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Abstract. Microneedle-based drug delivery has attracted researchers’ attention over the last decade. The

material of construction of microneedles has emerged as a critical factor influencing clinical usage, manu-

facture, drug loading and drug stability. Initially, microneedles were fabricated using glass, silicon and

metals. The development of sophisticated machining tools and advances in the polymer science allowed for a

major shift in materials of construction of microneedles towards polymeric systems. Delivery of difficult to

formulate therapeutics, including proteins, peptides, vaccines and genetic material has been established using

microneedles. There is a constant search for newer materials, which can easily form microneedles with

sufficient strength to penetrate biological barriers, can be easily manufactured, and are compatible with drug

molecules and biological systems. While several reviews have discussed microneedle-based cosmetic and

drug delivery applications, there is a gap in understanding the effect of material of construction of micro-

needles on drug stability and potential for large-scale manufacture. This review is an attempt to present

microneedles as a function of the material used for its construction. Since microneedle commercialization is

now a realistic possibility, we believe that improved understanding of materials and their chemistry will allow

for improved decision making, especially for industries looking towards bringing microneedle technology to

manufacturing setups.
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1. Introduction

Biological barriers are important for survival. Skin

membrane protects the body from different environ-

mental insults and maintains homeostasis. The mucosal

lining in the gut protects the underlying layers from acid

erosion. However, this protective nature would limit

drug delivery through these barriers. For example, skin

does not allow most molecules to permeate to deeper

dermal layers.1 The needle and the syringe have been

developed to overcome these barriers and deliver ther-

apeutics directly to the affected areas or to the blood.

However, shortcomings with syringe-based injections

decrease their patient compliance. Syringe injections

are painful, require trained medical personnel for

administration, can cause infections and needle stick

injuries and generate high volumes of non-

biodegradable waste.2 Strategies have been developed

to overcome biological barriers, especially the skin,

using non-invasive and minimally invasive techniques.

Microneedles (MNs) are an attractive strategy for

minimally invasive delivery of molecules across barri-

ers. When used for transdermal delivery, they penetrate

the skin to upper layers of the dermis, causing no pain or

bleeding.3 These micron-sized sharp needles can

directly deliver molecules across the skin, the cornea or

back of the eye, or even the gut membrane.4,5

MNs have been employed for drug delivery, vac-

cination, bio-sensing and diagnostic purposes. They

can be broadly classified based on their shape (conical,

pyramidal, obelisk, etc.), material of construction

(metal, glass, silicon, polymer, etc.), or technique of

drug loading and delivery (hollow, solid, coated,

etc.).2 Broadly, drug delivery using different types of

MNs have been classified into five different

approaches (Figure 1).*For correspondence
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In the ‘poke and patch’ approach, MNs—generally

metal solid MNs—are used to create micropores in the

skin, which allow easier penetration of drug molecules

subsequently applied on the treated surface as a solu-

tion, ointment or transdermal patch. The ‘coat and

poke’ approach utilizes MNs that have been previ-

ously coated with the molecule to be delivered. The

coated MNs are allowed to penetrate the skin and left

in the skin intermittently for the coating to dissolve

before intact removal. MNs which are formed from

materials that can disintegrate and subsequently dis-

solve in the interstitial fluid, constitute the ‘poke and

release’ approach. These MNs are prepared using

dissolving polymers or sugars and dissolve within

seconds to a few minutes.7 MNs with hollow cores

have been used for delivery of larger volumes of liq-

uids in the body (Figure 1 IV). These MNs allow for

liquid formulations to be injected into the body in a

painless fashion. The two FDA approved MN-based

devices (BD Soluvia� and the Nanopatch�) currently

in the market use this approach to deliver influenza

vaccine intradermally. Hollow MNs also find potential

in diagnostic applications.8 The ‘poke and swell’

approach utilizes hydrogel-forming MNs, that take up

interstitial fluid and swell.9

Of different parameters, the material of construction

of MNs has emerged as a critical factor in the manu-

facture and usage of MNs. Different shapes and

designs of MNs require specific properties of material

for preparation. In the early stages of MN develop-

ment, MNs were exclusively prepared using silicon.2

These were solid MNs prepared using lithography.

Soon after, hollow glass MNs were prepared using

glass-blowing and pulling. These MNs were tested for

intradermal delivery of influenza. Over the years,

newer materials for MN preparation, especially poly-

mers have been developed. An exponential increase in

MN based publications for newer materials such as

polymers has been seen over the last five years.

Figure 2 provides a relative estimate for the number of

studies published with MNs prepared from different

materials. More than half of the published literature on

MNs is based on polymer-based MNs which also

increased with time. The current review provides an

understanding of materials used for MN fabrication

and how material properties affects critical parameters

Figure 1. Transdermal drug delivery approaches using MNs. I – ‘poke and patch’ approach; II – ‘coat and poke’
approach; III – ‘poke and release’ approach; IV – ‘poke and flow’ approach; V – ‘poke and swell’ approach. Image adapted
with permission from.6
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such as stability, tensile strength, and biocompatibility

of MNs. Additionally, techniques for MN fabrication

are discussed. While MN have been used for cosmetic

purposes and to deliver drugs to other parts of the

body, this review is limited to MNs used for drug

delivery across skin, unless specified otherwise.

2. Materials for MN construction

2.1 Established materials for MN construction

2.1a Silicon and silica glass: Silicon is a hard and brittle

crystalline solid and the eighth-most common element in

the universe and the second on Earth. Silicon compounds

such as silicon glass find use in medical industry.10 The first

MNs for drug delivery were made of silicon. Silicon MNs

provide good tip sharpness but are susceptible to breaking

due to their fragile nature. Also, silicon MN manufacture is

expensive and requires a clean room setup.11 Typical silicon

MNs are shown in Figure 4b and 4c. Silica glass, an

amorphous, transparent, and inert solid, is a material of

choice for laboratory usage and few therapeutic applica-

tions.12 Grades of glasses are defined based on their trans-

parency and inertness. For pharmaceutical use, Type I

Highly Resistant Borosilicate Glass, which has the least

chemical reactivity, lowest thermal expansion coefficient

and highest Young’s modulus, is used.13 Figure 3 shows the

Ashby plot for tensile strength Vs. Young modulus for

different materials. Silica glass, seen towards the centre of

the plot possesses good tensile strength and a high Young’s

modulus.

In 1961, Chambers used glass MNs for micromanipula-

tion of individual living cells.14 Since then, glass MNs have

been used as force probes to study muscle physiology.15,16

Glass MNs are generally prepared by micropipette pull-

ing.17 The use of hollow glass MNs was suggested for drug

delivery and diagnostic purposes. Prausnitz and colleagues

investigated glass MNs for collecting dermal interstitial

fluid for glucose monitoring in 2005.18 The group further

reported the use of glass MNs for microinjection in 2006.19

Glass MNs have since then been studied for delivering

insulin in animals and humans. These glass MNs penetrated

the skin up to 1.5 mm and had a radius of 15–40 lm at the

needle tip with a cone angle of 20–30� (Figure 4a). Since

glass can withstand very high temperatures, glass MNs

could be easily sterilized using dry or moist heat steriliza-

tion. However, making glass needles is a time consuming

and difficult to calibrate process since the glass is hand-

pulled.20 The use of glass MNs is limited to experimenta-

tion and has not realized into commercial setups.

2.1b Metals: Metals and their alloys have been used in the

biomedical field for generations. Metals generally possess

good malleability and ductility and a high Young’s modulus.

(Table 1 and Figure 3) Metal alloys can be made more

stable and useful for biomedical applications. Hypodermic

needles are now typically made from stainless steel while

titanium finds widespread usage in implants and prostheses.

