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Abstract. The bis- methyl imidazolium chloride-salophen Schiff base ligand as cationic Schiff base ligand

(L1) was synthesized by the reaction of methyl imidazoliumsalicylaldehyde chloride (S1) and phenylendi-

amine. The phenylendiamine was also reacted by monosodium 5-sulfonatosalycilaldehyde (S2) to give the

bis-sodium sulfonate-salophen Schiff base ligand (L2) as the anionic ligand. These two ligands were char-

acterized by the 1H-NMR, 13C-NMR, IR, UV–visible and mass spectroscopy, as well as elemental analysis.

The ligand assisted PdCl2 catalyst was investigated in the Suzuki-Miyaura reaction by using the L1 and L2 as

cationic and anionic Schiff base ligands and different reaction conditions such as temperature, solvent and

mol% of PdCl2 were optimized. The results revealed that the anionic ligand assistance had a better activity for

the catalytic system of PdCl2 in Suzuki-Miyaura reaction.
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1. Introduction

In organic chemistry, one of the most important and

useful conversion is the construction of the carbon-

carbon bonds. In 1979, Miyaura, Yamada and Suzuki1

published a coupling reaction between boronic acid

and an organo-halide catalyzed by a palladium com-

plex. The importance of this coupling is obvious in

different areas, from the synthesis of natural product to

industrial material.2 Although there are many research

groups that have introduced many systems for this

synthesis by different catalysis in water, there are

many drawbacks in their procedure such as evaluated

temperature, the addition of tetra butyl ammonium

bromide (TBAB) as phase transfer catalyst and com-

plicated work-up procedure.3–12 In general, activation

of aryl chloride needs hard reaction conditions and

high amount of palladium as a catalyst. The develop-

ment of benign methods for the synthesis of the

Suzuki-Miyaura reaction that use the small amount of

catalyst is a subject of continuous interest for synthetic

chemists.13–22 Especially, for the catalyst which is

precious and exhaustive as palladium. There are some

reports that have introduced ligand-free Suzuki-

Miyaura reactions catalyzed by simple palladium salts

such as [Pd(OAc)2], [Pd(dba)2], and PdCl2. There are

some drawbacks in their systems, for example, they

are inappropriate for low-cost systems and in compe-

tition with the ligand assisted-systems, their selectivity

is less.

For many years, phosphine-based ligands were the

superior ligands for Suzuki-Miyaura reaction, because

by changing the attached groups to the phosphorus

atom, the properties in steric and electronic features

were tuned. But, because of their environmental prob-

lems, high costs and sensitivity to air, chemists were

encouraged to think about other ligands such as nitro-

gen-containing ligands, that in contrast to phosphines,

have many advantages. In modern inorganic chemistry,

Schiff bases are a class of organic-inorganic compounds

that are synthesized by the condensation of the carbonyl

compound with amino compounds and are used as

ligands due to their versatility.23–28 Among many

potential organic ligands, Schiff bases are widely

employed as ligands in coordination chemistry, in

addition, their functionalities are tuned depending on

the nature of starting materials. Recently, many

researchers recognized the Schiff base ligands as

excellent alternatives to phosphines in Suzuki-Miyaura

reactions.29–31 In this research, it is described the*For correspondence
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synthesis and characterization of two different ionic

Schiff base ligands: imidazolium and sulfonium salo-

phen type Schiff base ligands as cationic and anionic

Schiff base ligands, respectively, (Scheme 1). In addi-

tion, the effect of ligands in ligand assisted PdCl2 cat-

alyst in Suzuki-Miyaura reaction is investigated.

2. Experimental

2.1 Materials and methods

Reagents and starting material were purchased from Merck.

5-Chloromethyl salicylaldehyde and sodium 5-sulfonatos-

alicylaldehydes were prepared by a method described in

refs 33 and 32, respectively. All solvents were used without

purification. Infrared (IR) spectra were recorded in the

range 400–4000 cm-1 with a Perkin Elmer FT-IR spec-

trophotometer using KBr pellets. UV–visible spectra were

recorded with a PerkinElmer Lambda 25 spectrometer. C, H

and N determinations were achieved on a Heraeus CHN-O

rapid analyzer, NMR spectra were recorded with a Bruker

Avance II-400 and Mass spectra was recorded by 5975C VL

MSD with Tripe-Axis Detector spectrometer.

