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Abstract. We propose a perturbative approximation to the vibrational coupled cluster method in bosonic

representation to reduce the cost of calculating the cluster matrix elements by considering only the first order

of S and r for the construction of the effective Hamiltonian ere�SHeSe�r. With the systematic analysis of the

results of two molecules, H2O and 1,1-difluoroethylene, we find that the accuracy of the transition energies

with such low order approximation is comparable to the fully converged VCCM.
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1. Introduction

Development of efficient and accurate quantum

mechanical method for the description of anharmonic

vibrations in polyatomic molecules has been a key

interest of many researchers. Within the Born-Op-

penheimer approximation, the electronic Schrödinger

equation generates the potential energy surface for the

nuclear motion in the molecule. The Watson Hamil-

tonian describes the molecular vibrations in a simple

and efficient way

H ¼
X

i

P2
i

2
þ VðqÞ þ VW þ VC: ð1Þ

Here, qi are the mass-weighted normal coordinates and

Pi are the conjugate momenta. The terms VW and VC

are the Watson’s mass-dependent term and Coriolis

coupling term, respectively. The potential V(q) is

usually approximated by the quartic polynomial of the

Taylor series expansion
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Here, xi is the harmonic frequency of ith vibrational

mode, fijk and fijkl are the third and fourth deriva-

tives of the electronic energy with respect to the

mass-weighted normal coordinates at equilibrium

geometry.

The vibrational Hamiltonian with such quartic

potential is a many-body Hamiltonian, and thus, the

exact analytical solution of corresponding Schrödinger

equation is not possible. Several approximate methods

have been developed to solve the vibrational Schrö-

dinger equation based on both variation principle and

perturbation theory. The second order vibrational

perturbation theory (VPT21–3) has been developed,

where the Hamiltonian with only quadratic potential is

taken as the zeroth order Hamiltonian and the cubic

and quartic terms are treated as perturbations.

Although, such approach has been used extensively by

many authors with successful interpretations of infra-

red spectra of numerous molecules, the failure of the

VPT2 is well-known when the one encounters vibra-

tional resonances like Fermi resonance. The vibra-

tional self-consistent field (VSCF) theory4–6 and its

generalizations to multiconfigurational reference

functions7 are developed and used extensively to

describe the experimental IR spectra of molecules with

large number of vibrational modes. The vibrational

configuration interaction (VCI)8–10 method is also
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developed and applied to small molecules. Here, one

constructs and diagonalizes the vibrational Hamilto-

nian matrix in a configuration space generated by

VSCF virtual orbitals, or distributed Gaussian func-

tions. The VCI method is in principle exact. However,

the dimension of the Hamiltonian matrix increases

exponentially with the vibrational degrees of freedom,

making it inapplicable for even medium size

molecules.

The coupled cluster method11–20 has been emerged

as the most successful method for describing the

quantum many-body problems, especially for elec-

tronic structures of atoms and molecules. The formu-

lation of the coupled cluster method is inherently non-

variational and non-perturbative, where the exact

ground state wave function is parametrized with an

exponential wave operator operating on a reference

wave-function, j0i

jWgi ¼ Uj0i; ð3Þ

with either

U ¼ eS ð4aÞ

or, U ¼ eSe�r ð4bÞ

Here, S, and r are the cluster operators, consist of

connected one-body, two-body up to n-body excitation

and de-excitation operators, respectively. The working

equations to determine the cluster matrix elements are

given by

hejU�1HUj0i ¼ 0; ð5Þ

where, jei are the excited states obtained by the

excitation from the reference function j0i. By virtue of

the exponential wave operator, one can access the

unlinked higher excited state functions, and as a result

the energy and wave function are highly accurate even

with a low order approximation of the cluster operator.