316L type stainless steel (316L SS) is the most used alloy in

all implant categories ranging from cardiovascular to otorhi-

nology.58 Titanium is lightweight with a density of 4.5 g/cm3

compared to 7.9 g/cm3 for 316 stainless steel and 8.3 g/cm3

for cast CoCrMo alloys.59 Ti and its alloys such as Ti6Al4V

are known for their excellent tensile strength (Table 1) and

pitting corrosion resistance and find usage in biomedical

applications.60 When the implant requires high wear resistance

such as artificial joints, CoCrMo alloys are used.61

Stainless steel was the first metal used in the production

of MN arrays. Metal MNs have been obtained by manually

pressing the tips of the smallest available stainless steel

hypodermic needles through a supporting material of

Figure 2. Percentage publications for MNs prepared using different materials. Percentages were calculated based on hits
for different keywords. Search was performed https://www.ncbi.nlm.nih.gov/pubmed/ and sorted by Best Match. Keywords
used were ‘metal MN’, ‘glass MN’, ‘ceramic MN’, ‘silicon MN’ and ‘polymer MN’. Search date: 01 March 2019.
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defined thickness or by laser cutting metal sheets into MN

shapes and bending them out of plane.6,62 Additionally,

other microfabrication technologies including 3D laser

ablation, wet etching and metal electroplating methods have

been adopted to prepare metal MNs of different shapes and

geometries.3 Solid metal MNs can be coated with molecules

Figure 3. Ashby plot for Young’s modulus Vs. Strength for different materials. Image reprinted from.21 �Granta Design.

Figure 4. (a) Hollow Type I Glass MN,19 (b) hollow silicon MN array,64 (c) solid silicon micro-enhancer array,65 (d) an
array of hollow metal MNs66 �(2003) National Academy of Sciences, (e) MNs with varied geometries such as barbs and
serrated edges,67 (f) an array of parathyroid hormone coated titanium MNs,68 (g) a ceramic nanoporous MN array,69 (h) an
array of bioceramic MNs with a flexible gelatin base.70 Images reprinted with permission from indicated references.
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of interest with or without a layer of polymer. Hollow MNs

are also generally made out of metal (Figure 4d). They are

often made from metal tubing by laser machining, electro-

chemical etching or by electrode discharge machining.3

Other metals that have been used for MN fabrication

include titanium (Figure 4f), tantalum, and nickel.63

2.1c Ceramics: Ceramics are solid materials composed of

inorganic compounds of a metal, non-metals or metalloids.

Ceramics are solid, possess thermal and electrical insulator

properties and a brittle nature.71 Biocompatible ceramics

possess higher mechanical strength and high temperature

and moisture stability than most polymers. The porosity of

ceramics can be easily tailored during production. This

property of ceramics in addition to electrostatic interaction

between the ceramic surface and permeants can be exploi-

ted to enhance transdermal permeation of molecules.72

Most common ceramics used as biocompatible materials are

those between aluminium and oxygen (alumina, Al2O3),

Table 1. Young’s moduli and tensile strength values for different materials reported for MN fabrication.

Material Young’s modulus Tensile strength Reference(s)

Borosilicate glass type 1 61–64 GPa 22–32 MPa 22,23

Silicon 130 to 188 GPa 6900 MPa 24,25

Nickel 207 GPa 419 MPa 26,27

Titanium 115 GPa 470 MPa 28

Stainless steel 316 193 GPa 580 MPa 29

SU-8 2.8–3.2 GPa 34–40 MPa 30

Ormocer 17 GPa 30 MPa 6

Collagen type 1(fibrils) 0.2–0.86 GPa 0.5 GPa 31,32

Sodium CMC films
(2%w/v with glycerol)

1.04 ± 0.04 GPa 40.1 ± 0.9 MPa 33

L-PLA (50,000) 1200 MPa 28 MPa 34

Poly(d,l-lactide-co-glycolide) 50/50 2.02 GPa 35

Zein 28–86 MPa 22.9 ± 1.62 MPa
(for thin films)

36,37

PVA (thin film) 490.411 MPa 0.3485 MPa 38

Alumina,[99% 380–410 GPa 260 MPa 39

Hydroxyapatite (HAP) 35–120 GPa 35 MPa
(diametrical strength for

100% dense HAP)

40,41

Hyaluronic acid (HA) 39.9 ± 6.7 kPa (crosslinked with
10% PEG 2000)

42

PDMS
(membrane 200 lm thick)

*900 kPa *25 MPa 43

Gelatin (Bovine hide gelatin type B,
Bloom 200, 20% w/v)

40–70 kPa *21 kPa 44

Sodium alginate
(thin films)

NA 33.6 ± 3.1 MPa 45

CoNiCrMo 232 GPa 793 MPa 46

Ti6Al4V (F136) 116 GPa 860 PPa 46

Pure iron 200 GPa 210 MPa 46

Sucrose (1:1 with CMC) 22 MPa 22.1 MPa 47

Maltose (1:1 with CMC) 7.42 GPa 7.44 GPa 47

Trehalose (1:1 with CMC) 5.69 GPa 5.66 GPa 47

Mannitol 25 ± 1 kPa
(spray-dried cake)

*1 MPa
(at 1 MPa compression

pressure)

48,49

Sorbitol (1:1 with CMC) 1.97 ± 1.70 GPa NA 50

Gantrez� AN 139 (MNs) 6.56±0.56 GPa NA 51

Polyethylene 0.7 GPa 20–30 MPa 52

Polyurethane (PU) thermoplastics 1.31–2.07 GPa 31–62 MPa 53

Polycarbonate (PC) 2–2.4 GPa 55–75 MPa 54

Aluminium oxide 370 GPa 300 MPa 55

Polystyrene 3.4 GPa 48 MPa 56

PMMA 2450 MPa 62 MPa 57

CMC: carboxymethyl cellulose; PLA: polylactic acid; PVA: polyvinyl alcohol, PMMA: Poly(methyl methacrylate).
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calcium and oxygen (CaO), and silicon and nitrogen (silicon

nitride, Si3N4). Alumina and Zirconia (ZrO2) are commonly

used to fabricate ceramic MNs.73 Alumina is biologically

inert, stable at high temperatures but brittle under tensile

stress.74 Since alumina is sintered at higher temperatures, the

loading of thermo-labile molecules could be a challenge.

Zirconia offers higher toughness and strength than alumina but

has poor wear characteristics (Figure 3). Calcium compounds,

calcium sulphate and hydroxyapatite are also attractive

materials for fabrication of MNs.75,76 Figure 4g shows a

ceramic nanoporous MN array while Figure 4h shows bioce-

ramic arrays attached to a flexible MN base made of gelatin.

Ceramic MN are typically prepared using micromolding

of a ceramic slurry followed by sintering at high temper-

atures. The slurry parameters can be adjusted to result in

variations in ceramic morphology, porosity and strength.

