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Abstract

Carbonyl compounds were prepared by selective oxidation of alcohols in the presence of recoverable
Fe304@Si0, @Pd magnetic nanocatalyst in aqueous media as a green solvent. Molecular oxygen served as an
oxidant. The catalyst was removed from the reaction media by external magnetic field, washed with methanol,
and reused for six more times without any considerable reduction in its reactivity. The chemoselectivity and
regioselectivity of the catalyst can serve for selective oxidation of primary alcohols in the presence of secondary
ones, and for oxidation of unhindered alcohols in the presence of hindered ones.
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1. Introduction

Carbonyl compounds are excellent precursors for the
synthesis of molecules with versatile applications in
industry, pharmacology and other research work.! So,
their synthesis from the corresponding alcohols is
of paramount importance.> Many different ways and
reagents such as oxalyl chloride-dimethyl sulfoxide
(Swern oxidation),* hypervalent iodine* and stoichio-
metric amounts of Cr(VI) salts® have been previously
reported, but they suffer from many drawbacks such as
toxic and hazardous reagents, nonselective alcohol oxi-
dation, noncompliance of atom economy, low yield and
high price, as well as serious environmental damages.
They also produce a lot of waste, which is not acceptable
from the green chemistry point of view. Consequently,
the selective oxidation of alcohols to their corresponding
carbonyl compounds with molecular oxygen, instead of
stoichiometric toxic oxidants in the green medium, has
attracted attention of researchers.® Catalysts speed up
the reactions by reducing the activation energy with-
out being consumed. They are divided into two general
groups, heterogeneous and homogenous.” Among them,
homogenous ones are generally more effective, but the
time-consuming separation and expensive recyclability
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limit their application, especially in industry. Moreover,
the final products can be polluted by the homogeneous
catalysts. On the contrary, heterogeneous catalysts are
non-soluble in reaction media and can be easily removed
from the reaction and reused for several times. The het-
erogeneous catalysts suffer from low yield, which can be
attributed to their poorly defined active sites. Therefore,
the quality of the surface area of a heterogeneous cata-
lyst determines the availability of catalytic active sites
for reactants. To increase the effectiveness of a hetero-
geneous catalyst, its surface area should be increased,
which is possible by using it in nanoscale.® Although
the collision number increases by using nanoparti-
cles, they have generally high surface energy and are
thermodynamically unstable and susceptible to form
agglomeration. By using magnetic nanoparticles and
coating them with an organic linker, not only this defi-
ciency is obviated, but also the long, tedious filtration or
centrifugation removal of nanocatalyst becomes easier
by just applying an external magnetic field.”

Not all metals are magnetic, but it is possible to
couple them with those with magnetic properties directly
or through a ligand. Metal leaching is the problem
of directly attached metals to magnetic nanoparticles,
which is solved by coating the core by organic link-
ers and anchoring active metals to them.'® Moreover,
it has been shown that the reactivity of a nanomagnetic
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catalyst can be even better than a corresponding
homogeneous catalyst. '

For oxidation reactions, different metals like Fe,!?
Cu, ! Co," Bi,!® and Au'® have been used as a cata-
lyst, but among them, palladium-based catalysts (both
homogeneous and heterogeneous) have shown better
activity.!” For green and selective alcohol oxidation,
different metals, oxidants, heterogeneous and homo-
geneous catalysts have been reported in literature up
to now. Among them, the heterogeneous ones have
exceeded the homogeneous ones. '

In this work, we combined the advantages of eco-
friendly molecular oxygen as a green oxidation source,
Pd nanomagnetic particles as an efficient catalyst,
and water as a green solvent for the selective oxida-
tion of alcohols in mild reaction conditions without
any environmentally unfriendly mediator, like 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO). "