Two different representations have been developed

to formulate the vibrational coupled cluster method

(VCCM).21–34 The fundamental difference between

these formulations is the choice of the reference

function and definition of excitation/de-excitation

operators. In one representation, a set of orthonormal

basis function is assigned to each vibrational degree of

freedom. The VSCF calculation is carried out using

these basis set and subsequently, the VSCF ground

state wave function is used as the vacuum. The cre-

ation and annihilation operators are defined in a

manner similar to the coupled cluster theory of Fer-

mionic systems. This approach is known as the basis

set representation of VCCM.21–24 The accuracy of the

results with this method depends on the size and

quality of single mode basis functions along with the

truncation of the cluster operator. This approach was

used by Latha and Prasad to describe the intra-

molecular vibrational relaxation dynamics,35 and

Christiansen and coworkers21–24 to compute the IR

spectra. The other representation is known as the

bosonic representation, developed and implemented

by Prasad and co-worker,25–32,34 and, more recently by

Hirata.33 The vacuum here is an optimized multi-di-

mensional Gaussian product function and the cluster

operator is constructed with simple harmonic oscilla-

tor (HO ladder operators that are defined with respect

to the optimized vacuum state. In our earlier works, we

used the bosonic representation to formulate the

VCCM to calculate the vibrational excitation ener-

gies,26 infra-red27 and Raman intensities.34

The bosonic representation of VCCM offers several

advantages over the basis set representation. Unlike

the basis set representation, it is invariant to any

arbitrary rotations and displacements in normal coor-

dinate space. Secondly, since the excitation operators

are the HO ladder operators, once can access, in

principle, the full Hilbert space of the HO eigenfunc-

tions. However, depending on the truncation of the

cluster operator, the number of independent co-effi-

cients in equation 5 is finite. In a previous study,26,27

we found that the convergence is quite rapid, essen-

tially by S4, the ground state energy is converged.

Two different approaches have been developed to

describe the excited state within the VCCM formula-

tion in bosonic representation. One is the vibrational

multi-reference coupled cluster method based on

effective Hamiltonian formalism.28 The second

approach is the coupled cluster linear response theory

(CCLRT), variously known as the equation of motion

coupled cluster (EOMCC) method.25,27,36 In this

approach, one constructs a similarity transformed

effective Hamiltonian

Heff ¼ U�1HU; ð6Þ

in the space of zeroth-order excited states and diago-

nalizes it to get the excitation energies directly.

The equations to determine the cluster matrix ele-

ments (equation 5) are coupled non-linear equations,

and they are solved iteratively in a self-consistent

manner. The solution of these equations is one of the

major computational bottleneck. When a four-body

approximation of cluster cluster operator is used, the

computational cost scales up to N6 (here, N is the

number of vibrational degrees of freedom) at each
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iteration. Using the diagrammatic arguments it is

