate simulations with
different initial population configurations. The pattern of the peaks are different in each simulation. This mimics the
different natures of the evolution of disease in different localities or countries. There are three reasons primarily responsible
for this multi-peak scenario: (a) distribution of inherent susceptibility, (b) distribution of external infectivity and (c) long-
range migration of infected individuals.
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o

ot
qCðr; tÞ ¼ kA!CqA r; tð Þ

þ qIðr; tÞ
Z

dr0kI!C r� r0ð Þ ð7Þ

o

ot
qDðr; tÞ ¼ qIðr; tÞ

Z
dr0kI!D r� r0ð Þ ð8Þ

where kS!I r� r0; tjrinh; iextð Þ ¼ kS!I r� r0; tð ÞH
r� r0j j � r0ð ÞH X�X0ð ÞVd and X ¼ rinh � iext. Vd

represents the volume element in d dimensions. The

same is true for kS!A r� r0; tjrinh; iAext
� �

. H denotes

Heaviside functions. Hence, for the rate constants to

possess non-zero values, the distance between S and I
(or A) must be less than or equal to a cut-off distance

r0 which includes the Moore neighbourhood criteria in

the cellular automata simulation, discussed later. In

addition, X must be greater than a critical value X0.

T r0 ! rð Þ is a transfer term that allows infections from

r0 to come to r, and iAext ¼ iextv. We note that, some of

the rate constants that are disease specific, for exam-

ple, the speed of recovery and mortality rate, are

assumed to be independent of time but dependent on

space as the healthcare facilities are spatially hetero-

geneous. On the other hand, the rate constants asso-

ciated with transition from A to some other

compartment, are naturally independent of both time

and space.

The non-local dynamical processes are involved and

also difficult to model and solve. Hence, we neglect

the non-local nature of the rate-constants and drop the

variable dependence notations from the density terms.

That is, we integrate out r0 and drop the time-depen-

dence of the rate constants. Furthermore, we keep the

rate constants associated with the asymptomatic indi-

viduals fixed over time and space as we assume the

recovery or the incubation period to be the same for all

the asymptomatics. Therefore, Eqs. (4)–(8) can be

rewritten as

oqS
ot

¼ �qSqI
X

rinh; iext

kS!I r; tjrinh; iextð Þ

þ qSqA
X

rinh; iAext

kS!A r; tjrinh; iAext
� �

ð9Þ

oqA
ot

¼ qS qA
X

rinh; iAext

kS!A r; tjrinh; iAext
� �

� qA kA!I þ kA!C½ � ð10Þ

oqI
ot

¼ qSqI
X

rinh; iext

kS!I r; tjrinh; iextð Þ

� qI kI!C rð Þ þ kI!D rð Þ½ �

þ kA!IqA þ
Z

dr0T r0 ! rð ÞqIðr0; tÞ

ð11Þ

oqC
ot

¼ kA!CqA þ kI!C rð ÞqI ð12Þ

oqD
ot

¼ kI!D rð ÞqI ð13Þ

These equations possess a striking resemblance

with the chemical reaction kinetics network theory

or coupled parallel chemical reactions. However,

the variables depend both on space and time, like in

a hydrodynamic theory, constrained by the con-

servation of the total number. Note that the equa-

tions are intrinsically non-linear. The probability of

infection depends on X of an individual. However,

X has a non-local character because it depends on

the condition of the neighbors, through the infec-

tivity parameter. Because of the presence of non-

locality in these equations, they are best solved by

o

ot
qA r; tð Þ ¼ qSðr; tÞ

Z
dr0

X
rinh;iAext

kS!A r� r0; tjrinh; iAext
� �

qA r� r0; tð Þ

� qA r; tð Þ kA!I þ kA!C½ �
ð5Þ

o

ot
qIðr; tÞ ¼ qSðr; tÞ

Z
dr0

X
rinh;iext

kS!I r� r0; tjrinh; iextð Þ qI r� r0; tð Þ

� qIðr; tÞ
Z

dr0 kI!C r� r0ð Þ þ kI!D r� r0ð Þ½ �

þ kA!IqA r; tð Þ þ
Z

dr0T r0 ! rð ÞqIðr0; tÞ

ð6Þ
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using the cellular automata technique. The nota-

tions used in Eqs. (9)–(13) are summarized in

Table 1.