2.2 Synthesis of sodium sulfoniumsalophen Schiff
base ligand

In a round bottom flask containing 20 mL of methanol,

(0.5 g, 1 mmol) of phenylendiamine and (2.07 g, 2 mmol) of

sodium 5-sulfonatosalicylaldehyde was added and then the

content was refluxed for 3 h. Then the solvent was evapo-

rated and the yellow-orange product was obtained and dried

in air. Anal. Calcd. for C20H14S2O8N2Na2: C, 46.15; H,

2.69; S, 12.30, N, 5.38%. Found: C, 45.60; H,3.07; S,11.50;

N,4.97. 1H NMR (d, ppm, DMSO-d6) 8.42 (s, 2H, OH),

6.86–7.94 (m, 10H, Ar–H), 5.31 (s, 2H, N=CH). ESI-MS:

m/z calc. for (520), found 522.

2.3 Synthesis of imidazolium salophen chloride
Schiff base

a) Preparation of methyl-imidazoliume-salicylaldehyde

chloride: In a round bottom flask, 5-chloromethyl salicy-

laldehyde (0.907 g, 0.0074 mol) and 1-methyl-imidazole

(0.61 g, 0.0074 mol) were stirred in 25 mL of acetonitrile

for 3 h at room temperature. After filtration, the product was

dried under vacuum. M.p.: 64 �C, Anal. Calcd. for C12-

H13O2N2Cl: C, 57.02; H, 5.18; N,11.08% Found: C, 55.92;

H, 4.89; N, 10.92. 1HNMR (d, ppm, MeOD): (8.47, 1H,

CHO), (7.50, 1H, CH), (6.25, 6.07, 6.03, 3H, aromatic),

(5.40, CH2, methylene), (5.38, 5.33, 2H, ethylene), (3.37,

CH3, methyl).

b) Synthesis of the imidazoliumsalophen chloride Schiff

base ligand: In a round bottom flask, methyl-imidazole-

salicylaldehyde (1.5 g, 0.0059 mol) and phenylendiamine

(0.178 g, 0.0029 mol) were refluxed in methanol for 3 h.

Then the solvent was removed under reduced pressure. The

product was purified by diethyl ether and n-hexane. Anal.

Calcd. for C30H30Cl2N6O2: C,62; H, 5.23; N,14.54%,
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Scheme 1. Synthetic procedures of cationic L1 and anionic L2 Schiff base ligands.
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Found: C,59.90; H,4.93; N,13.90. 1H NMR (d, ppm,

DMSO-d6): 9.45 (s, 2H, OH), 6.81–7.72 (m, 16H, aro-

matic), 5.43 (s, 4H, methylene), 5.16 (s, 2H, ethylene), 3.89

(s, 6H). ESI-MS: m/z calcd. for (577), found 577.6.

2.4 General protocol for Suzuki-Miyaura reaction

A mixture of phenylboronic acid (1 mol, 0.12 g), 4-bro-

motoluene (1 mol, 0.17 g), PdCl2 (0.5 mol%) and ligand (5

mol%) and K2CO3 (2 mol%) was refluxed in 20 mL of

MeOH for 2 h. Then the reaction was diluted with distilled

water (20 mL) and extracted with diethyl ether (3920 mL).

The organic phase was separated and evaporated. The

product was purified by column chromatography, authenti-

cated by 1H-NMR and by comparison of their melting point

with those reported in the literature.

2.5 Catalytic reaction

The water-soluble ligands L1 and ligand L2 were synthe-

sized as described previously. Then their effect was inves-

tigated in the catalytic Suzuki-Miyaura condensation

reaction in the presence of PdCl2. In order to optimize the

reaction conditions, the phenylboronic acid and 4-bromo-

toluene was chosen as a model substrate and different

reaction conditions such as temperature, solvent, and mol%

of PdCl2 in assistance of ligands L1 and ligand L2 were

investigated. For determination of the efficient solvent, the

effect of different organic solvents was investigated in the

Suzuki-Miyaura reaction (Scheme 2) and the data was

shown that the methanol was efficient solvent. The effect of

temperature was considered and optimized on 65 �C. The

amount of 5 mol% of ligand L2 is employed in the presence

of the minimum amount of PdCl2. The results showed that

in the absence of the ligand the yield of the reaction

decreased significantly.