realized that the coupled cluster wave function and

energy can be decomposed in terms of infinite order of

perturbation theory terms of selected excitation oper-

ators. In this work, we explore the possibility of using

a low order perturbative approximation to the cluster

operators for the VCCM. In other words, the effective

Hamiltonian in equation 6 for the CCLRT is con-

structed using only the first order estimate of two-

body, three-body and four-body S and r operators. The

motivation for doing so comes from two sources. The

computation of the vibrational spectra consists of three

steps. In the first step, the coupled nonlinear equations

of the VCCM are to be solved. In the second step, Heff

has to be constructed. Finally, the Heff has to be

diagonalized in the manifold of excited states. By

invoking the perturbative expansion, the computa-

tional burden of the first step reduces from iterative N6

to a non-iterative N4 scaling of CPU time. For a large

molecular system, this itself is a desirable feature and

hence worth exploring. The second source of moti-

vation comes from a desire to understand the relative

importance of changes in correlation and relaxation

during the excitation process. Approximation to the

cluster operator affect the computation of the changes

in the ground state correlation energy, while the

excitation manifold controls the accuracy of the

relaxation effects. Thus, a perturbative approximation

can give an insight in to the relative importance of

these two quantities. We note that, in the context of

electronic structure theory, Nooijen and Snijders,37

Stanton and Gauss,38 Pal and co-workers,39 Bartlett

and co-workers40 have explored the possibility of

expanding the cluster operator, S, in a perturbative

manner. Numerical studies indicate that such pertur-

bative truncation of S, within the CCLRT framework

for the excited sates, gives satisfactory results, even

when the perturbative expansion is kept as low as the

first order for S. Several studies attempted to incor-

porate the effects of higher rank cluster operators

within in the mathematical framework of lower rank

approximation (such as the influence of T3 operator

with in the CCSD framework) by using perturbative

approximations.41–43 Our own goal is different. We are

not looking to simulate the influence of higher rank

cluster operator. We seek to understand the importance

of different terms in the open part of Heff on the

approximate spectrum from a perturbation theory

perspective. To that end, as a first step, we approxi-

mate the cluster matrix elements by their first order

perturbative estimates.

The goal of the present study is to test the accuracy

of the vibrational energy levels using similar low order

expansions to the cluster operator that is used to

generate Heff . The theoretical framework for this is

presented in Section 2. Section 3 contains the com-

putational results on two molecules, water and

1,1-difluoroethylene. The results indicates that per-

turbative expansion of S, correct up to first order, gives
small errors compared to the full VCCM approach,

about 5–10 cm�1, while the computational cost is

significantly reduced.

2. Theory

2.1 Coupled Cluster Method in bosonic
representation

In the first step of the VCCM formalism, we invoke

the effective harmonic oscillator (EHO) approxima-

tion,25,44 to get an optimized reference state for the

vibrational ground state. In EHO method, a product of

N Gaussian functions

j0i ¼ exp �
X

i

xiðqi � q0i Þ
2=2

 !
; ð7Þ

is variationally optimized with respect to xi and q0i .

Here, xi and q0i are the harmonic frequency of the

normal mode and origin of the normal coordinate i,
respectively. The harmonic oscillator creation and

annihilation operators are then defined with respect to

this optimized state as

ai ¼
ffiffiffiffiffi
xi

2

r
qi � q0i þ

1

xi

d

dqi

� �
ð8Þ

ayi ¼
ffiffiffiffiffi
xi

2

r
qi � q0i �

1

xi

d

dqi

� �
ð9Þ

The optimized function in equation 7 is, by definition,

a vacuum state for the annihilation operator ai as it

satisfy the killer condition

aij0i ¼ 0: ð10Þ

Unlike the traditional single reference coupled cluster

formalism, where only the excitation operators are use

to define the wave operator, we used both excitation

and de-excitation cluster operators to parametrize the

ground state wave function in the VCCM formalism in

the spirit of extended coupled cluster method (ECCM)

of Arponen.45–47 However, we do not follow Arpo-

nen’s bi-variational approach to determine the cluster

matrix elements, as discussed below. The use of

ECCM ansatz offers several advantages over the
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traditional coupled cluster formalism. First, the ground

state bra vector is also exponentially parametrized

along with the ground state ket vector in the ECCM

approach. The exponentially parametrized bra vector

for the ground state gives a balanced description for

the transition matrix elements.27,32,36 Secondly, the

excitation energies are obtained by the diagonalization

of similarity transformed effective Hamiltonian within

the CCLRT framework. The similarity transformed

effective Hamiltonian is manifestly non-hermitian.

Diagonalization of non-hermitian effective Hamilto-

nian occasionally generates spurious complex eigen-

values, when a low-order truncation of cluster operator

S is used for the construction of Heff matrix. In the

ECCM, the effective Hamiltonian is now a double-

similarity transformed Hamiltonian, with a de-excita-

tion operator used for the second similarity transfor-

mation. Since the de-excitation operators are the

adjoint of the excitation operators, the second simi-

larity transformation eliminates substantial parts of the

non-hermitian residue in the effective Hamiltonian.