In the next section we shall discuss the method of

solving these equations numerically with the help of

cellular automata simulations.

2.2 Solution by kinetic Monte Carlo cellular
automata (KMC-CA) simulations

The spatio-temporally resolved differential equations,

that define the dynamics of the multiple compartments

of population during a pandemic, are nontrivial and

cannot be readily solved analytically. However, a

numerical approach can be perceived to understand

this disease dynamics in terms of Kinetic Monte Carlo

Cellular Automata (KMC-CA) simulations.

Cellular automata is a popular technique to study

physical processes like chemical reactions, wildfire

propagation, traffic dynamics, phase transitions, pat-

tern formation, etc.23–30 This technique has also been

used to study the progress of epidemics.31–37 We

perform KMC-CA simulations of the present model

with several parameters and factors that mimic the

spread of an infectious disease into a population of

susceptible individuals. As mentioned in the previous

section, the model posits that during an ongoing pan-

demic, at any point of time, society consists of 5 major

types of individuals, namely, susceptibles (S),

asymptomatic infectives (A), symptomatic infectives

(I), cured (C) and dead (D). The salient features of the

present KMC-CA model are discussed below.

1. We start with a 2-dimensional area denoted by a

matrix of Nx � Ny cells. A given fraction of the area

is covered by S and I individuals. The positions of

these individuals are assigned randomly. There are

no A, C or D in this initial frame. This gives the

initial configuration of the population.

2. A person moves by randomly choosing the direction

among the 8 available grids adjacent to the present

cell. These movements may be biased or restricted

for reasons described below (points 7 and 9). The

time taken by a person to move to the next

neighbouring cell serves as the unit of time in our

simulation.

It is to be noted that we choose the Moore neigh-

bourhood (8 neighbours) in our simulation protocol

over the von Neumann neighbourhood.18 This takes

care of the isotropic nature of the disease spread

dynamics.

3. Each individual is assigned with an inherent

susceptibility index (rinh) and an external infectivity

index (iext), both of which are sampled from given

distributions. We use three distributions for the

susceptibility, namely, Gaussian, bimodal Gaussian

and uniform. Infectivity is sampled from a Gaussian

distribution. The value of these indices lie between

0 and 1. We assume that the values of rinh and iext
remain constant throughout the lifetime of the

individual. The value of rinh quantifies the immu-

nity of an individual. iext, on the other hand,

determines how prone an infected person is to

spread the infection. It is assumed that an S can get

infected if the following two criteria are fulfilled:

4. The S should be in either of the 8 cells surrounding

an I (Moore neighbourhood)18,35,38

5. The value of X ¼ rinh � iext for this pair of S and I
should be greater than a given critical value, the

Pandemic Infection Parameter (PIP) (X0). X is

proportional to the rate constant kS!I in Eqs. (4) and

(6). It is a coupled parameter that accounts of the

extent to which the concerned persons are taking

care of personal and social protection, like wearing

a mask, maintaining physical distance and so on.

The viral load surrounding a susceptible person

plays an important role in spread of the disease. If an

Table 1. Descriptions of the notations used in Eqs. (9)–(13).

Notation Definition

qx Density/concentration of species ‘x’
kx!y Rate constant associated with the transition from

compartment ‘x’ to compartment ‘y’
rinh Inherent susceptibility index
iext External infectivity index for I
iAext External infectivity index for A
T r ! r0ð Þ Rate constant of transfer of infections from a region at r0 to

another region at r
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S is surrounded by more than 1 I in its immediate

neighbourhood, we consider the total infectivity index

of all these infected to be multiplied to the suscepti-

bility of the central S. With the passage of time as the

number of I increases, the probability of a higher viral

load in the vicinity of as S increases.

This protocol for the spread of infection is also true

for the interaction between S and A. Details about A is

given in point 5 below (Table 2).

4. From the initial step, each individual is assigned an

age according to a given distribution. In our present

simulations, we use the following age distribution

(https://www.indexmundi.com/india/demographics_

profile.html).

Note that, any desired age distribution can be used

in the simulation, based on the demography of the

geographical area under consideration. Two ages,

Age-1 and Age-2 are parameterized in the simulations.