2. [Experimental
2.1 General procedure for catalyst preparation

2.1a General procedure for preparation of Fe;0,
@S8i0,: FeCl; (66.58 mmol) and FeCl, (31.56 mmol)
were dissolved in 40 mL deionized water in an inert atmo-
sphere of argon. Ammonium hydroxide 28% (v/v) was
added to the solution to adjust pH=10. The solution was
mechanically stirred at room temperature for 20 min until a
black suspension was formed. The prepared Fe3O4 magnetic
nanoparticles were filtered, washed, and dried. The pow-
der was then dispersed ultrasonically in ethanol for 20 min.
3 mL of tetraethylorthosilicate (TEOS) was slowly added to
the solution. Ammonium hydroxide (3 mL) was added to the
solution within 15 min and stirred for 12 h at 40 °C. The silica
coated Fe3O4 magnetic nanoparticles (Fe304@SiO;) were
collected by external magnetic field, washed with methanol
and dried under vacuum in a rotary evaporator. 2°

2.1b  Preparation of Fe;0;@Si0,@3-glycidoxy-
propyltrimethoxysilane: 2 g of silica-coated Fe3Oq4
was sonicated in toluene for 30 min, and then 11.32 mmol
3-glycidoxypropyltrimethoxy-silane was added and refluxed
for 48 h. The prepared catalyst was washed with methanol
and dried under vacuum. >

2.1c  Preparation of Fe;0,@S8i0,@triazole@Cu:
Fe304 @8Si0, @3-glycidoxypropyltrimethoxysilane (1 g) and
18.2 mmol phenylacetylene were added to the solution of
sodium azide (22.7 mmol), copper(Il) chloride (0.74 mmol)
and sodium ascorbate (0.76 mmol) in THF/water (80/20) for
10 h at 60 °C. The catalyst was removed, washed and dried. 21
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2.1d Preparation of Fe;0,@Si0,@triazole: To
remove Cu from catalyst structure, 1.5 g potassium cyanide
was dissolved in HyO/methanol (1/1, 10 mL) and the solu-
tion was added to Fe304@Si0O, @triazole@Cu which was
synthesized in the previous step and stirred for 5 h at room
temperature. The catalyst was then removed by an external
magnetic field, washed, and dried in air at room tempera-
ture. 2!

2.1e Preparation of Fe;0,@Si 0,@triazole@ Pd:

Potassium chloride (0.3 g) was dissolved in methanol/water
(50/50, 10 mL), and 0.1 g palladium chloride was added to the
solution and stirred for 4 h at room temperature. The trans-
parent and clear reddish solution was [K;PdCly]. The pre-
pared Fe3O4 @Si0, @triazole was dispersed and sonicated for
15 min in 10 mL methanol. The [K;PdCl4] solution was added
to that and stirred for 24 h at room temperature. Then, the cat-
alyst was removed by an external magnetic field, washed 2
times with methanol and dried in air at room temperature. 2>

2.2 General procedure for alcohol oxidation

A mixture of alcohol (1 mmol), KoCOs3 (1 mmol), and catalyst
(1 mmol%) in H>O (5§ mL) was prepared in a flask equipped
with a condenser. The flask was then filled with pure oxy-
gen and equipped with an oxygen balloon. The mixture was
stirred at 80 °C. The progress of the reaction was monitored
by thin layer chromatography (TLC) and gas chromatogra-
phy (GC). After completion of the reaction, the catalyst was
separated by an external magnetic field from the reaction
media and corresponding carbonyl compounds were extracted
with ethyl acetate. To have a complete extraction of products,
sodium chloride was added to the mixture and after separa-
tion of the aqueous layer, the organic solvent was evaporated
by rotary evaporator under reduced pressure. The products
were purified by column chromatography or re-crystallization
method. The separated catalyst was washed two times with
methanol, and dried overnight at room temperature and then
used directly for subsequent reaction runs.