Organically modified ceramic, Ormocer� has been used to

prepare MNs. Ormocer� is synthesized through a solution

and gelation process (sol-gel process) from multi-func-

tional urethane and thioether(meth)acrylate alkoxysi-

lanes.77 Ceramic MNs prepared using CaS and CaP were

used to study the release of loaded zolpidem tartarate in

the skin.78 In another study, nanoporous ceramic MNs

made from alumina were employed for transcutaneous

vaccination.69

2.1d Carbohydrates: Melts, solutions or slurries of carbo-

hydrates can easily form MNs by micromolding in metal or

PDMS molds. These MNs generally dissolve quickly by

taking up interstitial fluid and releasing the entrapped drug

molecule. Carbohydrates offer a cheap and safe alternative

for metals and glass. However, carbohydrate needles possess

lower tensile strength and need to be combined with other

materials for increasing the strength. Maltose is the most

commonly used sugar for preparation of MNs. It is a GRAS

material commonly used as a bulking agent in many phar-

maceutical dosage forms.79 Maltose needles were studied for

the transdermal permeation of nicardipine hydrochloride

across rat skin. Maltose MNs, 508.46 ± 9.32 lm long with

a tip radius of 3 lm were prepared by micromolding (Fig-

ure 5a). Pre-treatment of skin with maltose MN significantly

improved flux of nicardipine across the skin in comparison

with untreated skin.79 Maltose MNs were further studied for

transdermal delivery of human IgG.80 Other sugars (tre-

halose, sucrose, mannitol, fructose, raffinose and sorbitol) in

combination with polymers have been studied for prepara-

tion of MNs.50,81–84 An experimental study conducted in

Figure 5. (a) MNs fabricated from Maltose,2 (b) An array of sugar-glass MNs,84 (c) porous MN fabricated using PLA-
microparticles cured by ultrasonic welding,117 (d) Gantrez� AN 139 based MN array,118 (e) Zein MNs,85 (f) PLGA MN
showing internal PLA microparticles,119 (g) MN array fabricated from SU-8,120 (h) Separable arrowhead MNs made of
PVA/PVP,121 (i) chondroitin sulphate MNs,122 �Springer Nature (2011), (j) NIR-responsive silica-coated lanthanum
hexaboride particles filled in PCL MNs (1) after insertion and (2) after one cycle of NIR irradiation123 �American
Chemical Society (2015), (k) Hydrogel forming swellable PMVE/MA-PEG MNs showing swelling behaviour after
insertion in forearm skin of a human volunteer.124 Images reprinted with permission from indicated references.
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addition with finite element analysis (FEM) to study the

mechanical properties of MNs suggested that MNs made of

CMC/maltose are better to those made of CMC/trehalose

and CMC/sucrose in terms of mechanical strength. This was

correlated with Young’s modulus of sugar and the depth of

skin penetration.47 Table 1 lists the Young’s moduli and

tensile strength values of sugars used for MN manufacture.

Polysaccharides also present themselves as a good choice for

MN fabrication. They are reviewed in the next section on

polymers.

2.1e Polymers: Polymers have revolutionized the field of

drug delivery. The first instance of polymer science is the

derivatization of naturally occurring cellulose to celluloid

and cellulose acetate by Henri Braconnot in the 1830s.110 In

1922, Hermann Staudinger first proposed that polymers

were long chains of atoms held together by covalent

bonds.111

Polymers attract wide attention for MN fabrication due to

their biocompatibility, biodegradability and low cost. In

general, polymers possess lower tensile strength than metals

or silicon, however, they are tougher than most other

materials used for MN fabrication (Table 1 and Figure 3).

A number of naturally occurring polymers have been used

for casting of MNs. These include naturally occurring

proteins, polysaccharides, semisynthetic and synthetic

polymers. In general, polymers are used to prepare solid

dissolvable or swellable MNs or used as a coating on solid

structures made of other materials, however, studies have

also reported polymer MNs which are hollow, and non-

dissolving.112 A list of various polymers used for fabrica-

tion of MNs is provided in Table 2. Polymer MNs are

majorly fabricated using a lithographic or molding process.

Biodegradable or dissolving polymeric MN releases the

drug molecules from the matrix for localized or systemic

delivery. Dissolving systems are usually prepared with

polysaccharides, the major ones being CMC, amylopectin,

dextrin, hydroxypropyl cellulose, alginate, chondroitin, and

hyaluronic acid. These materials present sufficient hardness

for penetration into biological barriers like the skin or

cornea (Table 1). They provide rapid action as these

materials quickly dissolve upon contact with aqueous fluid.

Tip dissolving chondroitin sulphate needles are shown in

Figure 5i. Synthetic polymers for MN fabrication include

PMVE/MAH (commercially available as Gantrez� by

Ashland corporation), PVP and PVA. MNs prepared using

Gantrez� (Figure 5d) are reported to be strong and resist

compression forces up to 0.7N/needle without yielding.113

This plastic polymer has been widely studied for delivery of

various small molecules, proteins and vaccines. Further,

PVA and PVP present a good alternative material for the

preparation of dissolvable MNs. Available in various grades

and molecular weights, the strength of PVA or PVP needles

can be easily tuned. PVA is a water-soluble plastic polymer

and approved for usage in a number of pharmaceutical

formulations. Composites of PVA and PVP provide good

plasticity and dissolvability to MNs.114 These polymers are

a choice for preparation of MNs for ocular use due to their

quick disintegration and compatibility with tear fluid.115

Collagen and its derivatives, silk, gelatin and zein are few

protein-based materials that have been used for MN fabri-

cation. Protein MNs are hypothesized to interact better with

protein-based drugs and vaccines and assist in high drug

loading and better stability of MNs.85 These materials also

offer a low-cost option for preparing MNs as they are lar-

gely inexpensive and easy to fabricate using

micromolding.116

Accumulation of polymers in the skin is a concern with

the use of dissolving needles. As an alternative, hydrogel-

forming swellable polymeric MNs which swell upon con-

tact with interstitial fluid releasing encapsulated drug by a

diffusion or wicking mechanism has been developed. These

needles do not dissolve and can be removed intact from the

skin as shown in Figure 5k. As the needles swell by taking

up interstitial fluid, they can pick up molecules, such as

biomarkers which could be analyzed after extraction from

the matrix. The tips further swell and provide a conduit or

transport of medication from the base, backing layer or a

reservoir (Figure 1). Hydrogel forming needles have been

successfully prepared using polysaccharide mixtures, gela-

tin, PVA and CMC.9 Figure 5k shows hydrogel-forming

needles being removed from the skin after 1 h of applica-

tion and the swelling behaviour of needles after 2 h of

application onto the human forearm.

2.1f Advanced materials and combinations: MNs have

evolved from solid or hollow structures to newer concepts

employing the use of biofunctional materials. Surface

modifications for better drug loading and release, combi-

nation of complex nanosystems with MNs and integrated

sensing and control systems for responsive on-demand drug

delivery are few examples. Advancements have been made

in glucose measurement with algorithmic spatial control

glucose measuring and a feedback mechanism to deliver

insulin on-demand.125 MNs have shown potential to be

developed as minimally invasive continuous glucose mon-

itoring systems. MNs for glucose monitoring employs an

electrochemical sensing probe within a hollow MN. The

hollow MNs pick up interstitial fluid in its lumen. Hydrogen

peroxide (H2O2) – produced from glucose by glucose oxi-

dase – is measured at the working electrode. Further, glu-

cose-responsive mechanisms can be employed to deliver

drugs. Generally, hypoxia sensitive systems, also incorpo-

rated in the same MN array or a connected array, release

encapsulated drug as hypoxia is developed after consump-

tion of oxygen in the reaction. Alternatively, generated

H2O2 can be used to activate drug release from H2O2

responsive systems. Hu et al., report an MN integrated

H2O2-responsive polymeric vesicular system for insulin

delivery.126 These self-assembled vesicles were prepared

using block copolymer incorporated with polyethylene

glycol (PEG) and phenylboronic ester-conjugated polyser-

ine and laden with glucose oxidase and insulin. Sensitiza-

tion of these responsive systems can be increased further by

J. Chem. Sci. (2019) 131:90 Page 7 of 28 90
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Table 3. A comparative assessment of various fabrication techniques reported for fabrication of MNs.