An individual is categorized as resilient (Res) if

Age - 1\age\Age - 2. Otherwise, the individual is

vulnerable (Vul). Immunity of a person from corona

virus shows dependence on age.39 If infected, the

vulnerables have a lesser probability of recovery as

compared to the resilients. In context of the SARS-

CoV-2 infection it is seen that the elderly and the

infants are more vulnerable.39 Age-1 and Age-2 are

chosen accordingly (for example, 10 and 65

respectively).

5. A major problem in controlling the COVID-19

pandemic is the emergence of asymptomatic carri-

ers who act as silent spreaders of the virus.40,41

Reports show that about 40% of infected individuals

are asymptomatic.42,43 In our KMC-CA simulation,

we provide probability (Pasym), which decides

whether an infected individual will be asymp-

tomatic (A) or not. The probability is determined

by the percentage of the infected population that

develops no symptoms.44 Initially, a random asymp-

tomatic index (iAext) is assigned to each individual

which is activated on getting infected. This variable

is compared with Pasym to determine the fate (A or I)
of the infected person. The strength of infectivity of

an A is different from that of I. For SARS-CoV-2 A
is found to be less infective than I.44,45 However,

some studies also suggest that these two categories

of infected people may show similar disease trans-

missibility.46 This can be modulated by a factor v
according to following equation.

iAext ¼ iextv ð14Þ

where the value of v generally lies between 0 and 1.
A certain fraction of asymptomatics (A) may

develop symptoms, after a certain time of getting

infected. The rate of this conversion is given by kA!I

in Eqs. (5) and (6). In the KMC-CA simulation, it is

modulated by a probability (PA!I).

6. In each step of the simulation, an I can either remain

infected of recover or die. This is determined by the

following probabilities:

(a) PI : This determines whether the concerned

I remains infected or not. This is proportional to

the incubation period of the virus and the time

period for which a person remains infected. We

find that for a disease like SARS-CoV-2 to

persist in a society this probability needs to be

very high (PI[ 0.9).

(b) PRes
I!C: This gives the probability of recovery of a

resilient I.

(c) PVul
I!C: This gives the probability of recovery of a

vulnerable I.

We consider PRes
I!C [PVul

I!C.1 Asymptomatic infec-

tives (A) always show complete recovery, i.e. PA!C ¼
1 irrespective of whether the person is resilient or

vulnerable.

Once cured, the person generally becomes immune

to further infection as the disease specific antibodies

are generated. The period of immunity may extend to

as long as 6 months or more.47 After that, reinfection

may occur. Hence a probability is introduced (PC!S)

which determines the conversion of C to S so that the

person again becomes susceptible to infection.

7. An important manoeuvre employed by most gov-

ernments to control the outbreak of COVID-19 is a

lockdown of the citizens. While the infected people

are either in home quarantine or in hospitals, others

are advised to stay indoors as a lockdown measure.

To account for this scenario in our KMC-CA

simulation, we introduce two probabilities, PQ and

PLD, which restrict the movements of I and S,

respectively. It is important to note that since the

Table 2. Age distribution in India in 2019

Age window (years) Percentage of population

0-14 26.98
15-24 17.79
25-54 41.24
55-64 7.60
65 ? 6.39
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asymptomatics (A) remain undetected, their move-

ments are like those of S. This adds to the rate of

disease spread in a population. It should be noted

that cured individuals (C) need not follow these

rules since they are immune to further infection, and

also cannot spread the disease.

However, several reports show that some fraction of

people fail to abide by the lockdown/quarantine

norms. As a psychological issue, people are often

found to relax these norms, particularly after a certain

period from the commencement of the lockdown.

Also, the incipient problems like economic downfall

(among others) as a consequent of national or regional

lockdowns, the Governments are forced to relax the

rules. For example, India has followed step-wise

‘‘unlock’’ procedures to allow normal movement of its

citizens. Hence, while quarantine of I remains strict,

lockdown measures are lifted.

We use a switch parameter that allows us to either

employ or neglect the above psychological factor in a

simulation run. If neglected, PLDðtÞ ¼ PLDð0Þ
throughout the simulation.