2.5a Effect of the mol% of Palladium chloride
on the reaction: In order to gauge the performance of

our ligand system, we decided to employ the minimum

amount of palladium chloride in the presence of ligands

system. Three mol% of palladium chloride were employed

and the results were showed that by using the 0.5 mol% of

palladium chloride, high yield was achieved (Table 1). The

Suzuki–Miyaura coupling of aryl halides has been reported

by many research groups that employed different mol% of

Pd-catalyzed systems from the minimum amount of 0.1

mol% to a large amount of Pd complexes. For example,

Buchwald and co-workers had reported high quantities of

catalyst (2–3 mol%).34 Rao, Gyandshwar Kumar and co-

workers proposed 2 mol% of Pd-catalyst for this coupling.35

Pankaj Nehra and co-workers used the ionic Schiff base

complexes in Suzuki–Miyaura coupling, by using 0.1% mol

catalyst in the presence of K2CO3 in coupling of I, Br aryls

with the yields 70–89%.36 Whaghmode and Borhade

investigated the Pd-Salen complexes as catalysts in

Suzuki reaction of aryl iodides and aryl bromides in 1:1

DMF: water ratio, Na2CO3 as base 0.5 mol% Pd-Salen

complex at 90 �C.37, 38 They found that the Suzuki reaction

of aryl iodides and bromides give excellent yields

(37–100%) of products in short reaction times (10–60

min). Anindita Dewan and co-workers introduced some

catalytic system based on Pd complex of tetradentate Schiff

base ligands that efficiently converts the aryl bromides up to

95%.39 Some other research work have been provided in the

reference section in which they used Schiff base Pd-

complexes to convert aryl iodides or aryl bromides with

moderate to high yields.40–42 In comparison to these reports,

the efficiency of our system is appreciable and this system

showed medium to high efficiency with respect to catalyst

amount usage and reaction conditions.

2.5b Effect of solvent: Despite the fact that literature

presented a protocol for the Suzuki-Miyaura reaction in

different media, the preparation of the ligand as pre-catalyst

for complexation with Palladium is not a simple and benign

reaction.43–45 The effect of different solvents such as

methanol, ethanol, acetonitrile, acetone, THF/H2O and

carbon tetrachloride were studied on the model reaction at

room temperature. The results are given in Table 2.

Among these solvents, methanol was found to have

better results than the aprotic or non-polar solvents.

2.5c Effect of the ligands on the reaction: The

model reaction of phenylboronic acid and 4-bromotoluene

was selected for the Suzuki-Miyaura reaction in this

OH

OH
B Br+ CH3 CH3

MeOH
65°C, 2h

0.5mol%PdCl2
Ligand 5mol%
K2CO3 2mol%

Scheme 2. Suzuki-Miyaura reaction.

Table 1. Suzuki-Miyaura condensation of phenylboronic
acid and 4-bromotoluene in methanol, at reflux conditions
by using 5 mol% of ligand L2.

Entry Catalyst Catalyst (mol%) Time (min) Yield (%)

1 PdCl2 0.1 120 60
2 PdCl2 0.3 120 68
3 PdCl2 0.5 120 80
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presented catalyst system. By using the L1 and L2 ligands in

the present methodology, the applied mol% of PdCl2 and

reaction time were reduced in high yield of the reaction. As

it is observed in Table 3, although L1 and L2 ligands

enhanced the yield of the reaction, the ligand L2 was more

effective than the ligand L1. The mechanism of the ligand-

assisted Suzuki-Miyaura reaction was given in ref 30 in a

similar to many other pieces of research (Scheme 3). It has

been mentioned that the role of the ligand in the ligand

assisted Suzuki-Miyaura reaction is not straightforward and

this mechanism has been given on the computational

studies. The catalytic cycles involve the steps of: in situ
generation of the L-Pd(0), transmetallation involving the

exchange of halide for an aryl group and, reductive

elimination of diaryl from Pd(II) species. By considering

this mechanism, it could be suggested that additives which

accelerate these steps can improve the performance of the

catalytic system. The effect of the ligands could be

remarkable in step 1 of the catalytic cycle. The ionic

character of the catalysts providing an efficient media for

oxidative addition of R-X on ligand assisted Pd- catalyst

system. At this step, the ligand L2 could accelerate this step

by the counter ion Na?. It could be proposed that the

separation of the X- (halide) from the substrate could be

easier by interaction of Na? by using ligand L2 while, the

Cl-(counter ion of the imidazolium moiety) of the ligand L1

competes with the R-X in coordinating to PdCl2 in step 1,

thus decreases the activity of the PdCl2. So the ligand L2

should be more effective than ligand L1.