Fabrication technique Material(s) used Advantages Limitations in scale-up References

Micropipette pulling Borosilicate glass Cost-effective Excessive calibration
required; time-
consuming

135,136

Typical micromolding
(casting)

Sodium alginate, PLGA,
Hyaluronic acid,
Gantrez, PVP,
PMMA, Zein, CMC,
starch, gelatin,
Oromocer�

Cost-effective;
multiple
needles can be
produced from
same
micromold

Wear and tear of molds
over time;
examination/cleaning of
molds between casting
cycles; complex MN
designs not achievable;
Drying processes may
take time; post-
processing required;
limited to
solid MN

85,97,109,119,137–141

Injection molding Polycarbonate, cyclic
olefin copolymer

Low post-
processing

Drying processes may take
time; wear and tear of
molds over time

142,143

Hot embossing PMMA, PLGA Low post-
processing

temperature-sensitive
drugs cannot be
loaded

144,145

Investment molding Cyclic olefin copolymer
(Ticona Topas�), PLGA

Hollow MN can
be prepared

MN design limitations 143,146

Filling mold cavities with
atomized spraying

PLGA, PVP High
temperatures
not needed;
viscosity
independent
spraying

Continuous process needed 147

Photopolymerization PVP, PEG 600
diacrylate, gelatin
methacryloyl,
methacrylate

Higher strength
of needles
produced;
faster
dissolution
rates

High cost of
photoinitiators;
Crosslinking conditions
may need to be
maintained

148–151

Stereolithography Gantrez, class I resin,
dental SG (formlabs)

High precision;
fine detaining

Material fragility; high-
cost machinery; mass
production not
possible

152,153

Fused deposition modelling PLA Cost-effective;
ease of
manufacture

Limited material choices;
higher temperatures
needed

93

Drawing lithography SU-8, Maltose High aspect ratio
MN can be
prepared;
different MN
shapes
possible

Limited material choices;
relatively high
temperatures used

93

Photolithography ? etching Poly ethylene glycol
diacrylate, CMC

Efficient
process;
excellent
dimensional
control

Expensive; clean and
darkroom requirement;
time-consuming;
material
limitations

156,157

Continuous liquid interface
production

Trimethylolpropane
triacrylate

Tunable
geometries;
mold-
independent;

single-step
process; fast

Limited material options,
costly

105
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utilizing both H2O2 responsiveness and hypoxia condi-

tions.127 H2O2 labile linkers are generally used for this

purpose.128 Figure 5j(1) shows PCL MNs loaded with sil-

ica-coated temperature-sensitive particles. The MNs are

seen to disintegrate upon application of one cycle of NIR

radiation in Figure 5j(2).

Transdermal delivery of micro and nanoparticles can be

improved by MN assistance. The particles can be delivered

through the conduits of hollow MNs, coated onto solid MNs

or encapsulated within dissolving MNs.129–132 Figure 5c

shows MNs completely prepared form PLA microparticles.

Delivery of other therapeutics, especially proteins and

vaccines can be enhanced by surface modifications of MNs.

pH modification using pyridine on the surface of silicon

MNs was shown to result in better loading and release of

coated ovalbumin in the skin.133 Polyplex-based DNA

vaccines were rapidly delivered using polycarbonate MN

arrays coated with multiple polyelectrolyte layers of charge

reversal pH-responsive copolymers.134

3. Manufacturing of MNs

Manufacturing processes of MNs are dependent on

various factors including material of construction.

Various techniques for MN fabrication are listed in

Table 3.

3.1 Fabrication of silicon-based MNs

The most commonly used technique for the fabrication

of silicon-based MNs starts with lithography.

As shown in Figure 6, a photosensitive layer is

coated onto a substrate (generally a silicon wafer with

a silicon dioxide layer on top). A variety of materials

can be coated onto the substrate based on the coating

method used. A physical vapour deposition method is

used to heat the material and condense its vapours onto

the substrate. Alternatively, in chemical vapour

deposition, material is deposited as a thin film

Table 3. (contd.)

Fabrication technique Material(s) used Advantages Limitations in scale-up References

Two-photon polymerization Ormocer� Good resolution;
no cleanroom
requirement;
scalable

Limited to photosensitive
materials

158,159

Micromilling PMMA, metals, SU-8 High precision;
good material
choices

Costly; sophisticated
machinery; specific cuts
not possible

160–162

Micromachining (laser
cutting, electroplating)

Stainless steel Complex MN
designs
achievable

Costly; requires
sophisticated equipment;
limited to metals

67,163

Droplet-born air blowing CMC,
hyaluronic acid, PVP

Simple and
efficient; Mild
operating
conditions
(temperature
and airflow);

Cost-effective;
minimum
post-
processing

Only viscous preparations
can be used; limitations
to MN design

67,163

Figure 6. Steps in lithography/etching procedure for fab-
rication of silicon MNs.
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produced by chemical reaction between the hot sub-

strate and inert-carrier gases in the chamber. A pho-

toresist is layered on the silicon oxide substrate by spin

coating. Spin coating ensures uniform thickness of

coating. Any residual solvent on the spin-coated layer

is removed by heating. The photoresist layer is illu-

minated by UV light through a mask. The mask

behaves like a stencil not allowing UV radiation to

pass through certain regions. This procedure allows

near-perfect transfer of structure from mask to the

photoresist layer. With UV exposure, the exposed

regions of the mask are altered chemically and can

now be easily solubilized and removed. A positive or

negative photoresist can be developed based on

requirements. With positive resists, UV illumination

weakens the bonds allowing their easy removal, while

in developing a negative resist, UV light strengthens

the chemical bonds. The photolithographic process

depends on thick photoresist polymer used. SU-8 and

poly-methyl-methacrylate (PMMA) are versatile

materials, which are used to produce a pattern for

high-aspect-ratio microstructures. SU-8 can provide a

sophisticated structure by controlling the light path

and the focus, resulting in the production of solid

tapered MNs and hollow polymer MNs.165

Following lithography, it is necessary to etch the

oxide layer and even the substrate. For wet etching, the

wafer is immersed in a liquid bath containing a

chemical etchant to remove the desired material.

Etchants generally used for silicon are potassium

hydroxide (KOH) and tetramethyl ammonium

hydroxide (TMAH).166 Dry etching may be performed

as reactive ion etching (RIE) or ion beam milling

(IBM). In RIE, a plasma of reactive ions is created in a

chamber and these ions are accelerated towards the

material to be etched. In the case of IBM, inert ions are

accelerated from a source to physically remove the

material to be etched. Finally, an oxygen plasma

treatment, called descumming is performed to remove

the unwanted resist left behind.

3.2 Fabrication of metal MNs

The simplest way to fabricate metal-based MN arrays

is by assembling hypodermic needles or wires. The

length of the wire or tubing can be tuned as per end-

user needs. Simple needle-based cosmetic devices,

such as the Dermaroller consist of metal pins arranged

on a cylindrical drum. MNs can be made in-plane

using a lithographic/etching process and then bent at

90 degrees to create out-of-plane needles. Further,

complex MN designs and shapes are prepared by laser

metal cutting followed by electroplating (Figure 4e).

Fabricating metal MN structures is time-consuming

and requires sophisticated machinery and is thus a

costly affair. However, the dimensional precision

achieved with these processes is typically high.

3.3 Fabrication of glass and ceramic MNs

Glass MNs are an alternative to hollow metal MNs.

Glass MN are generally fabricated by pulling borosilicate

glass pipette using a micropipette puller. A length of

glass tubing is heated at its centre and the two ends are

drawn apart by toothed wheels are driven using a spring.

The tips are bevelled at the required angle and cleaned

using solvents. This method apart from time-consuming

also requires exhausting calibration to achieve required

glass thicknesses and lengths; thus it is not suitable for

industrial applications. Ceramic MNs are typically pre-

pared by micromolding with a ceramic slurry filled into

mold cavities under vacuum followed by sintering at

high temperatures.

3.4 Fabrication of polymer MNs

Molding is the most common technique for fabricating

polymer MN. This is done via injection molding, hot

embossing or micromolding as shown in Figure 7.