8. A major contributor to spread of COVID-19 is the

migration of the disease, carried by people travel-

ling from one place to the other inside a country or

even abroad. This is advocated in our simulation by

randomly introducing infected individuals with on

the area of our simulated society. Note that while

the total number of people (including the deceased)

does not remain conserved in a locality, a global

conservation of population is inherent. However, the

latter scenario is out of the scope of our simulation.

It should be noted that the present KMC-CA

simulation mimics only locality during a pandemic

and does not include the global (worldwide or

country-wide) outbreak scenario. The inherent

heterogeneity in the nature of disease spread

introduced by several geographic, atmospheric,

demographic, political and other factors make it

almost impossible to simulate a global outbreak.

9. Local gatherings in markets, clubs, gymnasiums, etc.

can accelerate the process of infection significantly.

We introduce gathering spots at random locations in

our simulated society. The number of such spots is

parameterized. We define two age limits. Only the

individuals within these limits can participate in the

gatherings. This approximation is validated by the

fact that infants or very old people do not generally

go to markets, gymnasiums, clubs, etc. Even, within

these age limits, a probability defines whether the

person will go to a gathering or not.

To make the scenario simple, we consider that a

person whose movement is biased, can go to the

nearest gathering point only. We note that a person

moving towards a gathering spot executes a biased

random walk. Once within a defined spatial limit of a

gathering point, the individual spends some time in

that region, after which the bias is lifted from his/her

movement, so that free movement is resumed.

This is a feature included in our simulation, but not

been used in this work. Hence, in the present work, the

number of gathering points have been considered as 0.

In Table 3, we summarize the notations introduced

in this section.

3. Results and discussion

Let us emphasize at the very outset that the progres-

sion of an epidemic has been found to be strongly

dependent on the characteristics of the distribution,

and also on our choice of the pandemic infection

parameter (PIP). The main observation is that the

number of infection decreases from the prediction of

the naive SIR model because of the presence of the

distributions. We next present the results of our

simulations.

3.1 Disease percolation network

As already mentioned, direct solution of Eqs. (4)–(8)

is extremely nontrivial. Hence we use Kinetic Monte

Carlo Cellular Automata (KMC-CA) technique to

simulate the system that can be exactly described by

these equations. The infection starts from a single

person, often termed as ‘patient zero’ and spreads

throughout the entire community very fast. For an

infectious disease like corona virus, the mode of

transport is person-to-person contact, via droplet

exchange. This process is aggravated if the infected

person is not detected at an early stage and quaran-

tined. In such a scenario, the infectives can move

around and spread the disease. This is also true for

asymptomatics.

From KMC-CA simulations, we can monitor the

movement of these infected people. When the quar-

antine probability (PQ) is 0 or low, or the infectives in

question are asymptomatic (thus moving like suscep-

tibles), they can fan out in all directions, carrying the

disease. The trajectories of three such infectives are

shown in Figure 3. They originate from approximately

the same point (shown by a red circle) and move out

isotropically into the population of susceptibles.
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Implementation of strict quarantine measures can stop

these movements. However, asymptomatic people can

still spread the disease in the susceptible population.

Such movement results in a percolation network in

the population, as depicted in Figure 4. In this figure,

the colours green and red represent susceptibles and

infectives respectively. This clearly shows the infec-

tion map, and how the situation can give rise to a

pandemic very quickly. It is interesting to note that the

propagating network exhibits a fractal character.

3.2 Effect of susceptibility distributions

The immunity of different population towards a dis-

ease is heterogeneous in a given population. The dis-

tribution of susceptibility represents this

heterogeneity. Clearly, without considering this dis-

tribution, it is impossible for any model to predict the

proper outcome of a pandemic.

However, quantification of the susceptibility of

individuals in a population is a daunting task. There is

no well-established scale of susceptibility that can be

used to generate such distributions. Hence, we use

certain model distributions in our simulation to inves-

tigate their effects on the time evolution of a pandemic.

It is to be noted that we do not address any real world

population quantitatively. Our work is aimed at

developing a model, which is a significant development

over the classical SIR scheme. The distributions used

in these work are: (i) Gaussian (i) Uniform and (iii)

Bimodal Gaussian. These are shown in Figure 5a.