3. Results and Discussion

3.1 Catalyst synthesis and characterization

The  catalyst Fe;0,@8SiO,@triazole@Pd  was
synthesized according to the previously described pro-
cedure by the authors (Scheme 1), and its structure
was re-characterized by field emission scanning elec-
tron microscope (FESEM) (Figure 1), thermal gravi-
metric analysis (TGA) (Figure 2), Fourier transform
infrared spectroscopy (FTIR) (Figure 3), CHN analy-
sis, vibrating sample magnetometery (VSM) (Figure 4)
and inductively coupled plasma optical electron spec-
trometry (ICP-OES).
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Figure 1. FESEM image of the catalyst.
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Figure 2. TGA of the catalyst.

The catalyst shape and size was confirmed by
FESEM. The diameter of the nanoparticles is about
50 nm, and they are approximately spherical (Figure 1).
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Figure 3. FT-IR spectra of the catalyst, (a) Fe3Ou;
(b) Fe304@Si0y; (¢) Fez04@Si0;@triazole; (d)
Fe;04 @Si0, @triazole @Pd.
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Figure 4. VSM of the catalyst.

According to the TGA analysis in Figure 2, adsorbed
water in catalyst structure is removed before 200 °C. The
catalyst decomposition occurs between about 190 °C
and 540 °C, which is equal to ca. 21% of the weight of
the catalyst and certified the immobilization of organic
groups onto the magnetic core. As the catalyst is stable
up to ca. 200 °C, it can be also used for high-temperature
organic reactions.

The FT-IR spectra of the catalyst shows strong
absorption bands at 1150 cm~! and 600 cm™!, which
refer to the Si-O and Fe-O vibrations, respectively
(Figure 3). The peaks at 2930 and 2910 cm™! are
attributed to C-H stretching vibrations, which confirm
the presence of the alkylsilane groups on Fe;O,@SiO,.

The palladium loading on the catalyst surface was
determined by ICP-OES as 1.24 mmol.g~!, while the
nitrogen content was determined by CHN analysis as
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Scheme 2. Various possibilities for coor-
dination of Pd atoms.

3.00 wt%. This amount of nitrogen corresponds to ca.
0.71 mmol.g"'N; moiety. This means that not all the
Pd atoms are exclusively coordinated by the nitrogen
atoms in the N3 group, as shown in Scheme 1. There
are also some other possibilities as shown in Scheme
2. As shown, Pd atoms can also be chelated by oxygen
atoms present in the structure. It is also possible that a
Pd atom has been coordinated by a nitrogen atom of a
particle chain along with a nitrogen or an oxygen atom
of another chain.

Anyway, owing to the strong coordination of
nitrogen and oxygen groups to palladium, metal loading
was relatively high, and leaching during reactions was
negligible. Furthermore, palladium black formation,
which is generally resulted from palladium nanoparti-
cles agglomeration, was not formed here; so the activity
of palladium did not diminish. The magnetic property
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of the catalyst was measured by a vibrating sample
magnetometer (VSM) at room temperature. According
to Figure 4, the saturation magnetization of the cata-
lyst is about 38 emu/g with a magnetic field within the
range of —9000 to 9000 Oe. This magnetization value is
enough for separating the magnetic catalyst from reac-
tion media by an external magnetic field.

3.2 Catalytic experiments

To find the optimized reaction conditions, oxidation
of 1.0 mmol benzyl alcohol was chosen as the model
reaction. An oxygen balloon was chosen as an oxidant
source. The effect of the catalyst, base and solvent has
been investigated (Table 1). As it is shown in Table 1
(Entries 1-3), in the absence of the catalyst, no prod-
uct was formed after 4 h in 3 different solvents. The
addition of the catalyst (0.5 mmol%) changed the yield
of the reaction in aqueous media considerably, whereas
the reactions in toluene and H,O/'BuOH were not suc-
cessful (Entries 4-6). By increasing the amount of the
catalyst from 0.5 mmol% to 1 mmol %, the reaction yield
was increased from 45 to 96% in water (Entries 6 and 9).
The same reaction, as in Entry 9, was repeated but in the
absence of any base. As shown in Entry 11, it was real-
ized that the presence of a base is necessary. Obviously,