Table 2. Effect of the solvent on the model reaction of the Suzuki-Miyaura condensation in
the presence of ligand L2.

Entry Solvent Temperature (�C) Time (min) Yield%

1 H2O r.t 120 30
2 H2O/THF r.t 120 50
3 MeOH r.t 120 80
6 EtOH r.t 120 65
7 CH3CN r.t 120 55
8 CCl4 r.t 120 No reaction
9 (CH3)2CO r.t 120 No reaction

Table 3. Suzuki-Miyaura condensation of phenylboronic
acid and 4-boromotoluene in methanol, at reflux conditions.

Entry Additive Time (min) Yield (%)

1 Ligand L2 120 80
2 Ligand L1 120 60
3 Non-ligand 120 40
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Scheme 3. Pd catalysis mechanism in Suzuki-Miyaura coupling.
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2.5d Effect of temperature: The effect of temperature

on the Suzuki-Miyaura was considered on the methanol in

the presence of ligands L1 and L2 (Table 4). Results showed

that yield% was enhanced by increasing the temperature to

65 �C. Considering technical limitations, the lower

temperature for the reaction is one of the main concerns

of synthesis in chemistry. The number of literature that

reports the Suzuki-Miyaura condensation in high

temperature and even long reaction time is enormous.46–52

The refluxed temperature of methanol is 65 �C, so the

optimized reaction temperature in the mixture of Methanol/

H2O was set at 65 �C and the obtained results were

acceptable.

2.5e Effect of aryl halides on the condensation
with boronic acid: In this protocol, a series of aryl

halides bearing electron-donating or withdrawing

substituents are applied that provided substituted

biphenyls. Although this method is effective for both aryl

halides with donating or withdrawing electron, the yields in

the reaction of aryl halides containing electron-donating

substituents were comparatively better than the yields by

the reaction of aryl halides bearing electron-withdrawing

groups. Moreover, the nature of halides on aryl halides was

the important factor for the reactivity and the yield of the

Suzuki-Miyaura condensation. Aryl halides containing I

and Br atoms showed good to excellent yield than aryl

halides with F- and Cl-, because those are better-leaving

groups (Table 5).

Although calculated turnover numbers are not very good

in comparison with other turnover numbers reported in the

Suzuki-Miyaurareactions53 considering the benign reaction

conditions, easy workup and short reaction time proposed in

this paper, and introducing a new Schiff base compound as

a capable promoter catalyst for Suzuki-Miyaura reaction is

outstanding (Table 6).

2.6 Characterization of the reaction products

After completion of the reaction, the reaction was diluted

with distilled water. The extraction of the organic phase was

Table 4. Effect of temperature on the model reaction of
the Suzuki-Miyaura condensation in the presence of ligand
L2 in methanol.

Entry Time (min) Yield (%) Temperature (�C)

1 120 69 40
2 120 72 60
3 120 80 65

Table 5. Suzuki Coupling of different Aryl Bromides.

Entry Aryl halide Product Time (min) Yield TON M.p. (�C)

1

CNBr CN

120 88 176 [250

2

BrC

O

H

C

O

H

120 75 150 182

3

IH3CO H3CO

120 78 156 145

4

H2N I H2N

120 80 160 139

5

H2N Br H2N

120 75 150 190

6

H3COC B H3CO

120 70 140 165

7

H3C Br H3C

120 80 160 185
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done with diethyl ether. The extracted phase was evaporated

and purified by column chromatography. The melting point

of the products was compared with the melting points that

were reported in the literature and the 1H NMR confirmed

the products.

2.6a NMR spectra of the products: 1HNMR spectra

of the products were exactly according to the reports in the

literature.

4-methyl-biphenyl. 1H NMR (CDCl3), 7.68–7.65 (m,

2H), 7.59–7.57 (m, 2H), 7.52–7.48 (m, 2H), 7.42–7.38 (m,

1H), 7.34–7.32 (m, 2H), 2.47 (s, 3H).

4-methoxybiphenyl. 1H NMR (CDCl3), 7.68–7.65 (m,

2H), 7.59–7.57 (m, 2H), 7.52–7.48 (m, 2H), 7.42–7.38 (m,

1H), 7.34–7.32 (m, 2H), 2.47 (s, 3H).

4-phenylbenzonitrile. 1H NMR (DMSO), 7.22–7.20 (m,

2H), 7.07–7.10 (m, 2H), 7.22 (s, 1H), 6.95–6.98 (m, 2H).