Hickson et al., have used similar distributions.3

Table 3. Meaning of the notations introduced in the KMC-CA simulation

Notation Definition

Nx, Ny Number of cells in the x and y coordinate directions to define
the area of the simulated space

S, I, A, C, D Susceptible, Infective, Asymptomatic, Cured, Deceased
rinh Inherent susceptibility index
iext External infectivity index for I
iAext External infectivity index for A
X Product of rinh and iext
X0 Pandemic Infection Parameter (PIP)
Age-1, Age-2 Upper and lower limits (respectively) for age of a person to

determine whether resilient or vulnerable
Res, Vul Resilient and Vulnerable respectively
Pasym Probability of being asymptomatic
v Strength of infectivity of A as compare to that of I
PA!I Probability that an A can get converted to I
PI Probability of retaining infectivity in a simulation step

PRes
I!C;P

Vul
I!C

Probability of getting cured for resilient and vulnerable people
respectively

PC!S Probability of a cured person to become susceptible again
PLD Probability of maintaining lockdown

Figure 3. Here we show the trajectory of three infected
individuals originating at the same point (denoted by the red
circle). These trajectories all begin from the same single
nucleus. Although a given trajectory appears anisotropic,
there is no preferred direction and the average infection
spreads isotropically forming a percolation network. Such
diffusion of infection into the population can be checked by
quarantine measures, however, the infection may still
infiltrate the society via asymptomatic individuals, who
cannot be detected.
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A Gaussian nature is manifested in most natural

phenomena. Hence, this might also be true for the

distribution of susceptibility in a given population. A

bimodal Gaussian distribution can result from widely

different living standards and the resultant immunity

variations in a region; for example, the difference

between slum dwellers and city dwellers in an urban

milieu.

We run multiple KMC-CA simulations using these

distributions of susceptibility. The resultant time

evolution of the fraction of infectives (I) is shown in

Figure 5b. We have shown four representative trajec-

tories. For these simulations, we have switched of the

random seeding of infection (that represents long

range migration) to avoid complications. This is dealt

with in Figure 7.

In Figure 5b, the black curve represents the naive

SIR model, without the presence of any distribution,

such that a susceptible person becomes infected as

soon as an infective is present in the neighbouring cell.

This is advocated by setting the Pandemic Infection

Parameter (PIP) X0 ¼ 0. In the absence of the effect of

distributions and long-range migration, this represents

the classical SIR model. Comparison of the infection

curves in Figure 5b makes it clear that distributions of

susceptibility is pivotal to the proper estimation of

infection prevalence in a community. In absence of

this consideration, the model clearly predicts a sig-

nificantly higher number of infections.

For the three simulations with the susceptibility

distributions, the value of PIP was fixed at X0 ¼ 0:25.

While Gaussian distribution gives a lower fraction of

infection as compared to the ‘no distribution’ scenario,

a bimodal Gaussian results in the lowest peak height.

Uniform distribution gives intermediate result.

In Figure 6 we investigate the sensitivity of the

infection peak height (red, left ordinate) and position

(blue, right ordinate) of the fraction of infectives to the

value of the PIP (X0). Each simulation is performed

with the Gaussian distribution of susceptibility. We

find that both peak height and position show minimal

change between X0 ¼ 0 and X0 ¼ 0:25, after which

the variation becomes highly nonlinear. For X0 [ 0:5,

the values of height and position become negligible,

denoting the absence of disease spread in the

population.

Figure 4. Our cellular automata solution of the spatio-temporal propagation of an infectious disease. These are snapshots
from KMC-CA simulation explained in the previous section. The green and red coloured dots represent Susceptible (S) and
Infected (I) individuals in the population. An infectious disease can diffuse into the susceptible population very fast,
depending on the inherent susceptibility and external infectivity of the people. For clarity of representation of the
percolation of disease, the recovered individuals are not shown here.
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The dependence of the infection propagation the PIP

has severe consequences. According to our model, infec-

tion can only spread if neighbouring susceptible and

infective persons have value of X ¼ rinh � iext [X0.