Table 1. Optimization of the conditions for the oxidation of benzyl alcohol®.
o)
catalyst, base,
©/\OH and solvent ©)J\H
Entry Base Solvent Catal. (mmol%) Temp. (°C) Time (h) Yieldb(%)
1 K,COs3 Toluene - 80 4 Trace
2 K,CO3 H,O/ '‘BuOH - 80 4 Trace
3 K»>CO3 H,O - 80 4 Trace
4 K>CO3 Toluene 0.5 80 4 Trace
5 K,CO3 H,O/ '‘BuOH 0.5 80 4 Trace
6 K,CO3 H,O 0.5 80 4 45
7 K,CO3 Toluene 1 80 4 Trace
8 K,CO3 H,O/ '‘BuOH 1 80 4 18
9 K,CO3 H,O 1 80 4 96
10 KyCO3 H,O 0.5 80 10 65
11 - H,O 1 80 15 Trace
12 NayCOs3 H,O 1 80 4 15
13 K3POy4 H,O 1 80 4 15
‘14 K,CO3 H,O 1 80 24 60
415 K,CO;3 H,O 1 80 24 Trace

[a] reaction conditions: 1 mmol alcohol and 1 mmol base in 5 mL solvent equipped with a balloon of O, at 80 °C.

[b] GC yields.
[c] in the presence of air as an oxidation source.
[d] in the absence of any oxygen source (N, bubbling).
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Table 2. Oxidation of different alcohols using Fe304 @SiO, @triazole @Pd catalyst®.

OH o
)\ Cat. (1 mmol%), K,CO; (1 mmol) )J\
R R H,0 (5 mL), 80 °C, O, (1 atm) R Ry
1 mmol

No. R R, Time (h) Yield (%)° TON TOF
1 CH3(CHy)e H 18 85 850 472
2 CH3(CHy)4 Me 18 83 830 46.1
3 CsHs H 4 96 960 240
4 4-CICgHy H 10 93 930 93
5 2-CICgH4 H 12 Trace - -

6 4-MeCgHy H 4 97 970 242.5
7 2-MeCgHy H 10 41 410 41
8 4-MeOCgHy H 4 97 970 242.5
9 2-MeOCgHy H 10 39 390 39
10 4-NO,CgHy H 24 77 770 32
11 2-NO,CgHy H 24 Trace - -
12 CgHs CsHs 16 90 900 56.25
13 CsHs CgH5CO 16 85 850 53.13
14 CsHs Me 10 89 890 89
15 CeHs Et 10 85 850 85
16 Cyclohexanol 12 93 930 71.5
17 Cyclopentanol 12 90 900 75

[a] reaction conditions: 1 mmol alcohol and 1 mmol K>CO3 in 5 mL H»O, the balloon of O,.

[b] GC yields.

it seems that K,COj is the most suitable base among the
others (compare Entry 9 with 12 and 13).

The reaction with optimum amounts of the
ingredients was tested in the air, instead of the oxygen
atmosphere. The yield was not desirable, and after 24 h,
only 60% benzaldehyde was gained (Table 1, Entry
14). The reaction was also investigated in the nitrogen
atmosphere (in the absence of any oxygen source). No
product was obtained, which shows that palladium can-
not act as the oxidant, solely (Table 1, Entry 15).

According to these data, the best result was obtained
when 1 mmol% of Fe;0,@SiO, @triazole @Pd catalyst
along with 1 mmol of K,COj in water media and oxygen
were used (Entry 9).