The reduction of the non-hermicity due to the second

similarity transformation gives a better description for

the excited states, eliminating some of the spurious

complex eigenvalues.26

The ground state wave function for VCCM is thus

written as,

jWgi ¼ eSe�rj0i: ð11Þ

Here, the cluster operators S and r are consisting of

one quanta, two quanta, etc., excitation and de-exci-

tations operators, respectively.

S ¼
X

i

sia
y
i þ

X

i� j

sija
y
i a

y
j þ

X

i� j� k

sijka
y
i a

y
j a

y
k þ � � �

r ¼
X

i

riai þ
X

i� j

rijaiaj þ
X

i� j� k

rijkaiajak þ � � �

ð12Þ

The working equations for cluster operator S, ground
state energy Eg, and cluster operator r are obtained from,

heje�SHeSj0i ¼ 0; ð13Þ

Eg ¼ h0je�SHeSj0i; ð14Þ

h0jere�SHeSe�rjei ¼ 0; ð15Þ

respectively. Note that, the original formulation of

ECCM by Arponen invokes a variational solution for

the cluster matrix elements r.45–47 However, we use

the method of moment approach of equation 15 in the

spirit of conventional coupled cluster solutions, as

suggested by Prasad,48 and implemented in several of

our earlier studies.26–31,34 Within this framework, the

equations for S are decoupled from the equations for r.
Such decoupling can be shown to be exact in the exact

limit of both S and r using Lie algebraic decoupling

theory,48 and by looking at the coupled cluster method

as a similarity transformed effective Hamiltonian

theory and relating the eigenfunctions of the Hamil-

tonian to the left and right eigenfunctions of the

transformed Hamiltonian. Since these two vectors are

constructed separately, the left eigenvector (repre-

sented by e�r) does not affect the construction of the

right eigenvector (eS by construction). However, it

carries the burden of normalization of the coupled

cluster ansatz for the ket state.36 Hence, r depends on

S, but not vice versa. Both equations 13 and 15 are sets
of coupled non-linear equations that are solved con-

secutively in a self-consistent manner to get converged

sets of S and r matrix elements respectively. The

ground state energy is independent of r matrix ele-

ments. Thus, the second similarity transformation

keeps the ground state unaltered, but affects the

description of the excited states. The similarity trans-

formed Hamiltonians of equations 13 and 15 are

written in terms of Hausdorff expansion,

H1
eff ¼ e�SHeS ¼ H þ ½H; S� þ 1

2!
½½H; S�; S�

þ 1

3!
½½½H; S�; S�; S� þ � � � ;

ð16Þ

and,

H2
eff ¼ erH1

eff e
�r ¼ H1

eff þ ½r;H1
eff � þ

1

2!
½r; ½r;H1

eff ��

þ 1

3!
½r; ½r; ½r;H1

eff ��� þ � � � ð17Þ

The commutator structure of the above expressions

ensure that diagrammatically only the connected terms

will survive. Since the Hamiltonian has a maximum

four-body operator, the series in equation 16 termi-

nates after fourth commutator term, irrespective of the

truncation used for the S cluster operator. Note that the

operators in the effective Hamiltonian H1
eff are many

more and the number depends on the truncation of

cluster operator S. For example, for a four-body

truncation of S, the maximum number of operators in

H1
eff is twelve. Similar situation holds for the double-

similarity transformed effective Hamiltonian H2
eff . In

the implementation of VCCM, both H1
eff and H2

eff

are approximated with maximum of four boson

operators.
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The excited states are described using CCLRT.

Here, the excited state wave functions are obtained by

the action of a linear operator on the ground state

CCM wave function

We ¼ XeUj0i: ð18Þ

Generally, Xe requires both excitations and de-excita-

tion operators to define it both from operator com-

pleteness requirements,49–51 and the physical

requirement to describe the population changes in var-

ious zeroth order states from ground state to the excited

state. However, in the present case, it is not necessary.