Hence both rinh and iext have to be sufficiently high

for the susceptible person to get infected. Consequently,

if a highly susceptible individual comes in contact

with a person having low susceptibility index (and vice

Figure 5. (a) Distribution of susceptibility in a population. In this work we have considered three types of distributions,
namely, Gaussian (red), uniform (green) and bimodal Gaussian (blue). The effect of inclusion of the susceptibility
distribution on the temporal evolution of infection curve is shown in (b). The ordinate represents the fraction of total
population infected (NI(t) and N(t) are the number of infected people and total number of people at any given time t). The
unit of time is given by the time taken by a person to move from the present cell to a neighbouring cell. Naive SIR denotes
the classical SIR model, where a susceptible person gets infected as soon as he/she comes in contact with an infected
individual. This is obtained by setting the Pandemic Infection Parameter (PIP) X0 ¼ 0. It shows that the SIR model
overestimates the amount of infection in a given population, which also results in erroneous evaluation of herd immunity
threshold.

Figure 6. (a) The change in the infection peak height (red, left ordinate) and position (blue, right ordinate) as a function of
the Pandemic Infection Parameter (X0). The change is highly nonlinear. There is minimal change between X0 ¼ 0 and
X0 ¼ 0:25. Beyond X0 ¼ 0:5, both peak height and position become negligible, which denotes that susceptibles cannot get
infected. (b) Infection peak height is plotted against the most probable value of external infectivity (imax

ext ) from its
distribution for X0 ¼ 0:25. For this calculation, the peak of the Gaussian infectivity distribution is shifted towards higher
values of iext in successive simulations. Note the sharp rise in the infection peak. This resembles a surge we see with
increase in the average infectivity of the population.
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versa), the infection will not propagate. This is a prac-

tical situation, since wearing masks, washing hands,

using sanitizers, staying indoors and other safety pro-

tocols can significantly reduce the number of infections

in a population.

With the passage of time, becaue of the persistence

of infection, a majority of the population gets infected.

However, it is often seen in case of pandemics that the

severity of the disease is reduced resulting in a low

mortality rate. In such a scenario, a susceptible finds a

greater population of infectives in the surroundings.

Hence, in accordance with our theory, the distribution

of external infectivity is shifted towards higher values.

In Figure 6b we plot the infection peak height against

the most probable value of external infectivity (imax
ext )

for X0 ¼ 0:25. We see that the graph shows a critical

phenomena-like divergent haviour at imax
ext ¼ 1:4. This

indicates that the initial stage of a pandemic is char-

acterized by a sharp increase in the infection peak.

However, with the passage of time, the peak value

saturates and this results in a persisted pandemic.

3.3 Origin of multiple infection peaks

In general, solution of the classical SIR model shows a

single maximum in the temporal evolution of the

number of infectives. However, in a real world pan-

demic, the nature of the infection is not so simple. For

example, Spanish flu in 1918 was characterized by 3

peaks of mortality and infection,48 whereby, the 1st

peak had the smallest height. Similar multi-peak nat-

ures is also being observed in the currently ravaging

corona virus pandemic.7 For example USA is already

in its third peak, which is much higher than the pre-

vious two peaks; countries like Germany, Spain,

France, England, etc. are suffering from a second

infection wave, characterized by a rising second peak

(https://www.worldometers.info/coronavirus/). How-

ever, there are hardly any mathematical model avail-

able that can reproduce such behaviour, let alone

predict it.

The multi-peak behaviour of a pandemic is not seen

everywhere and there are certain factors that determine

it. In our KMC-CA simulations, we implement the

following factors that lead to the multi-wave nature of

the infection curve (Figure 2).

Population density in a country is spatially hetero-

geneous. In our earlier work, we have shown that with

the increase in population density, the rate of infection

increases.16 Hence, in a region with high population

density, the peak of infection is reached earlier. This,

subsequently results in decay of the infection curve.

This decay process might be further fuelled by

national lockdown and increase in public

consciousness.

However, the restrictions need to be lifted after a

certain period of time, whereby people can start trav-

elling or migrating from one region to another. If,

these migrants contain infected (asymptomatic or

undetected) individuals, they can act as the nucleus in

the new population of susceptibles, thus triggering a

second pandemic wave. This is particularly true if the

overall population density of the country is low. In

case of higher density, the percolation of infection is

facilitated by an easily available contact network of

susceptible individuals. This could be a possible rea-

son for the majorly single peak characteristics of the

SARS-CoV-2 pandemic in India, in contrast to major

European countries.

Another possibility is the change in seasons in the

course of months through which the pandemic exists.