Other techniques used to fabricate MNs include

drawing lithography, laser micromachining or X-ray

methods.

Molding typically involves a female mold which has

cavities corresponding to the final MN structure that is

intended to be achieved. These molds can be prepared

using different materials, however, most commonly they

are made from PDMS. PDMS molds are generally made

from a master structure made of metal or silicon. PDMS

offers transparency, short curing times, flexibility and

good reproducibility in forming secondary structures and

thus is a common choice of material. PDMS is inex-

pensive and a number of molds can be prepared and used

at the same time.117 Alternatively, using a laser-based

micromolding technique, silicon or metal-based female

molds may be developed. Laser beams can be made to

focus on concentrated areas leading to ablation at those

spots. The laser power and illumination time can be

digitally controlled to produce defined patterns in the

material.118 This technique, however, requires sophisti-

cated machinery and a number of molds to be produced

for large scale manufacture, thus limiting its use in an

industrial setup.

Carbohydrate MNs are also typically prepared using

micromolding (Figure 7a). Sugars are dissolved or
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melted to viscous preparations and poured onto a mold

followed by spin casting or vacuum application to fill

the mold cavities. Sugars pose a challenge as they

change color and caramelize at higher temperatures,

and lead to a brittle end product. Also, high viscosities

may create a flowability problem and entrap air bub-

bles during casting which may not be efficiently

removed once the material starts to solidify. Maltose

MNs are generally prepared by heating maltose to

140 �C and filling in PDMS molds under vacuum.

Additionally, thermolabile molecules may not be

suitable for loading with carbohydrates due to high-

temperature processing. Martin et al., attempted to

address the problem with loading thermolabile drugs

by preparing sugar MNs at low temperatures (Fig-

ure 5b). This was done by dehydrating sugar combi-

nations and generating solid amorphous sugar glasses

with low water content for molding under vacuum.84

Sugar MNs dissolve quickly even in atmospheric

humidity and need to be stored in moisture control

packages.

Apart from regular casting followed by vacuum

application or spinning, injection molding or hot

embossing may be used to prepare polymeric MNs.

Lutton and co-workers presented injection moulded

siloxane molds to prepare hydrogel MNs by either

application of a roller or centrifugation after filling the

mold with polymer.167 Polymers with relatively lower

melting points can be fabricated into MNs by hot

embossing (Figure 7c). Polycarbonate MNs were

prepared by stacking a plastic sheet onto the silicone

rubber mold. The stack was pressed together at 170 �C
maintaining enough load to fill in the mold cavities.168

Molding offers a cost-effective and scalable tech-

nique for the fabrication of polymeric MNs. However,

based on polymer properties, solvents used, tempera-

ture and pressure conditions, the siloxane molds

undergo wear and tear. The wear and tear may be

significant to affect the final MN structures. It is also

important to remove any clogged material in the mold

cavities between different casting cycles. These

shortcomings may hinder efficient use of micromold-

ing processes. To that end, Lee and co-workers sug-

gested preparation of maltose MNs by drawing

lithography. Patterned stainless steel pillars were

attached with a syringe pump. Maltose was melted at

110 �C in water and coated onto a circular steel plate.

The plate was placed in contact with the steel pillars

and cooled down to Tg (95 �C). The pillars were axi-

ally drawn at controlled speeds and temperatures (-

Figure 8). Varying the temperature and speed resulted

in needles of different shapes, with high aspect ratios

and sharp tips.155

A number of polymers including PVA, PVP, Gantrez,

gelatin, collagen, and zein, have been fabricated into

MNs using the simple molding techniques. Few proce-

dures involve molding followed by in-situ polymeriza-

tion to result in final MNs. Sullivan and co-workers

added vinyl pyrrolidone to PDMS molds where poly-

merization was initiated by added free radical initiator

azobisisobutyronitrile when placed under UV light. The

resulting needles showed greater fracture forces and

faster dissolution. In a similar study, MNs were prepared

by polymerization of methacrylic acid.151

Molding processes are generally used to make solid

MNs, however, hollow MNs can also be prepared by

Figure 7. Various casting and molding techniques used for the preparation of sugar and polymer MNs.
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using investment molding which combines injection

molding and casting (Figure 7d). A cyclic olefin

copolymer (Ticona Topas�) was injection molded

around a 32 lm diameter Al wire. The wire was dis-

solved later by a liquid Al etchant to produce hollow

in-plane polymeric MNs.143 Various attempts have

been made to fabricate complex MN designs with ease

using polymers. In a noteworthy study, Park and co-

workers filled MN molds with polymeric microparti-

cles against polymer solutions or melts. Micron-sized

particles were prepared from PLA, PGA and PLGA by

spray drying or emulsification methods. PLA particles

were forced into the mold cavities by pressing a male

mold over the cavities. The filled mold was ‘cured’ by

applying ultrasonic energy over the PLA particle cake

through another PDMS layer. The mold was cooled to

remove the formed MN array (Figure 5c). PLGA

particles were cast but in different layers and in

combination with other polymers to produce layered

MNs. Using PLGA and PLA particles, the researchers

presented separable tip needles composed of PLGA

containing Vitamin B over PLA shafts.117 Figure 5f

shows microparticles concentrated at the tip of a

PLGA MNs. The same research group also reported

separable arrowhead needles prepared from PLA,

PVP, and PVA assembled as sharp needles over metal

shafts (Figure 5h). The needles could be inserted into

the skin and the arrowheads could be left in the skin to

dissolve.121

A recently patented technology called droplet-air-

blowing allows the preparation of dissolving MNs at

mild conditions (low temperatures and minimum post-

processing) thus allowing loading of sensitive cargo

such as vaccines or genetic material. Polymer

solutions are placed as equidistant specific volume

drops on a sheet. Another sheet is lowered down and

made to contact the viscous drops. This is followed by

pulling away of sheets at controlled speeds. As the

sheets pull away, the drop begins to converge between

the two sheets forming a thin filament as the sheets are

pulled apart. Once the required polymer elongation is

achieved, air is blown through the sheets at controlled

speed to dry out the polymer before separating the

sheets with formed MNs. This technique has been used

to prepare MNs using hyaluronic acid, PVP, CMC

among other polymers and is also available for com-

mercial use.164,169

3.5 3D printing of MNs

3D printing has emerged as a technique for fabrication

of MNs with several recently published reports

describing its potential. 3D printing is used in three

different ways in MN development: 1) To develop

male master molds; 2) coating material or drugs onto

previously prepared MNs; 3) printing complete MN

structures using 3D printing. Our group has developed

3D printed master molds which were used to prepare

polymeric MNs. Acrylobutadiene styrene (ABS), a

thermoplastic photopolymer was used to print molds

using polyjet 3D printer.85 Layers of ABS are jetted

onto the platform and cured instantly by UV light. The

jetting is based on a CAD design previously imported

into the 3D printer. The fine layers of ABS allow for

good dimensional precision and needles with sharp

tips can be generated. A simple post-curing process

removes all supporting material from the design;

Figure 8. Schematic representation of drawing lithographic process. Cooling of melted liquid polymer to Tg from higher
temperature significantly increases its viscosity turning it into a glassy liquid and eventually into solid structures, which are
cured and isolated. Tm – melting temperature; Tg – glass transition temperature. Image modified with permission from.154
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however, this could be a tedious process if complex

designs are to be printed. Figure 9a and 9b show a 3D

printed ABS master mold and the corresponding

PDMS mold, respectively.

