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Abstract. A sacrificial template, Fe-MIL-88 is used to synthesize Ni–Fe layered double hydroxide (Ni–Fe

LDH). The metal-organic framework (Fe-MIL-88) is synthesized from the precursors, ferric nitrate and

terephthalic acid. Electrocatalytic oxidation of kojic acid (KA) is realized by Ni–Fe LDH film which is coated

on a glassy carbon electrode (GC). Under the optimized conditions, amperometry measurements at the Ni–Fe

LDH coated GC as a function of KA concentration demonstrates a sensitive determination of KA. The

calibration curve shows two linear ranges, 1–1500 lM and 1500–4500 lM for the KA determination.

Detection limit for the KA determination is estimated as 0.73 lM. The practical applicability of this method

is confirmed by measuring the KA concentration present in various real samples.
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1. Introduction

Designing specific layered double hydroxides (LDHs)

with tailor-made properties to suit the desired appli-

cations have drawn great attention due to their

potential applications in biotechnology, energy stor-

age, separation science, adsorbents, photochemistry,

electrochemistry, etc.1–10 Generally, LDHs are syn-

thetic lamellar solids with metal cations (trivalent and

divalent) and anions (n-valent). Their general formula

can be given as [M1-y
2? My

3? (OH)2]
y? [(An-)y/n, y

H2O].
11 LDHs can be synthesized by conventional

methods like ion-exchange, co-precipitation, and

hydrothermal methods.12,13 However, these methods

are not efficient in controlling the morphology, surface

area, and particle size of the LDHs.13 Due to this

limitation, the application of LDHs as catalysts,

adsorbents, and electrode modifiers are limited.14 To

overcome this drawback and to explore their electro-

catalytic properties, a new Ni–Fe LDH which is

synthesized using a template based on Fe(III) metal-

organic framework (MOF) is reported. This new Ni–

Fe LDH is envisaged to exhibit high surface area, high

adsorption capacity, and enhanced catalytic activity.

Kojic acid (KA), otherwise known as 5-hydroxy-2-

(hydroxymethyl)-4-pyrone (based on IUPAC recom-

mended nomenclature) is globally used as an antioxi-

dant, food additive, or preservative.15–17 KA is

generally extracted from the fungal genus Aspergil-

lus.15–17 However, its safety assessment is controver-

sial due to carcinogenicity, teratogenicity, and

embryotoxicity.18,19 Therefore, monitoring of KA

concentration levels is very important due to its human

health issues, food safety, and quality control

aspects.18,20 Real-time monitoring/determination of

KA can be achieved by several techniques like ion-

pair liquid chromatography, capillary electrophoresis,

fluorimetry and electrochemical methods.21–24 Among

these methods, the electrochemical method generally

receives great attention since it can offer a sensitive,
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selective, simple, and cost-effective route for many

target analyte determinations.25–27 Accordingly, in this

work, we report an electrochemical method for the

quantitative assay of KA using a MOF templated Ni–

Fe LDH for the first time.

2. Experimental

2.1 Materials and reagents

N,N-dimethylformamide (DMF), poly(vinyl alcohol),

nickel acetate tetrahydrate and benzene-1,4-dicar-

boxylic acid were supplied by S.D. Fine Chemicals,

India. Potassium ferrocyanide, potassium ferricyanide,

potassium chloride, K2HPO4, KH2PO4, and ferric

nitrate were procured from Qualigens, India. Kojic

acid (KA) was obtained from Himedia, India. Stock

solutions of K2HPO4 and KH2PO4 were used for the

preparation of 0.1 M pH 7.0 phosphate buffer. Triple

distilled water was used for electrochemical

experiments.

Fe-MIL-88 and Ni–Fe LDH were synthesized

hydrothermally as described before in our previous

publication.14 The synthesis of Fe-MIL-88 is carried

out using a mixture of benzene-1,4-dicarboxylic acid

and ferric nitrate in DMF-ethanol-water mixture. The

mixture was ultra-sonicated, stirred, refluxed at 80 �C
under the stirring condition for 12 h, and finally sub-

jected to centrifugation (8000 rpm). The obtained

precipitate (Fe-MIL-88) was washed multiple times

with a mixture of ethanol-water and then dried for

24 h at 60 �C. Synthesis of Ni–Fe LDH was accom-

plished by mixing the required amounts of Fe-MIL-88

(0.02 g) and nickel acetate tetrahydrate (0.2 M) in

DMF. This mixture was then subjected to ultra-soni-

cation and refluxed with stirring at 85 �C for 4 h.