Temperature and humidity may significantly alter the

nature of the virus, thereby manipulating the infec-

tivity indices of the infectives and asymptomatics.

Consequently, the nature of the infection curve will

also change.

As mentioned in the earlier section, we implement

random seeding of infection in our simulated com-

munity to mimic the arrival of migrants. This factor is

given by the transfer matric T r0 ! rð Þ in Eq. (11). We

set up the initial configuration of our simulation for a

300 � 300 matrix with 1% covered by susceptibles

and 0.005% covered by infectives. The movement of

infected individuals are restrained by a quarantine

probability (PQ) of 0.9. For the sake of simplicity, we

have not restrained the movements of susceptibles and

asymptomatics (PLD = 0). A seeding probability of

1% id used to simulate the migrant behaviour.

Recovered people are given a 0.1% probability of

getting reinfected by becoming susceptible. Due to the

inherent stochastic nature of the simulation (which is

true of a real world pandemic), each simulation run

results in a different infection pattern, as shown in

Figure 2. However, all the simulations give multiple

waves in the infection curve. It is clear, that the 1st

peak does not always represent the highest wave.

Since, it is impossible to predict the nature of the

subsequent waves, the possibility remains, that a

pandemic may present itself in a more dangerous form

in the future. In fact, this seems to be true in the case

of COVID-19.

As shown in previous discussion, besides the long-

range migration, susceptibility distributions play cru-

cial role in the occurrence of the infection peaks. In

Figure 7, we show the infection curves in case of the
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different distributions introduced in Figure 5a. In the

absence of the effect of any susceptibility distribution

(X0 ¼ 0) (black), the multiple peaks are not clearly

manifested. Whereas, in the other three cases (red:

Gaussian, green: uniform, and blue: bimodal Gaus-

sian) clear signatures of multiple peaks are observed.

This shows that the occurrence of multiple infection

waves is a combined effect of long range migration

and susceptibility distribution.

It is interesting to note that the infection landscape

can be considerably rugged with sharp falls and rises.

These variations have their origin in the susceptibility

and infectivity distributions we discussed earlier. The

presence of these distributions clearly makes it a for-

midable problem even to venture a quantitative pre-

diction of the progression.

The combined effect of these two factors particu-

larly that of migration is further demonstrated in Fig-

ure 8. Here we plot the fraction of infectives against

time for the following three scenarios. Random

infection seeding is (a) enabled throughout the simu-

lation (full seeding). This represents the migration of

infected or asymptomatic persons in the present pop-

ulation from the beginning, till the complete termina-

tion of the pandemic, (b) enabled till half of the total

simulation time (half seeding), and (c) disabled, so that

long-range migration does not add to the infection of

the population.

This shows that random infection seeding (migra-

tion) results in a consistent rate of infection which

slows down the decay of the curve. The infection starts

to fall when migration stops (b). Even in absence of

Figure 7. Temporal evolution of the fraction of infectives in a population under the effect of long-range migration. The
unit of time is explained in the caption of Figure 5. The susceptibility heterogeneity in the population is sampled in the
population using three different distribution patterns: Gaussian (red), uniform (green) and bimodal Gaussian (blue) as
shown in Figure 5a. These are compared to the naive SIR model (black), which does not consider any distribution of
susceptibility and susceptible individuals can get infected instantly in contact with infectives. Clearly, multiple peaks are
observed when the distributions are considered, which shows that immunity heterogeneity plays an important role in the
occurrence of the multiple infection waves.
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the migration (c), a second peak, though very small,

can be observed. This results from susceptibility

inhomogeneity. For full seeding of disease migration

(a), several infection peaks are observed and very long

simulations need to be run to obtain a complete decay

in the number of infections.

The interaction between the seeding by migration

and the presence of distributions can give rise to novel

features like in Figure 8. In the presence of large

immunity in a population, the rise in infection initiated

and forced by migration can undergo a slow decay

without giving rise to a second peak. Thus the multiple

peaks are a consequence not only of continuous

seeding but also distributions. This could be the reason

of the multiple surges of COVID-19 that we see in the

European countries and also in the USA.