Encouraged by these results, the scope of the
reaction was expanded for oxidation of various alcohols.
The results have been summarized in Table 2. Differ-
ent kinds of primary and secondary benzylic alcohols
with both electron-withdrawing and electron-donating
groups were selectively oxidized to their corresponding
carbonyl compounds with excellent yields. The cata-
lyst was also able to oxidize primary and secondary
aliphatic alcohols 1-octanol and 2-heptanol to octanal
and heptanone, respectively, with good to excellent yield
(Table 2, Entries 1 and 2). It is noteworthy to mention
that no over-oxidation of primary alcohols to carboxylic
acids was observed.

In comparison to benzyl alcohol (as a primary
alcohol), 1-phenyl ethanol (as a secondary one) needed
more time and gave less yield, obviously due to the steric
effects and less activity (Table 2, Entries 3 and 14).

The reaction is substantially dependent on the
electron nature of the substituents and their positions.
Benzylic alcohols with electron donating groups at 4-
position such as 4-methyl and 4-methoxy were oxidized
with more yield in shorter reaction times (Table 2,
Entries 6 and 8), while benzylic alcohols with electron-
withdrawing groups such as 4-nitro need considerably
more times (24 h) and afford less yield (77%) (Table 2,
Entry 10).

The benzyl alcohols with a substituent at 2-position
were substantially less active, because of steric hin-
drance. 2-Methyl- and 2-methoxybenzyl alcohols were
converted to their corresponding aldehydes with only 41
and 39% yield after 10 h (Table 2, Entries 7 and 9). The
less reactive 2-chloro and 2-nitrobenzyl alcohols were
not oxidized to their corresponding aldehydes.

To show the merit of this restriction, we have
investigated the oxidation of 1 mmol of 4-methoxyben-
zyl alcohol in the presence of 1 mmol of 2-methoxybe-
nzyl alcohol and monitored the progress of the reaction
after 2 and 4 h. The only product was 4-methoxybenzal-
dehyde with 52% and 97% yield, respectively, which
shows the selectivity of the catalyst for oxidation of
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unhindered alcohols versus hindered ones (Scheme 3).
It is postulated that in the oxidation of alcohols by
Pd-species, the reaction proceeds via the formation
of a Pd(II)-alcoholate.'”” As in the Fe;0,@SiO,
@triazole@Pd catalyst, Pd (II) sites are chelated by
several nitrogen/or oxygen atoms, it is understandable
that less hindered alcohols react faster than the hindered
ones.

In order to examine the chemoselectivity of the
catalyst, a mixture of benzhydrol as a secondary alcohol
and benzyl alcohol as a primary alcohol was exam-
ined according to optimized reaction conditions. No
benzophenone was produced, while benzyl alcohol was
quantitatively reacted to benzaldehyde. This approves
the advantages of this catalyst for selective oxidation of
unhindered primary alcohols in the presence of hindered
secondary ones (Scheme 4).

3.3 Leaching test

In the middle of the model reaction, the catalyst was
removed from reaction media by a magnet, and the yield
of the product was determined by GC as 54%. The reac-
tion was continued for the rest of the time. No change
in the yield was observed, which is a confirmation to
declare that during the reaction, the palladium species
did not leach into the aqueous phase and hence, the cat-
alyst acts as a really heterogeneous catalyst.

3.4 Recovery test

The separation of the catalyst from the reaction media
was very easy. At the end of each reaction, the catalyst

J. Chem. Sci. (2018) 130:162

Figure 5. Removal of the catalyst
with external magnetic field.
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Figure 6. Reuse of catalyst in alcohol oxidation
reaction.
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Figure 7. FESEM image of the catalyst after
recovery.

was easily removed just by applying an external
magnetic field (Figure 5).

The catalyst was washed two times with methanol,
dried at room temperature and reused for at least six
more times, without any negligible reduction in reactiv-
ity (Figure 6).
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Figure 8. X-ray diffraction pattern of the catalyst after
recovery.

The Pd content after the 7" run was measured by AAS
which showed no significant loss of Pd (1.16 mmol.g ™"
vs. 1.24 mmol.g™" at the beginning).