Further, DMF and water were added to the mixture

and refluxed at 120 �C for an additional 12 h. Then the

mixture was cooled to room temperature and cen-

trifuged to get the Ni–Fe LDH. The formed Ni–Fe

LDH was filtered, washed with a large amount of

water, and dried for 5 h at 120 �C.14,28

2.2 Apparatus

X-ray diffraction (XRD) patterns (BRUKER D8 X-ray

diffractometer with Cu Ka line (0.159 nm), X-ray

photoelectron spectroscopy (XPS, AMICUS spec-

trometer, UK), scanning electron microscopy (SEM)

(SEM VEGA 3 TESCAN at 30 kV) and transmission

electron microscopy (TEM) (TECNAI 20 G2 FEI

microscope; 120 kV) analyses were carried out for the

characterization of the materials. Cyclic voltammetry,

amperometry, and chronoamperometry measurements

were accomplished with CHI-660C electrochemical

workstation (CH Instruments, USA). Glassy carbon

(GC) or modified GC, platinum wire and saturated

calomel electrode i.e. Hg/Hg2Cl2/KCl(sat.) were used

as working, counter, and reference electrodes,

respectively. GC electrode surface is modified either

with Fe-MIL-88 or Ni–Fe LDH. The colloid of the

respective materials (0.1 wt%) with poly(vinyl alco-

hol) (0.01 wt%) were prepared and typically 20 lL of

the colloid was drop coated and dried for 4 h to get the

modified GC electrodes. The modified electrodes were

represented as GC/Fe-MIL-88 or GC/Ni–Fe LDH. It

should be noted that the present work reports the

construction of Fe-MIL-88 or Ni–Fe LDH film pre-

pared on GC electrodes. However, carbon paste elec-

trodes (CPEs) using the Fe-MIL-88 or Ni–Fe LDH

materials were already constructed, characterized, and

demonstrated for the efficient water oxidation in

alkaline medium.14

3. Results and Discussion

3.1 Characterization of Ni–Fe LDH

Detailed characterization of Fe-MIL-88 and Ni–Fe

LDH were elaborately discussed based on the results

of TEM, XRD patterns, and XPS in our earlier study.14

The powder XRD data are provided in supplementary

information, Table S1 (Supplementary Information).14

The powder XRD patterns of Fe-MIL-88 show peaks

at the 2h values of 8.9�, 16.2�, and 17.3� which can be

attributed to (002), (103), and (200) planes of Fe-MIL-

88, respectively (Table S1, Supplementary Informa-

tion).14 Ni–Fe LDH shows additional peaks at the 2h
values 11.7�, 23.7�, 34.8�, 39.5�, 59.5�, and 61.0�
which are ascribed to various crystal planes of Ni–Fe

LDH, respectively (Table S1, Supplementary Infor-

mation).14 Spindle shaped morphology of Fe-MIL-88

and porous layered structure of Ni–Fe LDH are

revealed from the SEM and TEM analyzes (Figure S1,

Supplementary Information).14 The XPS of Fe 2p1/2
(726.1 eV) and Fe 2p3/2 (712.6 eV) in both Fe-MIL-88

and Ni–Fe LDH materials confirm the ?3 oxidation

state of Fe (Table S2, Supplementary Information,).14

Similarly, the XPS of Ni 2p3/2 (856.7 and 851.8 eV)

and Ni 2p1/2 (872.3 eV) in Ni–Fe LDH confirm the

presence of ?2 and ?3 oxidation states of Ni

(Table S2, Supplementary Information).14 The FT-IR

spectrum14 of Ni–Fe LDH displays peaks at 1107 and
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876 cm-1 which can be corroborated to the deforma-