Equation 18 can be rewritten as

jWei ¼ UU�1XeUj0i ¼ UXeff
e j0i: ð19Þ

The operator Xeff
e now acts on the vacuum, and hence

requires excitation operators only. The general

expression for the Xeff
e can be written as,

Xeff
e ¼

X

i

Xeff
e;i a

y
i þ

X

i� j

Xeff
e;ija

y
i a

y
j þ

X

i� j� k

Xeff
e;ijka

y
i a

y
j a

y
k þ � � �

ð20Þ

The working equation for the excitation energies is,

½H2
eff ;X

eff
e � ¼ DEeX

eff
e : ð21Þ

If equations 13, 14 and 15 are not exactly satistfied,

Xeff
e can have a constant component as well. However,

we ignore it in the present study, since it is expected to

be quite small. This statement applies to the conven-

tional coupled cluster equation of motion based

approaches as well, since most of them truncate the

cluster operator at some low order. The solutions of

equation 21 are obtained directly by diagonalization of

effective Hamiltonian H2
eff in the configuration space

constructed by the manifold of excitation operator

Xeff
e . Since the similarity transformations leave the

eigen spectrum of an operator unchanged, the eigen-

values of H2
eff are the same as of the original Hamil-

tonian. It may be noted that by virtue of equations 13

and 15, the matrix elements of H2
eff between the vac-

uum state and the zeroth order excited states are zero.

We restrict the excited state space to all states with at

most four quanta excitations from all modes.

2.2 Lowest order perturbative approximation
to VCCM

As mentioned in the introduction, the solutions of the

nonlinear equations in equations 13 and 15 are among

major computational bottlenecks for the VCCM. For a

four boson approximation of the cluster operator S, the
most expensive contribution in equation 13 comes

from the quadratic term ½½H; S4�; S4�. Since in the

bosonic representation the number of vibrational

modes (N) plays the role of basis set in the computa-

tion of the cluster matrix elements, the calculation of

this term scales up to N6 for each iteration of the

solution of equation 13 (considering the proper inter-

mediate storage is done during the computations).

Similar situation arises for the determination of the r
matrix elements with equation 15. We use perturbative

approximations to reduce the expensive computations

of the cluster matrix elements.

There exists a fundamental relation between the

coupled-cluster method and perturbation theory.

Using this connection, one can construct any finite-

order perturbative corrections to energy and effective

Hamiltonian through iterations of the coupled cluster

equations. To reduce the computational cost of the

evaulation of the cluster matrix elements, we

approximate both the cluster operators S and r only

up to first order. Since the reference function in our

formulation is a variationally optimized Hartree

product function, there is no contribution of S1
operator to the first order. Thus, in the first order

approximation of the cluster operator, only S2, S3 and

S4 terms will contribute. Essentially, one has to

evaluate only the diagonal part of the linear terms

½H; S2�, ½H; S3� and ½H; S4�. The computational scaling

to evaluate these terms are N2, N3 and N4, respec-

tively. Thus, the computational cost to calculate the

cluster matrix elements with the present approxima-

tion scales as non-iterative N4, instead of iterative N6

in the full VCCM with four boson S. Moreover, such

approximation also eliminates the effort to compute

the cluster matrix elements r. The excitation operator

S and de-excitation operator r are equal up to first

order in perturbation.

In the lowest order approximation, the H1
eff in

equation 16 is constructed with only the first order of

the cluster operator S,

H1
eff ¼ H þ ½H; Sð1Þ� þ 1

2!
½½H; Sð1Þ�; Sð1Þ�

þ 1

3!
½½½H; Sð1Þ�; Sð1Þ�; Sð1Þ� þ . . .

ð22Þ

Following our previous implementation, we con-

sider H1
eff has at most four boson operator in it. The

double similarity transformation effective Hamilto-

nian H2
eff is then constructed using only the first

order r
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H2
eff ¼ erH1

eff e
�r ¼ H1

eff þ ½rð1Þ;H1
eff �

þ 1

2!
½rð1Þ; ½rð1Þ;H1

eff �� þ � � �

The H2
eff is also approximated with a maximum of four

boson operators.