4-aminobiphenyl. 1H NMR (CDCl3), 6.46 (s, 2H),

6.50–6.52 (m, 2H), 7.39–7.42 (m, 2H), 7.48–7.53 (m, 2H),

7.59–7.63 (m, 2H), 7.25 (s, 1H).

4-Phenylacetophenone.1HNMR (CDCl3) d 7.85 (d, 2 H),

7.63 (d, 2 H), 7.58 (d, 2 H), 7.40–7.37 (m, 3 H), 2.63 (s,

3 H).

3. Results and Discussion

3.1 Synthesis of ligands

S1 and S2 were prepared as described elsewhere.32,56

The synthesis of ionic Schiff base ligands of the L1

and ligand L2 were carried out by condensation reac-

tion of the prepared (cationic and/or anionic) salicy-

laldehyde and phenylendiamine in methanol in

refluxed condition (Scheme 1). The synthesized com-

pounds were characterized via different spectral and

analytical methods.

3.1a IR spectra: In the FT-IR Spectra of S1 and S2,

a characteristic band was seen at 1650 and 1660 cm-1

for C=O bonds of aldehydic group, respectively. The

absorption of the O-H bond for these aldehydes was

exhibited at the region 3500–3600 cm-1. In the FT-IR

spectra of the L1 and L2 these aldehydic carbonyl

bands disappeared and a new band appeared in each

spectrum of the L1 and L2, at 1630 and 1620 cm-1,

respectively, due to new imine (C=N) bond formation

during the condensation reaction of aldehydes and

phenylendiamine. The absorptions of the O-H bonds

for Schiff base ligands appeared at 3430–3455 cm-1

3.1b NMR spectra: The 1H-NMR spectrum of

ligand L1 and ligand L2 gives useful information for

approval of the structures. For the L1, the peaks in the

region of the 9.5–11.0 ppm are related to imine-amine

tatomerization due to the interaction of the proton of

phenol with the imine nitrogen. The resonances of the

iminic protons were also observed in the region of

8.3–9.4 ppm. L1 has three phenyl groups and two

imidazole rings and is expected to have multiple

signals in the aromatic region. In the 1H-NMR

spectrum, in region 6.81–7.72 ppm multiple

resonances are observed. The resonances at 5.43 and

5.39 ppm are related to the 4H of the methylene

groups. The resonance at 3.89 ppm is related to the 6H

of the two methyl groups of the imidazole rings.

The broad resonance at 9.12 ppm is related to the

OH protons. The resonance at 8.50 ppm is related to

the 2H from the two imine groups. In similar to the

ligand L1, the ligand L2 has multiple signals in the

aromatic region because of the three phenyl groups, so

the resonances at region 6.86–8.00 ppm are related to

the protons of the aromatic rings. The observed sharp

resonance at 8.55 ppm and the broad resonance at

9.00–9.25 ppm are attributed to the iminic and phe-

nolic protons of L2, respectively, The 1H-NMR spec-

trums of ligand L1 and ligand L2 are shown in Figure 1

and Figure 2, respectively. The 13C-NMR of the

ligand L1 and ligand L2 are given in Figure 3 and

Figure 4, respectively. For Ligand L1the 14 reso-

nances of 35.88, 51.26, 58.45, 117.33 117.87 121.84,

122.02, 122.08, 123.79, 123.91, 136.16, 136.41,

161.43 and 166.30 ppm were observed. These reso-

nances are completely consistent with the 14 kind

carbons in the ligand L1that confirm the structure

of the L1 ligand. The low resonances of 35.81 ppm,

51.26 ppm are related to the carbon of methyl on

Table 6. Reported turnover frequencies for Suzuki-Miyaura reaction.

Entry Solvent mol%Catalyst Time Yield TON Ref.

1 H2O 0.1 20 h 70 70 54

2 PEG 300 5 24 h 83 83 55

3 EtOH 5 24 h 85 17 55

4 Methanol 0.5 2 h 80 160 This study
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imidazole and methylen of benzylic carbon. Whereas,

the resonance in 161.43 ppm and 166.30 ppm are

attributed to the Carbon-Nitrogen bond (C=N) and

phenolic carbon (C-OH), respectively. The other res-

onances are for aromatic carbons in phenyl and imi-

dazole rings. For L2 ligand the resonances of 115.64,

Figure 1. 1H-NMR of ligand L1.

Figure 2. 1H-NMR of ligand L2.