tion of –OH. A peak around 876 cm-1 is also

observed14 owing to the out of plane deformation of

carbonate species present in the Ni–Fe LDH.14 Elec-

trochemical impedance analyzes of CPEs based on

these materials were already reported.14 In the present

study, electrochemical impedance analyzes are carried

out with the Fe-MIL-88 and Ni–Fe LDH film modified

electrodes to understand the electron transfer activities

within the film. Aqueous ferrocyanide/ferricyanide

redox couple (10.0 mM K3[Fe(CN)6] and

10.0 mM K2[Fe(CN)6]) is used as a probe and the

analyzes are carried out with 0.1 M KCl by applying

0.2 V at GC/Fe-MIL-88 and GC/Ni–Fe LDH elec-

trodes (Figure 1). The cyclic voltammetry (CV)

responses of the probe at GC/Fe-MIL-88 and GC/Ni–

Fe LDH are also recorded (inset (i) of Figure 1). Both

GC/Fe-MIL-88 and GC/Ni–Fe LDH electrodes show

redox peaks corresponding to [Fe(CN)6]
3-/4- redox

process. GC/Fe-MIL-88 shows a slightly low peak

current with a DEp value of 140 mV while the GC/Ni–

Fe LDH electrode shows a high peak current with a

DEp value of 180 mV. These results suggest that the

electrical conductivity inside the Ni–Fe LDH film is

greater than the Fe-MIL-88 film (based on high current

obtained at GC/Ni–Fe LDH electrode). Nyquist plots

demonstrate that two different physicochemical pro-

cesses take place at the electrode-solution interface

which may be referred as charge transfer phenomena

inside the sheets of Ni–Fe LDH or Fe-MIL-88 and a

heterogeneous electron transfer process between the

modified electrode and the electrolyte solution.29 A

suitable Randle’s equivalent circuit is identified (inset

(ii) of Figure 1) which relies on the experimentally

observed data. As per the Randle’s equivalent circuit,

it possesses three resistance components, the resis-

tance of electrolyte (R1), charge transfer resistance

(Rct), and resistive part of the mass transfer (Rp), mass

transfer resistance (Zd), the capacitance of the film

(Cdl) and two constant phase elements (Q1 and Q2).

The Ni–Fe LDH displays a semicircle with a lesser

diameter than the Fe-MIL-88 indicating lower Rct

value than that of the Fe-MIL-88. This low Rct leads to

a fast electron transfer process at GC/Ni–Fe LDH

electrode. Presence of Ni3? in the Ni–Fe LDH and/or

the broad interlayer space of Ni–Fe LDH may cause

increased conductivity within the film.14,30

3.2 Electrochemical determination of KA

Cyclic voltammograms are recorded in phosphate

buffer (0.1 M, pH 7.0) with and without KA (100 lM)

using GC, GC/Fe-MIL-88, and GC/Ni–Fe LDH elec-

trodes (Figure 2). No significant redox behavior is

noticed in the absence of KA at all the electrodes

(inset of Figure 2). However, in the presence of KA, a

well-defined voltammetric peak is observed due to the

efficient electro-oxidation of KA at all the three

electrodes (Figure 2a0–2c0). At bare GC and GC/Fe-

MIL-88 electrodes (Figure 2a0 and 2b0), KA is oxi-

dized at 0.79 V with a low current. At GC/Ni–Fe LDH
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Figure 1. Nyquist plots for the GC/Fe-MIL-88 (a) and
GC/Ni–Fe LDH (b). Inset (i) represents the cyclic voltam-
mograms of GC/Fe-MIL-88 (a) and GC/Ni–Fe LDH (b) in a
mixture of 10.0 mM K3[Fe(CN)6], 10.0 mM K2[Fe(CN)6],
and 0.1 M KCl. Inset (ii) shows the suitable Randle’s
equivalent circuit.

Figure 2. Cyclic voltammograms of bare GC (a and a0),
GC/Fe-MIL-88 (b and b0), and GC/Ni–Fe LDH (c and c0) in
0.1 M phosphate buffer (pH 7.0) in the presence (a0, b0, and
c0) and absence (a, b, and c) of 100 lM KA at 20 mV s-1

scan rate.
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electrode, KA is oxidized at 0.75 V with a high cur-

rent. Thus, GC/Ni–Fe LDH exhibits low oxidation

peak potential and high peak current for KA electro-

oxidation in comparison to bare GC and GC/Fe-MIL-

88 electrodes which indicate the efficient electrocat-

alytic activity of GC/Ni–Fe LDH. This electrocatalytic

activity may be due to the involvement of Ni3? present

in Ni–Fe LDH.