Thus, the H2
eff is correct up to first order with respect

to both S and r due to the linear terms of S and r in the

above equation. However, the presence of the non-

linear terms leads to the partial infinite summation of

the lower order corrections. We note that the con-

struction of the effective Hamiltonian H1
eff and H2

eff

scales as N6.

3. Results and Discussion

We implemented the lowest order perturbative

approximation to the VCCM as described above. The

vibrational transition energies of water, and 1,1-diflu-

oroethylene (1; 1-C2F2H2) molecule are calculated

using the proposed approximation (VCCM(pt)). The

numerical performance with such low order VCCM

are analyzed in comparison to the full VCCM results.

3.1 H2O

Our first case study is on water molecule. We com-

pared the transition energies from the lowest order

perturbative VCCM method (VCCM(pt)) with full

VCCM and converged full VCI results (FVCI) in

Table 1. The FVCI calculations were carried out using

8 harmonic oscillator basis (HO) functions for the

stretching modes and 16 HO basis functions for the

bending mode. The convergence of the VCI transition

energies were found with this basis set. The quartic

potential energy surface was calculated using

Gaussian09 software suit,52 using MP2 method with

cc-pVTZ basis sets.

We find that the VCCM(pt) approximation gives

results comparable to the full VCCM. For the funda-

mentals and two quanta excitations, the deviations

between these two methods are usually less than

3 cm�1. The maximum deviation among these exci-

tations is only about 5 cm�1 for 22 state. The VCCM

results are close to the FVCI values, except for the

transitions 12 and 1131. The difference between the

FVCI and full VCCM results for these two transitions

are 11 cm�1 and 24 cm�1, respectively. Despite of

such discrepancy between the VCCM and FVCI

results, the perturbative approximation does not bring

any substantial changes for the VCCM transition

energies of these states. Even for the three quanta

excitations, where the differences between the FVCI

and converged VCCM values are substantially large,

the VCCM(pt) results are close to the converged

VCCM results. For instance, the full VCCM transition

energy for higher excited state 1132 differ by

307 cm�1 from the FVCI value. The difference

between the VCCM(pt) and full VCCM values for this

transition is only 15 cm�1. The standard deviation of

VCCM(pt) results from the full VCCM values for all

the states reported here is only 6 cm�1.

We note that the VCCM(pt) transition energies are

higher than the full VCCM transition energies for most

of the lower lying transitions. Thus, the perturbative

approximation overestimates the VCCM for the tran-

sition energies. We note that a correlated transition

energy can be decomposed in to three components

DE ¼ DE0 þ �ex þ �corrg ð23Þ

Here, DE0 is the zeroth order transition energy

obtained from the EHO approximation, �ex is the

correlation effect for the excited states, and �corrg is the

ground state correlation correction. The excited state

correlation energy, �ex, will have two parts

�ex ¼ �mix þ �rel: ð24Þ

The �mix arises due to mixing among the zeroth order

excited states, and �rel is the relaxation effect. It can be

shown that the �mix energy partially cancels out the

Table 1. Transition energies (in cm�1) of H2O.

State FVCI VCCM(full) VCCM(pt)

21 1566 1566 1568
22 3090 3094 3100
11 3675 3674 3672
31 3755 3752 3750
23 4556 4602 4611
1121 5198 5199 5200
2131 5252 5252 5253
24 6238 6244 6252
1122 6694 6710 6714
2231 6717 6742 6746
12 7327 7316 7313
1131 7397 7373 7372
32 7486 7479 7474
1221 8777 8808 8807
112131 8814 8857 8858
2132 8905 8944 8943
13 10992 11029 11022
1231 11075 11135 11129
1132 11155 11462 11447
33 11210 11257 11247
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ground state correlation energy �corrg for the funda-

mentals. Thus, the transition energy is dominated by

the relaxation term �rel. The over estimation of the

VCCM results with the lowest order perturbative

approximations indicates that the relaxation effect is

underestimated by this approximation.