Using inkjet printing, metals, polymers or drugs can

be coated onto preformed needles. Boehm and co-

workers report coating of Gantrez� needles with

antifungal agents, amphotericin B or miconazole.170

Amphotericin B was dissolved in DMSO and loaded in

the inkjet cartridge reservoir bag of a DIMATIX

material printer. The cartridge dispensed amphotericin

solution at a volume of 10 pL. The MNs were placed

parallel to the printing platen to deposit the drug

solution. Keeping the parameters such as drop spacing,

density, voltage, cartridge angle and cartridge tem-

perature constant, fifteen layers of drug solution were

deposited. Each array could be loaded with 10.4 lg of

amphotericin.152 The process resulted in MNs with a

smooth texture as shown in Figure 9f. Uddin et al.,

report inkjet coating of metal MNs with three anti-

cancer molecules viz. 5-fluororacil (5FU), curcumin

and cisplatin. Drug solutions were jetted onto stainless

steel MNs placed at an angle of 45 degrees (Figure 9c

and 9d) with 300 pL droplets.171 5-FU coated steel

needles are seen in Figure 9e. The same coating

technique was extended to understand coating of

insulin onto metal MNs.172

Building MNs using 3D printing has been attempted

recently with different materials and methods. Allen

and co-workers report a ‘drop-on-demand’ technique

for filling PDMS micromolds with polymer solutions.

The authors argue that the mold cavity filling

procedures (vacuum application, centrifugation) with

micromolding that ensure no air pockets are formed in

the MNs, are not scalable to manufacturing scale. A

piezo dispensing technique was used to drop picolitres

of polymer solution as droplets into micromolds.

Formed MNs had a good surface finish and could also

be formed as bilayered structures containing the drug

in the tips.173 Materials which polymerize upon

exposure to UV light are good candidates for 3D

printing into MNs provided they are biocompatible.

Stereolithography (SLA) and Digital Light Processing

(DLP) are two techniques used for these purposes. Use

of SLA to draw MNs has been discussed in the pre-

vious sections. DLP is faster than SLA as it cures

materials in layered cross-sections. Gittard et al.,

report acrylate-based polymer needles for wound

healing application fabricated using DLP.174

Fused deposition modelling allows material melts to

be 3D printed. This is an inexpensive technique, with

starter printer models available for home-use. Mate-

rials need to be available as filaments which are

melted when introduced into the printer and fused in a

controlled fashion according to input CAD design.

Several biomaterials, such as PLA, PGA, PCL, PVA

and PLGA can be used as FDM substrates. Using

FDM technology and a post-process chemical etching

procedure, PLA MNs with tips as small as 1 micron

could be obtained (Figure 9g and 9h).93

Use of 3D printing to develop MNs is limited by the

materials that can be used for the 3D printing tech-

nology at hand. Only photopolymers can be printed

using SLA or DLP, while FDM requires thermoplastic

Figure 9. 3D printing of MNs. Image of an ABS master mold (a) and the corresponding PDMS mold (b) developed. (b) A
piezoelectric nozzle printing coating formulation on the stainless-steel MN array (c) with arrays placed at 45 degrees (d).
SEM image of inkjet-printed 5-FU stainless steel MNs (e). SEM images of inkjet-printed miconazole-loaded Gantrez� AN
169 BF MNs (f). Biodegradable PLA MNs printed using FDM (g and h), �The Royal Society of Chemistry (2018). Images
reprinted with permission from.93,170,171
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filaments. The photoinitiators used in SLA may be

toxic whereas FDM requires high temperatures for

filament melting and generally has a low print reso-

lution.175 A few materials such as Gantrez� or PVA

can be used to form dissolvable MNs using FDM. It is

not possible to process materials which are ther-

mosensitive, such as thermolabile drugs, proteins or

genetic material using FDM. PLA is an excellent

material for MN fabrication by FDM, but its slow

degradability limits its pharmaceutical use.

4. Biocompatibility, biodegradability and stability
considerations

As MNs penetrate biological barriers, they come in

contact with viable tissue. Thus, it is imperative that

the chosen MN material is biocompatible. Biocom-

patible materials do not produce a toxic or immuno-

logical response when exposed to the body or bodily

fluids. If a material degrades in tissue, the degradation

of products and by-products should be nontoxic.

Accumulation of material in the tissues with slow

degradation is also undesirable. Since the temperature

or pH conditions in the biological system are different

from ambient conditions, materials may behave dif-

ferently when in contact with biological tissue. Thus, it

is important to ascertain the compatibility of material

within the conditions it will be subjected to. It is

also required to ascertain the stability of MN mate-

rial of construction in terms of the manufacturing

method and conditions, storage conditions, and most

importantly, compatibility with the

molecule(s) loaded.

4.1 Silicon and silica glass

Silicon is widely used in the development of

implantable biomedical devices including neural

prostheses, drug delivery systems, and chemical

probes. The biocompatibility of silicon has been

studied over the last few years but enough evidence

guaranteeing their biocompatibility is not established.

It has been shown that nanoporous silicon does not

exhibit significant toxicity which has led to its exten-

sive used for drug delivery as silica nanoparticles.176

Silicon MNs have been studied for drug delivery of a

variety of drug molecules. Since silicon and silica

glass are relatively brittle materials, their chipping or

breaking off in the tissue after application poses a

hazard. Researchers report a coating of inert metal

such as gold on the silicon MNs will improve its

biocompatibility.177 MicronJet�, one of the two

FDA-approved MN-based devices in the market

comprises of silicon MNs.2 As most silicon MNs are

inserted for shorter durations, it will be interesting to

look at long term contact of silicon MNs with tissue

during long applications. Borosilicate glass is an inert

material that is used for MN fabrication. It is, how-

ever, important to consider any adsorption of mole-

cules, especially proteins that may happen on the glass

surface. Most glass MNs are hollow and are designed

for quick insertion into the skin or for short-term drug

infusions. MNs fabricated out of glass have also been

tested for drug delivery across scleral tissue. Studies

for long term contact of silicon or glass implants/

needles with biological tissues are required to ascer-

tain the long-term use of these materials.

4.2 Metals

The most frequently used biocompatible metals in

biomedical applications are stainless steels, cobalt-

chromium alloys, and titanium and its alloys. Surgical

stainless steel 316L is the most commonly used grade

of steel for use in biocompatible devices. Stability of

metal structures is dependent on the environmental

conditions are they are placed in. Corrosion of metals

is based on oxygen, moisture and pH conditions which

vary greatly outside and inside the human body. As a

result of oxidation and acidic erosion, a metal implant

that does well in one state of the body may still

experience an undesirable level of corrosion in

another. Metal corrosion is advanced in the presence

of aqueous ions. Most fluids in the human body have

solutions composed majorly of Na?, Cl–, 0.9% saline

and other trace ions with a number of amino acids and

soluble proteins in normal conditions. These solutions

have near-neutral pH values in the range of 7.2–7.4 at

37 �C. In certain physiological conditions such as

inflammation, pH values of the body fluid may drop.

The body ion deposition in the body in combination

with other factors such as blood pressures may influ-

ence the stability of a metal implant. Even at stressful

body conditions, a low release of metal ions from

metal MN should be ensured.178

Stainless steel offers good biocompatibility but is

susceptible to corrosion upon prolonged use. Upon

corrosion, stainless steel releases nickel ions, which

may contribute to cancer development. Other metals

such as titanium alloys provide superior strength and

anti-corrosive nature for biomedical use. However, a

few reports of allergic reactions with first-generation

titanium alloys are reported. There is a lack of data for

long-term clinical usage of titanium alloys. Other
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metals that have been used for MN fabrication include

platinum, palladium, nickel, silver and gold. Gold and

platinum coating on MNs have been shown to improve

the biocompatibility, but they present higher costs.