Efficient electrocatalytic oxidation of KA at the GC/

Ni–Fe LDH electrode may lead to a sensitive deter-

mination of KA which can be verified by amperometry

using the GC/Ni–Fe LDH electrode. The amperometry

responses arising from successive additions of KA are

recorded (Eapplied: 0.6 V) in 0.1 M pH 7.0 phosphate

buffer (Figure 3A). The calibration curve from the

amperometry responses is drawn for KA determination

which shows two linear responses (Figure 3B). The

first linear response is spread over the KA concentra-

tion range from 1.0 lM to 1.5 mM and the next linear

range is observed from 1.5 to 4.5 mM. The sensitivity

and detection limit for the KA determination are found

to be 0.032 lA lM-1 cm-2 and 0.73 lM, respec-

tively. On increasing the concentration above 1.5 mM

of KA, the rate of the electrocatalytic reaction may

become slow due to saturation of the active catalytic

sites31 which results in a decreased sensitivity of the

second linear region of the calibration plot. The sen-

sitivity of the present method is comparable to many

of the recently reported methods.15,17,32–37 Although

certain methods show slightly high sensitivity, they

exhibit a narrow linear calibration range.15,35 Thus, the

present method demonstrates higher sensitivity and

wider linear calibration range than the previous

methods for the determination of KA.15,35,37 There-

fore, the present method is comparable or superior

with previously reported methods for KA determina-

tion as shown in Table 1. 32–37

3.3 Chronoamperometry of KA oxidation

The oxidation of KA is further studied by chronoam-

perometry to understand the kinetics of the GC/Ni–Fe

LDH electrode process and shown in Figure 4. From

the slope of the plot shown in the inset of Figure 4, the

value of the catalytic rate constant (KC) is calculated to

be 1.96 9 105 M-1 s-1 using equation 1.17

Icat
IL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KCCbpt
p

ð1Þ

where Icat (catalytic current) is the anodic oxidation

currents measured in the presence of different con-

centrations of KA and IL (limiting current) is the

current obtained in the absence of KA. Cb is the bulk

concentration of KA and t is the time. The value of KC

for KA oxidation agrees practically with other repor-

ted values.17

Based on the above studies and in line with the

literature,38 the mechanism of electrocatalytic oxi-

dation of KA by the Ni–Fe LDH may be postulated

as displayed in equations 2–4.
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Figure 3. (A) Amperometric response of GC/Ni–Fe LDH with successive additions of KA (1, 5, 10, 20, 30, 50, 100, 200,
300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 and 4500 lM) into 0.1 M phosphate buffer. Expanded view from 1 to
30 lM additions of KA is shown in the inset. (B) Calibration curve showing the two linear ranges (1–1500 lM and
1500–4500 lM) for KA determination with error bars.
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Ni IIð Þ � Fe LDH�Ni IIIð Þ � Fe LDHþ e� ð2Þ

ð3Þ

ð4Þ

In the given mechanism, Ni(II)-Fe LDH is electro-

chemically oxidized to Ni(III)-Fe LDH and KA is

chemically oxidized to KA(ox) by the electrogenerated

Ni(III)-Fe LDH involving one electron and one proton.

The oxidized KA (KA(ox)) undergoes further

reaction to produce 6,60-bis(5-hydroxy-2-(hydrox-
ymethyl)-4H-pyran-4-one as the final product

(equation 4).39

3.4 Reproducibility, stability, and interference
studies

The reproducibility of the GC/Ni–Fe LDH electrode is

analyzed by determining 100 lM KA three times. The

relative standard deviation for the three determinations

is calculated as 5.6% which reveals an acceptable re-

producibility. The storage stability of GC/Ni–Fe LDH

is tested by keeping the electrode under the room

temperature condition for 7 days and comparing the

CV response of the first and seventh days for the

determination of 100 lM KA. On the seventh day,

GC/Ni–Fe LDH exhibits 95.0% of the initial signal

Table 1. An assessment of key analytical factors for the electrochemical KA determination.