3.2 1,1-Difluoroethylene

Our second case study is 1; 1-C2F2H2 molecule. The

quartic PES for this molecule was calculated using

B3LYP density functional method along with

6-311G(2d,2p) basis set. We present the VCCM(pt),

full VCCM along with the zeroth order Hartree ener-

gies for the fundamental transitions in Table 2. The

results are compared with the experimental values.53

Like H2O molecule, here also, the VCCM(pt)

results are comparable with the full VCCM results. For

the most of the states, the difference between these

two methods are less than 10 cm�1. The largest dif-

ference in the transition energies is found to be only

20 cm�1 for the fundamental transitions 31. The

standard deviations between these two methods is

about 10 cm�1 for all the fundamental.

Both the VCCM and VCCM(pt) give results close to

the experimental results. The standard deviations for the

VCCM and VCCM(pt) results with respect to the exper-

imental values are 20 cm�1 and 19 cm�1, respectively.

For 1; 1-C2F2H2 molecule also, we find that the

VCCM(pt) overestimates the transition energy com-

pared to full VCCM, except for the 31 and 91 transi-

tions. The relaxation of frequencies causes the changes

in the transition energies (other than Fermi coupling).

These relaxation energies have the most significant

contributions to the transition energies. The

VCCM(pt) underestimates these relaxation energies.

Both the 31 and 91 states mix strongly with several

other states. The transition energies for these strongly

coupled states along with their weight of mixing in the

VCCM descriptions are presented in Table 3. We find

that the perturbative approximation affects the mixing

of states significantly. Consequently, the transition

energies deviate from the full VCCM. For example, 31
fundamental mixes strongly with two quanta states 62,

111121, and 7181. In the full VCCM description, the

fundamental 31 has 0.49 weight of zeroth order 31
state and 0.27 weight of zeroth order combination state

7181. In the perturbative approximation VCCM(pt),

the weight of zeroth order 31 state decreases to 0.44.

Here, the second major contribution comes from the

zeroth order 111121 state (weight equal to 0.29). The

transition energy for 31 state is found to be 1357 cm�1

with full VCCM and 1337 cm�1 with VCCM(pt)

approximation. Similarly, in the full VCCM descrip-

tion of the 62 state, the zeroth order 31 state has weight

0.25, which becomes only 0.15 in the VCCM(pt)

method. The weight of zeroth order 62 state increases

from 0.47 for the full VCCM to 0.61 for the

VCCM(pt) approximation for this 62 transition. We

find an increase of 73 cm�1 in the transition energy for

this 62 transition from the full VCCM to VCCM(pt)

method.

The perturbative approximation of the VCCM, i.e.

VCCM(pt) estimates the state mixing according to the

perturbative analysis. Lower the gap in the zeroth

Table 2. Transition energies (in cm�1) of F2C2H2

molecule.

State Hartree energy VCCM(full) VCCM(pt) Exp53

11 3107 3016 3025 3058
21 1757 1729 1734 1728
31 1400 1357 1337 1359
41 933 923 923 926
51 546 544 544 550
61 784 682 696 Inactive
71 881 782 795 802
81 633 625 626 609
91 3196 3154 3142 3176
101 1302 1279 1281 1301
111 972 930 936 954
121 462 428 432 437

Table 3. A comparison of some strongly coupled state of F2C2H2 with VCCM approaches. (Transition energies are in

cm�1).