4.3 Ceramics

Bioinert ceramics, termed as bioceramics are used in

the manufacture of prostheses. Alumina has been used

for bone and dental implants for over two decades,

thus its biocompatibility is well documented. Of all

ceramics, Al2O3 and ZrO2 have superior resistance to

wear and tear.179 A few reports of toxicity due to risk

of aluminium release upon long term usage are doc-

umented, however, alumina MNs are expected to not

pose any toxicity issues as their contact time with

viable tissue would be limited. Silicon nitride is now

approved in terms of biocompatibility and expected to

develop in orthopaedics.180 Calcium phosphate, which

is naturally also naturally present in bone has been

established as biocompatible ceramic for surgical

implants. The Ca:P ratio determines the acidity and

solubility of calcium phosphates and the biocompati-

bility may be different with different ratios. Hydrox-

yapatite Ca10(PO4)6(OH)2 has shown to be bioactive

and bioresorbable. Synthetic hydroxyapatite has been

shown to produce no local or systemic toxicity, no

inflammation, and no foreign body response.181,182

Many studies have demonstrated Ormocer� as a

potential biocompatible ceramic for MN fabrication.

Ovsianikov et al. demonstrated that this material does

not adversely affect the growth of human epidermal

keratinocytes, a major cellular component of the

skin.183

4.4 Carbohydrates

Natural sugars are approved as stabilizers and cry-

oprotectants. Of all sugars, maltose has been most

studied for the fabrication of MNs. Other sugars like

trehalose and galactose are also approved for phar-

maceutical use, however, their use for MN fabrication

is limited. If meant for diagnostic applications, sugar

MN may interfere with diagnosis especially if blood

glucose measurement is the intention. Polysaccharides

are biodegradable and their biological activity can be

easily tuned. Most polysaccharide MNs disintegrate in

the skin to release the payload. If absorbed in the skin,

they can be gradually eliminated by the kidney. Most

polysaccharides in drug delivery are derived from

natural sources, alginate and chitin, extracted from

algae and crab shells respectively, find broad uses in

drug delivery. Chitin is biocompatible and is degraded

into non-toxic residues by lysozyme through the

hydrolysis of the acetylated residues.184 Moreover,

recent studies have indicated that chitosan and their

derivatives are novel scaffold materials for tissue

engineering and promising non-viral vectors for gene

delivery.185 Alginate is an excellent material of choice

for fabrication of MNs as it forms hydrogels at mild

pH and temperature, is non-toxic, biocompatible,

biodegradable, inexpensive and abundantly available

in nature. Additionally, alginate is more compatible

with sterilization procedures.186 Carboxymethyl cel-

lulose and hydroxypropyl cellulose, both of which are

biocompatible and biodegradable are most important

cellulose derivatives for use in drug delivery. In gen-

eral, the rate of degradation of celluloses is governed

by their molecular weight and degree of acetylation.

Hyaluronic acid is a major component of the

extracellular matrix and is found in skin, cartilage,

bone, and many other tissues. It is commercially used

in wound dressing products and has been widely

studied for MN fabrication.187,188 Microhyala�, a

hyaluronic acid-based MN array is marketed for cos-

metic use. Hyaluronic acid MN dissolves rapidly in

interstitial fluid and is degraded within the body by

free radicals found in the extracellular matrix, and

lysosomal enzymes.189 Dextran is another high

molecular weight polysaccharide used in biomedical

applications and MN fabrication. It is biocompatible,

biodegradable, lacks nonspecific cell binding and is

resistant to protein adsorption. Dextran is degraded by

amylases and cleared via the kidney.6 Other polysac-

charides such as starch-based amylopectin although

biocompatible are not a frequent choice for MN fab-

rication as they do not degrade easily.

4.5 Polymers

Most polymers used for drug delivery are biocom-

patible. Natural protein-based polymers such as col-

lagen, gelatin, or zein are approved for different

pharmaceutical usages. Collagen is largely

biodegradable and biocompatible; however, a few

reports indicate poor stability upon swelling in vivo,

nonspecific immune reactions and tissue reactions.

Collagen swells upon contact with aqueous media but

can only be digested by specific collagenases and

pepsin-cleaving enzymes.190 Gelatin, irreversibly

hydrolysed form of collagen, is a common constituent

in food additives and soft capsules. Gelatin in com-

bination with other materials is also studied for MN

fabrication.75,76 Due to the absence of aromatic groups
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(no Tyr and Trp, and low Phe), gelatin is not antigenic.

Like collagen, gelatin also degrades after swelling by

the action of specific peptide cleaving enzymes. Zein

is a GRAS substance and has shown to possess good

biocompatibility, low/no immunogenicity and poten-

tial for development as bone tissue engineering

metal.191,192 MNs made from zein are shown in

Figure 5e. Silk has been studied for preparation of

MNs, however, as an unconventional material, studies

commenting on its biocompatibility status are limited.

Semisynthetic and synthetic polymers are used in

the field of drug delivery including fabrication of

MNs. SU-8 is relatively cheap and does not require

complex machinery for processing. A certain level of

biocompatibility of SU-8 is established, however,

further studies are warranted.193,194 Also, SU-8 does

not disintegrate in the skin and is not biodegradable.

SU-8 MNs can be seen in Figure 5g.

Aliphatic polyesters are biocompatible and degrade

once inserted into the skin. The degradation times of

these polymers are governed by their molecular

weight, crystallinity, surface area exposed to biologi-

cal tissue and ratio of monomers (in case of copoly-

mers such as PLGA). PGA is more hydrophilic than

PLA and degrades faster, as does PLGA with a higher

concentration of glycolide. Aliphatic polyesters

degrade hydrolytically forming naturally occurring

lactic acid. PLA, PGA, and PLGA alone and in com-

bination with other materials such as hydroxyapatite

have been used for bone regeneration and fabrication

of MNs.195–197 Although, these polymers are accepted

as biocompatible, there are reports for delayed

immunological inflammatory responses with the use of

PGA and PLA based implants. This is attributed to the

production of acidic degradation products, however,

the risk could be mitigated with the use of alkaline

salts or inflammatory mediators.198,199 PCL is bio-

compatible and biodegradable polyester used for MN

fabrication.105,200,201 PCL can also degrade hydrolyt-

ically, however, the degradation is much slower than

that of PGA.202 The degradation of PCL can also be

enzyme-mediated, where low molecular weight PCL

remains may cause adverse immunological reac-

tions.202 PCL has exceptional thermal stability and a

low melting point allowing for easy MN fabrication

using micromolding or 3D printing. The stability,

biocompatibility and biodegradability of PCL is

extensively studied as PCL based

implantable Levonorgestrel releasing contraceptive

device, Capronor� is commercially available.203

Polycarbonates and PMMA are both biocompatible

materials reported for MN fabrication. PMMA finds

application as a constituent in bone fillers and bone

cements, and intraocular lenses.204 Polycarbonate (PC)

polymers possess can be made into sheets, fibres, tubes

or complex shapes and the material transparency they

provide finds usage in the fabrication of medical

apparatus, such as syringes, artery cannulas, or blood

filter housings. PC is biodegradable but degrades

slowly, while PMMA is not biodegradable. Bisphenol-

A is released upon degradation of PC and is reported

to cause hormonal side-effects and cancer.205 Addi-

tionally, polycarbonates are stable against a variety of

sterilization techniques (ethylene oxide, gamma and

electron beam irradiation or steam autoclaving) mak-

ing them one of the sought-after materials in medical

device fabrication.

PMVE/MA finds use in the medical and pharma-

ceutical field as bioadhesives, thickening agents, and

film-forming agents.206 Marketed by Ashland with the

market Gantrez�, these polymers have been used to

prepare biocompatible micro and nanoparticles for

drug delivery applications.207 Gantrez has shown to be

relatively nontoxic with oral toxicity tests (LD50 of

8-9g/kg) and has also shown a relative lack of toxic

effects on other organs. Few other studies discuss the

biocompatibility of these polymers, however extensive

studies are limited. Calo et al., report Gantrez based

cryogels for wound care. These PVA-Gantrez cryogels

demonstrated excellent biocompatibility against

human dermal fibroblasts and adhered to wounds

soothing the inflamed skin.208 Similar tests performed

for PMVE/MA MN arrays suggested good biocom-

patibility of the system.102 The anhydride upon contact

with water slowly transforms into free acid, which is

freely water-soluble.