Material and electrode Technique
Sensitivity
(lA lM-1) Linear range (lM)

Detection limit
(lM) References

Hollow CuO/Fe2O3-Chi/GC Amperometry 0.0302 0.2–674 0.08 32

CNT-SPCE DPV 0.0016 20–5000 16 15

Ionic liquid and V2O5/NPs/
GC

SWV 0.1022 0.08–500 0.02 17

MWCNT/ARS film-modified
GC

Amperometry 0.055 0.4–60 0.1 33

Graphene-Pt nanocomposite DPV 0.139 0.2–1000 0.2 34

Poly(glutamic acid)/GC CV – 8.0–660 0.8 35

EPPG/GC LSV 0.73 0.75–15 0.23 36

Reduced graphene sheet LSV 0.0429 10–140 – 37

GC/Ni–Fe LDH Amperometry 0.032 1–1500, 1500–4500 0.77 This work

Chi chitosan, GC glassy carbon electrode, MWCNT multi-walled carbon nanotubes, SPCE screen-printed carbon electrode,
NPs nanoparticles, ARS alizarin red S, EPPG edge plane pyrolytic graphite, DPV differential pulse voltammetry, SWV
square wave voltammetry, CV cyclic voltammetry, LSV linear sweep voltammetry.
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Figure 4. Chronoamperograms of GC/Ni–Fe LDH in
0.1 M phosphate buffer (pH 7.0) with varying concentra-
tions of KA (a–e; 0, 100.0, 200.0, 400.0 and 600.0 lM,
respectively). Inset shows the Icat/IL for 100 lM of KA.
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(first-day current response), which reveals reasonable

stability of the GC/ Ni–Fe LDH.

The selectivity of the GC/Ni–Fe LDH electrode

towards the determination of 100 lM KA is analyzed

in the presence of several possible interferents (Fig-

ure 5). The influence of possible coexisting common

salts (2.0 mM of each salt like KNO3, MgCl2, CaCl2,

NaHCO3, Ni(NO3)2 and HgCl2) and biomolecules

(1.0 mM of each compound like caffeine, glucose,

aspartic acid, alanine, and glutamic acid) in the

determination of KA is investigated (Figure 5).34

Many of the added interferents exhibit negligible

influence (less than ±5%) during the determination of

100 lM KA. Few interferents show a signal change

slightly higher than ± 5%, however, less than 10%

indicating the high selectivity of this method. Thus,

GC/Ni–Fe LDH can be used for the reliable quanti-

tative determination of KA.

3.5 Determination of KA in different tomato
sauces

The realistic use of the sensor is established by ana-

lyzing KA present in the commercially available

tomato sauces, A (Tombo), B (Kissan), and C (Maggi

pichkoo). The samples (sauce A, B, and C) were

diluted with water and analyzed using GC/Ni–Fe LDH

electrode in 0.1 M phosphate buffer. Tomato sauce

may contain Fe3?, ascorbic acid, oxalic acid, gal-

lotannic acid, etc. However, they are estimated to be

present in a very small amount. Therefore, these

interferents cannot affect the response due to KA. The

amperometry current response is measured for all

three sauces (alone and also spiked with standard KA).

The results are illustrated in Table 2. Reasonable

recovery justifies the use of the GC/Ni–Fe LDH

electrode for the estimation of KA in real samples. The

results are comparable with the previously reported

methods.21,40

4. Conclusions

Fe-MIL-88 is used as a template to synthesize Ni–Fe

LDH. Based on the efficient electrocatalytic oxidation

of KA by Ni–Fe LDH, the quantitative determination

of KA is realized. The performance characteristics of

the GC/Ni–Fe LDH electrode with those of the earlier

reports revealed that the proposed sensor exhibits low

overpotential for the oxidation of KA. The quantitative

determination of KA is not affected even in the pres-

ence of many possible interfering compounds. It could

be useful for the direct determination of KA in real

samples without any pretreatments.

Supplementary information (SI)

Tables S1–S2 and Figure S1 are available at www.ias.ac.in/

chemsci.
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