4. Conclusions

We have introduced a stochastic model to understand

the spatio-temporal evolution of a pandemic. We have

generalized the classical SIR model to include three

important new factors that strongly influence the pro-

gression of infectious diseases, yet have not been

adequately addressed previously. These are

(i) distribution of susceptibility, (ii) distribution of

infectivity, and (iii) infection seeding via long range

migration. We perform Kinetic Monte Carlo Cellular

Automata (KMC-CA) simulations to solve the highly

coupled and entangled master equations.49,50

The analysis presented here shows that the propa-

gation of an infectious disease resembles several

physical phenomena. The disease first undergoes nu-
cleation. Subsequently, the disease progresses or
grows isotropically into the whole population.

Depending on the conditions, the growth can take the

appearance of a percolation network.
Among many limitations of the naive SIR model,

the absence of any treatment of the pre-existing

heterogeneous distribution of population density and

its disease propensity to disease, long distance transfer

of infection by migration, distributions of suscepti-

bility and infectivity are serious limitation. However,

any attempt to extend SIR pose serious difficulties.

Presence of the distribution alone makes a straight-

forward solution of the master equation virtually

impossible. The effects of population density and

infection density should be treated as separate entities

that combine with susceptibility distribution to pro-

duce widely different patterns of infection in different

regions and countries. In order to incorporate the

distributions of age, activity, susceptibility, and

infectivity several granular models have appeared.

However, none of them could forecast regarding the

multiple infectivity peaks and its origin.

Our model is a significant improvement over the

classical SIR model.11 Inclusion of the distributions of

inherent susceptibility and external infectivity enables

us to model a more realistic form of a pandemic.

While the former defines the immunity of a susceptible

person, the latter depends on several factors, such as

hygiene of an infective, climate conditions, etc. A

combination (product) of these two factors (Eq. 2) is

used to determine the progression of the disease via

human-to-human contact. We have also considered the

movement/migration of disease vectors (infected,

mainly asymptomatic individuals) from one place to

another, via random seeding of an infective in our

simulated society. This serves as an important agent

that can trigger a pandemic in a non-affected region,

which ultimately gives rise to infection waves, sub-

sequent to the primary peak. We generalize the SIR

model to include the non-local effects. We use of

cellular automata to solve the nonlinear nonlocal

equations.

From our analysis we find that the origin of the
multiple infection peaks and the rugged infecton
landscape is a combined consequence of all the three

Figure 8. The effect of long-range migration on the time
evolution of infection in a population. Such migration is
enabled in our simulation via seeding of infected individ-
uals at random places and at random times. The three
graphs shown here represent the scenarios when infection
seeding is (a) enabled throughout the simulation (full
seeding), (b) enabled till half of the simulation time (half
seeding), and (c) disabled (no seeding). The unit of time is
explained in the caption of Figure 5.
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factors described above. Since the quantification of

susceptibility and thus generation of a distribution is

nontrivial, we use three model distributions in this

work, namely (i) Gaussian, (ii) uniform, and (iii)

bimodal Gaussian. We find that in absence of the

distribution, the naive SIR model overestimates the

extent infection in a society. This is true for all the

three distribution patterns. Not only does this trigger

erroneous mortality prediction, but also provides

incorrect exstimates of the herd immunity threshold.

One aspect has become clear over the last year—the

progress of COVID-19 continues to thrive on a large

number of factors that are hard to control. For exam-

ple, an individual with low susceptibility may escape

infection during the first wave, but fall victim during

the time restrictions are eased. While we worry about

reinfection, the former scenario could be of value in

understanding the progression, because people with

low susceptibility could become disease prone on long

exposures, for example in in closed environments like

offices and restaurants. While the structural features of

the corona virus and its mechanism of action is being

rigorously studied,51,52 there remains a lot of mysteries

to be solved regarding this disease.

The consideration of the critical infection parameter

that we use to determine the propagation of an infec-

tion can also be used to model other cellular automata

such as the propagation of a fire front.28,53,54 For

example, in the region of a wild fire incident, the

effective dryness of the combustible material has a

distribution determined by the dryness parameter

(similar to rinh) and the immediate fire front has a

distribution of hotness depending on the region, given

by the hotness parameter (similar to iext). The fire front

can only progress if rinh � iext attains a certain critical

value. Hence, the model introduced in this work is a

general cellular automata technique that can be

applied to simulate other similar propagation

phenomena.
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