PVA, essentially made by hydrolysis of polyvinyl

acetate is a hydrophilic, biodegradable and biocom-

patible synthetic polymer. It finds use in regenerative

medicine, tissue engineering, fabrication of ocular

inserts and soft contact lenses, and wound heal-

ing.209,210 All grades of PVA are hydrophilic, with

solubility decreasing with increase in molecular

weights. A large number of studies have established

PVA as a biocompatible, non-toxic, non-carcinogenic,

non-immunogenic and inert polymer.211 It gets

hydrolysed quickly and degraded in the body. The

only concern with the use of PVA is irreversible

thermal gelling and loss of transparency upon long-

standing. Also, cross-linkers used for PVA such as

glutaraldehyde, formaldehyde or hexamethylene

diisocyanate may reduce the inherent biocompatibility

of PVA.209 As PVA is highly hydrophilic, it also takes

up moisture quickly and becoming soft compromising

the mechanical strength of structures. PVA is com-

monly used in combination with PVP for drug delivery
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applications. PVP is made of repeating units of

monomer N-vinylpyrrolidone. PVP is highly water-

soluble taking up to 40% of its weight in moisture

making it suitable for applications such as a super-

disintegrant in fast dissolving tablets or as a plasma

expander for trauma victims. PVP is used as a tablet

binder or pore former, film-forming agent for tablet

coatings or coating of medical devices, or as an

excipient in powders, syrups, and parenteral formula-

tions. PVP has low oral and transdermal toxicity, is

hemocompatible and physiologically inactive.212 PVP

is non-immunogenic and non-carcinogenic and has

been studied for delivery of vaccines and genetic

material.213,214

5. Sterilization of MNs

MNs penetrate the epidermis and the dermis which

inherently are sterile areas of the body. Thus, it is

important to ensure that the MNs do not transfer any

bioburden into the body during their application.

Depending on the size of MNs and depth of pene-

tration in tissue intended, regulatory bodies may

require complete sterilization data before clinical

trial or market approval. Using an in vitro setup, we

have previously shown that application of MNs on

skin had a significantly lower transfer of microor-

ganisms into the body against a single hypodermic

needle puncture, however, this is true for MNs which

have been sterilized prior to application. Without

doubt, MNs meant for application to the eye or

internal organs of the body, or MNs which dissolve

completely into the skin will have to completely

sterile. The material of fabrication of MNs is a key

contributor for choosing a sterilization method.

Glass, metal and silicon MNs are easy to sterilize

using a variety of procedures such as dry heat ster-

ilization, moist heat sterilization, gamma radiation,

etc. However, if these MNs are coated with mole-

cules, sterilization processes may affect their struc-

ture and stability. MNs prepared using carbohydrates

or polymers are difficult to sterilize as most of these

materials cannot sustain high temperatures without

undergoing structural changes. A few recent reports

discuss sterile manufacture of MNs loaded with dif-

ferent actives. McCrudden and co-workers investi-

gated the effect of different endpoint sterilization

procedures (steam sterilization, dry heat sterilization

and gamma radiation) for dissolving and hydrogel-

forming MN.215 Ovalbumin and ibuprofen were

model drugs incorporated in lyophilized wafers

(prepared with different sugars and gelatin) placed

over MNs prepared from PMVE/MA or loaded into

the matrix for dissolving MN. Effectiveness of ster-

ilization and MN stability after sterilization was

evaluated by endotoxin quantitation, microbial

assays, drug release studies and MN strength esti-

mation. No bioburden was observed in the drug

wafers or MN. Also, low endotoxin levels were

observed. MN and drug wafers were unstable after

both dry and moist heat sterilization. A Gamma

radiation dose of 25 kGy did not affect hydrogel-

forming MN but damaged the structure of ovalbumin

and altered the appearance and drug release form

ibuprofen loaded dissolving MN. With gamma radi-

ation sterilization, ovalbumin content in dissolving

MN reduced from 101% recovery to about 58%. The

efficiency of gamma radiation for end-point radiation

sterilization was also demonstrated by ascorbic acid

2-glucoside loaded hyaluronic acid dissolving MNs.

Kim and co-workers found that electron beam

maintained ascorbic acid activity post sterilization

while loss of activity was seen with c-ray irradiation

(40 kGy).216 Endpoint sterilization is preferable for

MN sterilization as running an aseptic manufacturing

process is both complex and costly.217 As an alter-

native to sterilization procedures, Garcia and co-

workers report a self-sterilizing MN array patch.

Silver nanoparticles embedded in CMC MNs were

used as antimicrobial agent. The authors suggest that

the use of silver nanoparticles in MNs will keep the

pores created by MNs bacteria-free until the skin is

completely healed.218

6. Conclusions

MNs have transformed the field of transdermal drug

delivery from simple skin patches to point-of-care

devices. The evolution of MNs as a drug delivery

technique has been exponentially rapid with two MN

devices already in the market for clinical use and a

large number in clinical trials. The material of con-

struction has emerged as an important factor in the

design and development of MNs. Different materials

present different advantages and challenges to MN

designing, fabrication and drug loading. The drug

delivery landscape has seen a major shift from simple

solid metal MNs to dissolving needles which can also

administer ‘on-demand’ therapeutics. This has largely

been possible due to the advancements in material

science.

Application of materials for biomedical usage

requires a biocompatibility assessment. This review

comments on the biocompatibility of various materials
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available for MN fabrication. While metals and silicon

present inertness and low immunogenicity for MN

usage, they do not dissolve or degrade and may leave

sharps in the body. On the other hand, polymer MNs

dissolve within the body to release the payload. Most

polymers used for MN fabrication are safe for usage

but may not degrade quickly accumulating in the body

over multiple applications. Further, a few natural

polymers may elicit unwanted immunological reac-

tions. A number of clinical trials are ongoing for the

safety assessment of both placebo and drug-loaded

polymer MNs. A quick application of MNs, such as for

vaccination, may not present a threat, but it is essential

to assess the long-term biocompatibility of MNs pat-

ches intended to be used for hours to days.

MN fabrication techniques have become more pre-

cise and robust with lithographic and molding as the

most common choices of fabrication. Micromolding

presents a simple and cost-effective technique for

fabrication of polymer and sugar MNs but suffers from

disadvantages such as high drying times or post-pro-

cessing, limiting its scalability potential. 3D printing

has emerged as a new fabrication technique for MNs.

Although still in its infancy, a number of MN designs

have already been reported with the use of 3D print-

ing. Most commonly used 3D printing technique

include inkjet printing for MN coatings, SLA and

FDM. While the choice of materials available for use

with 3D printing is currently limited, several 3D

printers are being developed to utilize a wider material

pool. Most techniques for metal MN production are

costly and require sophisticated equipment limiting

their scalability. Fabrication technique choices are

higher for polymeric MNs and a comparative cost

assessment may be performed to select the most cost-

effective technique. It is, however, important to note

that additional costs of sterilization and improved

packaging may be added for certain polymers and

drugs.

The number of MN-based research publications is

on the rise. While numerous in-vivo studies provide

proof-of-concept for delivering new therapeutic

agents, more practical studies for MN development in

terms of long-term storage stability, cost of production

and fate of polymer in the body are largely limited.

MN commercialization is on the way and answering

these key questions will ensure creation of a thriving

market.
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