Figure 3. 13C-NMR of ligand L1.
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117.27 120.16, 123.10, 127.96, 134.39, 134.80,

143.39, 156.96 and 165.96 ppm that finally attributed

to the 10 kind carbons in the L2 ligand are observed. In

this ligand, the last two resonances (156.96 and 165.96

ppm) are with respect to the carbon of imin (-C=N)

and carbon of phenol (C-OH), respectively, and the

other resonances are related to the aromatic carbons.

3.1c UV-visible spectra: Since ligand L1 and ligand

L2 are water-soluble, the UV-visible of them were

recorded in H2O. The UV-visible spectrum of the L2

showed two bands at 200 and 225 for p ! p
�

and 385 nm

and n ! p
�

transitions, respectively, while for L1 these

two bands are seen at 220 and 364 nm, respectively. The

UV-visible spectra are shown in (Figure 5).

3.1d Mass spectrometry: For further characteri-

zation of the ligands (L1 and L2), the mass

spectrometry was also used. Mass spectrometric data

of L1 approved the structure of the ligand. In mass

spectrometry, in some cases, the ion-molecule shows

very low intensity or in rare cases it is not seen.57 In

addition, the molecular ion is seen in lower or higher

m/z than the original molecule with losing or

abstracting of one or more protons.58 The molecular

weight of ligand L1 (C30H30Cl2N6O2) is 577, and the

molecular ion of the L1 with M/z? = 577.6 is observed

in the spectrum at (Figure 6). There are some main

signals with the m/z of 480, 300, 284, 224, 183, 132

and 82. Although there are many picks with low

abundance, it is focused on the indicator picks that

confirm the structure. The pick at m/z 480 is related to

the molecular ion by losing of one methyl imidazole

ring (C25H23Cl2N4O2). As a consequence, the signal at

m/z 300 is related to the residual molecular ion

without another methyl imidazole ring with the other

chlorine counter ion plus one hydroxyl group

(C20H16N2O) and, the loss of another hydroxyl group

gives the signal at m/z 284. The signal at m/z = 132 is

related to the phenylendiamine and a signal at

m/z = 82 is related to methyl imidazole group. For

ligand L2, mass spectrometric data shows the

molecular weight of ligand L2 (C20H14N2Na2O8S2)

at M?2(522), and the exact mass of the ligand L2 is

520. The spectrum is shown in (Figure 7). There are

some main signals at m/z of 497, 474,397, 313,299,

285,194, 119, 108, 77 and 43 that determine the

structure of the ligand. Signals at m/z 497 and 474 are

related to the molecular ions by losing one and two

Figure 4. 13C-NMR of ligand L2.

Figure 5. UV–visible spectra of Ligand L1 and ligand L2.
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Na. The m/z = 397 is related to the molecular ion by

loss of one of the sulfonyl group. The pick at m/z =

299 is related to the residual molecular ion without

another sulfonyl group and one of the hydroxyl group.

This fragment would be a radical cation with one

oxygen atom (C20H15N2O?). Signals at m/z = 285 are

Figure 6. Mass spectra of ligand L1.

Figure 7. Mass spectra of ligand L2.
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related to (C20H16N2) and the m/z = 194 is related to

the residual molecular ion by losing of (C6H5CH?2)

group. At the m/z = 108, there is a signal which is

related to the phenylendiamine (C6H8N2). The picks at

m/z = 77 and 43 are related to the phenyl group and

allyl group of the aromatic ring.

4. Conclusions

In this study, two active catalyst system for Suzuki-

Miyaura coupling of aryl halides based on ionic Schiff

base ligands, which are easily prepared have been

developed. A comparison of catalytic activity of PdCl2
in the presence of these two ligands have been made

and was found that the catalyst in the presence of

anionic Schiff base ligand was more effective. The

effect of different parameters on the rate and yield of

the reaction has been considered and the optimized

system has been introduced. The Suzuki-Miyaura

reaction can be carried out by the Palladium Chloride

lonely, but because of the value and costliness of the

Palladium, a way to save the precious catalyst by

introducing the Schiff base ligand have been pre-

sented. Thus, the simplicity in synthetic route for

preparation of the ionic Schiff base ligands in this

research, using low amount of catalyst (0.5 mol%) as

well as medial to high yields and moderate reaction

conditions for the Suzuki-Miyaura coupling of aryl

bromides and iodides can be introduced as the

advantages of the titled catalytic system in this

research.
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