States mVCCM State description mVCCMðptÞ State description mHartree

31 1357 0:49 � 31 þ 0:27 � 7181 1337 0:44 � 31 þ 0:29 � 111121 1400
62 1309 0:47 � 62 þ 0:25 � 31 1382 0:61 � 62 � 0:15 � 31 1568
7181 1427 0:69 � 7181 � 0:22 � 31 1436 0:74 � 7181 � 0:17 � 31 1514
111121 1351 0:68 � 111121 þ 0:27 � 62 1366 0:63 � 111121 þ 0:20 � 31 1434
91 3154 0:24 � 91 þ 0:30 � 6171111121 3142 0:37 � 91 � 0:32 � 101112 3196
216171 3157 0:63 � 214171 � 0:10 � 91 3192 0:76 � 216171 þ 0:04 � 617281 3240
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order energy levels, greater is the coefficient. Again,

we consider the example of mixing of 62, 111121, and

7181 states with 31 fundamental. The zeroth order

Hartree energy difference between 31 state and 111121
state is only 34 cm�1. Such small difference in Hartree

energy leads to strong mixing of these two states in the

VCCM(pt) description. The 31 state has 0.29 weight of

zeroth order 111121 state and the 111121 state has 0.20

weight of zeroth order 31 state. The differences in the

Hartree energy of 7181 and 62 states from the Hartree

energy of 31 are 114 and 168 cm�1, respectively. The

weight of zeroth order 31 state in the 7181 and 62 states

are 0.17 and 0.15, respectively.

The transition energies for the two quanta states

with the VCCM methods are presented in Table S1 of

the supplementary materials. Trend of the transition

energies with the VCCM(pt) approximation is similar

to the fundamentals for the two quanta excitations,

where the mixing of states is not very significant. The

VCCM(pt) values are higher than the full VCCM

results for almost all the states. Thus, for the two

quanta excitations also, the perturbative approximation

underestimates the relaxation corrections. However,

the deviations between the VCCM and VCCM(pt)

transition energies are not very large. In about forty

two quanta excited states, the transition energy dif-

ference between the VCCM(pt) and full VCCM results

are less than 10 cm�1. The standard deviation between

these two methods is about 14 cm�1 for two quanta

states.

4. Conclusions

In this work, we implemented the lowest order per-

turbative approximations to the VCCM in bosonic

representation, by considering only the first order of

both the excitation (S) and de-excitation (r) cluster

matrix operators for the construction of the effective

Hamiltonian. We made a systematic comparison

between the converged VCCM and perturbative

approximation with the example of two molecules,

H2O and 1; 1-C2F2H2. We find that such low order

perturbative approximation to the VCCM gives tran-

sition energies close the full VCCM method.

The VCCM(pt) usually overestimates the transition

energies compared to the full VCCM. The major

contribution to the transition energy arises from the

relaxation of the excitations, due to the cancellations

of excited state correlation and ground state correla-

tion energies. The overestimated transition energies in

the perturbative approximation implies that such

lowest order perturbation underestimates the

relaxation effect. However, such underestimation of

the relaxation effects does not affect the accuracy of

the transition energies significantly.

The present lowest order perturbative approxima-

tion to the cluster operator reduces the computational

cost significanly, as the scaling of computation of the S

matrix elements reduces from iterative N6 to non-it-

erative N4. The computation of r matrix elements are

avoided by equating them with the S matrix elements,

since the S and r operators are identatical up to first

order.

The mixing of states differs significantly with the

perturbative approximation compared to the full

VCCM. As a results, we get large deviations for the

states which coupled strongly with one or more states.

The VCCM(pt) transition energies for such strongly

coupled states are found to be even smaller than the

full VCCM results. The coefficients of mixing of states

in the perturbative approximation are determined by

the perturbation analysis. Smaller the difference in the

zeroth order Hartree energies, greater is the mixing

weight.

Overall, we find good accuracy for the transition

energies with the VCCM(pt) approach. The results are

comparable with the FVCI results or the experimental

results. Such approximations will reduce the compu-

tational cost to calculate the converged cluster matrix

elements significantly without compromising much of

the resultant accuracy.

Supplementary Information (SI)

The transition energies for the two quanta states of 1,1-

diflouroethylene with VCCM calculations are available at

www.ias.ac.in/chemsci.
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