The morphology of the recovered catalyst was
analysed by FESEM (Figure 7). By comparing Figure 7

Page 7 of 10 162

with Figure 1, it is clear that the size and the morphology
of the particles remained unchanged.

Figure 8 is the powder X-ray diffraction pattern of
the recovered catalyst, in the range of 26 from 5 to
80 degrees. The diffraction pattern corresponds quite
well to the Fe;0,/SiO, sample previously reported,
which means that the structure of the catalyst is
unchanged.*°

3.5 Comparison of the effectiveness of the catalyst

A comparison between the present catalyst and other
catalysts for alcohols oxidation has been done and the
results are shown in Table 3. It is obvious that our cat-
alyst is comparatively good for selective oxidation of
alcohols to their corresponding carbonyl compounds, in
the presence of molecular oxygen as an oxidant, water
as a green media, and in shorter reaction time.

The turnover frequency (TOF) and turnover number
(TON) of the catalyst have been compared to some

Table 3. Comparison of different catalysts in the oxidation of benzyl alcohol.

No. Catal. Solvent Time (h) Temp. (°C) Yield (%) Oxidant Ref.
1 A H,0 4 80 96 0, This work
2 B Toluene 1 rt 99 (023 23
3 C Free 1.5 50 85 0, 24
4 D PhCF; 8 rt 100 air 12
5 E H,0 0.33 50 91 H,0, =
6 F Toluene 3.5 80 99 0, 26
7 F Toluene 55 80 99 air 26
8 G Toluene 12 80 80 air %
9 H H,0 4 50 100 0, 27
A: 1 mol% Fe3;04@ SiO, @triazole@ Pd.

B: 0.4 mol% Au@periodic mesoporous organosilica.

C: 0.06 g Fe304/Cys-Pd.

D: 0.5 mmol NaNO3,, 0.5 mmol FeCl3-6H;0, 0.2 mmol TEMPO.

E: 10 mol% Fe304.

F: 0.4 mol% Pd@SBA-15.

G: 10 mol% Fe30y4.

H: 0.2 mol% nanopartice-TEMPO.

Table 4. The Comparison of TON and TOF of different catalysts in the oxidation of benzyl alcohol.

No. Catal. Time (h) Temp. (°C) oxidant TON TOF Ref.
1 A 5 80 (0] 960 240 This work
2 C 1.5 50 0, 480 320 24
3 I 6 80 H,0, 720 120 28
4 J 2.5 39 NMMN 445 178 2

A: 1 mol% Fe3;04@ SiO, @triazole@ Pd.
C: 0.06 g Fe304/Cys-Pd.
I: 25 mmol% nano-Fe3zO4_Pd.

J: 2 mmol% palladium triphenylphosphine complexes containing N-(2-pyridyl)-N-(salicylidene) hydrazine; NMMN: N-

methyl morpholine N-oxide.
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of the similar catalysts in literature. The data have
been summarized in Table 4, which show an accept-
able TON and TOF for benzyl alcohol oxidation by the
Fe;0,@S10, @Triazole@Pd versus other mentioned
catalysts.

4. Conclusions

In this work, we synthesized carbonyl compounds
by selective oxidation of alcohols in the presence
of recoverable Fe;0,@SiO,@Triazole@Pd magnetic
nanocatalyst in aqueous media as a green solvent.
Molecular oxygen served as an oxidant. The absence
of mediators like 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) and eco-unfriendly oxidizing agents and
toxic and hazardous organic solvents make this method
more precious. The catalyst was removed from the reac-
tion media by a magnetic field, washed with methanol,
and reused for at least six more times without any con-
siderable reduction in its reactivity. The notable features
and major advantages are ease of catalyst preparation,
recyclability and reusability for several times, oper-
ational simplicity, and easy work-up procedure. The
chemoselectivity and regioselectivity of the catalyst
can serve for selective oxidation of primary alcohols
in the presence of secondary ones, and for the oxida-
tion of unhindered alcohols in the presence of hindered
ones.
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