
J. Chem. Sci. (2018) 130:98 © Indian Academy of Sciences
https://doi.org/10.1007/s12039-018-1498-0

REGULAR ARTICLE

Special Issue on Modern Trends in Inorganic Chemistry

Intermolecular dihydrogen bonding in VI, VII, and VIII group
octahedral metal hydride complexes with water

KARAKKADPARAMBIL S SANDHYAb, GEETHA S REMYAa and
CHERUMUTTATHU H SURESHa,∗
aChemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and
Technology, Trivandrum, Kerala 695 019, India
bGovernment College Kariavattom, Trivandrum, Kerala, India
E-mail: sureshch@niist.res.in, sureshch@gmail.com

MS received 19 March 2018; revised 23 May 2018; accepted 24 May 2018; published online 12 July 2018

Abstract. The nature of dihydrogen bonding (DHB) in VI, VII, and VIII group octahedral metal hydride
complexes with H2O has been studied systematically using quantum theory of atoms-in-molecule (QTAIM)
analysis. A dihydrogen bond (H· · ·H) between hydride ligand and hydrogen of H2O is revealed in QTAIM
analysis with the identification of a bond critical point (bcp). The DHB is due to the donation of electron density
from the hydride ligand to the hydrogen of H2O. A strong linear correlation is observed between intermolecular
H· · ·H distance (dHH) and electron density (ρ) at the bcp. Structural parameters suggested the highly directional
nature of DHB. Weak secondary interactions between oxygen of water and other ligands contribute significantly
to the binding energy (Eint) of DHB complex (2.5 to 13.2 kcal/mol). Analysis of QTAIM parameters such as
kinetic- (Gc), potential- (Vc) and total electron energy density (Hc) revealed the partially covalent character
of DHB in majority of the complexes while a few of them showed closed shell character typical of purely
non-covalent interactions.

Keywords. Dihydrogen bond; QTAIM; metal hydrides; non-covalent interaction.

1. Introduction

The term “dihydrogen bond” (DHB) was first proposed
by Crabtree et al., in 1996 when they investigated certain
N–H· · ·H–B intermolecular interactions.1 They also
explored the existence of similar M–H· · ·H–C (M, tran-
sition metals) type of unconventional hydrogen bonding
and reported the internuclear H· · ·H distance, dHH in
the range 1.6–2.1 Å.2 The experimental studies dis-
closed that the stabilizing energy of DHB is within
3–7 kcal/mol3,4 while considerable number of experi-
mental and theoretical studies report on the characteriza-
tion of DHB systems.5–9 Various groups have studied the
distinctive features of DHB systems using spectroscopy,
proton affinity measurements, and analysis of thermo-
dynamic data.10–14 Today, DHB has been enrolled as
a pretty well-understood concept in chemical bonding
whereas potential new applications of DHB is getting
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unfolded in many emerging areas such as hydrogen
storage, water-splitting reactions, crystal engineering,
catalyst tailoring and catalysis.15–17 The D–Hδ +· · ·δ +H–
A interaction, (where D and A are proton donors and
acceptors, respectively) plays a crucial role in proton
transfer processes and σ bond metathesis reactions.18,19

Szymczak et al., reported in detail the complexation
patterns of (η2 −H2)/D · · · (H2)

+· · ·A− ion pairs and
the related dihydrogen elimination reactions.20 Belkova
et al., explored the equilibrium between dihydrogen
bond intermediate and associated ion paired dihydro-
gen complex formation in a system CpRu(dppe)H
(dppe = Ph2PCH2CH2PPh2) with HA.10 Later stud-
ies in this area showed the DHB formation between
two metal hydrides, as for example, [OsH2(PMePh2)4]/
[CpM(H)(CO)3] and [(tBuPCP)Ni(H)]/[CpW(H)(CO)3]
(tBuPCP = 2,6-C6H3(CH2PtBu

2)2). 21 Formation of
intramolecular DHB has been well established in vari-
ous other complex systems, such as, [IrH2(PMe3)(2-NH2

C6H4)(PPh3)2]0/+1, [Ir(PEt2Ph)2H2(PPh3)2(2-NH2C5H4

1
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N)]+, [IrH3(PPh3)2(2-NH2C5H4N)], [Ir(PMe3)4(H)
(OH)] and [Fe(H)2(H2)(PEt2Ph)4]. 2

In our previous study, the formation of Ru–H· · ·H–O
type DHB complex is invoked to explain the mechanism
of water splitting ability of Milstein catalyst22 and sev-
eral other studies showed that increasing the hydricity
of M–H bond is attractive for designing water splitting
reactions of metal hydride complexes.17–20 In a recent
study, we showed that hydricity of several group VI and
group VII octahedral metal hydride complexes of Mo,
W, Mn, and Re complexes can be quantified from the
electrostatic potential minimum observed on the hydride
ligand.23 These studies suggest that the M–H· · ·H–O
DHB interaction and the associated H2 elimination reac-
tion is intimately connected with the nature of H· · ·H
bond. Grabowski et al., and Alkorta et al., have used
quantum theory of atoms-in-molecule (QTAIM) analy-
sis on the topographical properties of electron density at
the H· · ·H contact of small linear molecules to describe
the nature of interaction as well as to find a correlation
between energetic parameters and dHH.7,24,25 The nature
of DHB was also studied by linear attack of small inor-
ganic/organic molecules (NH3, CH4, HF, etc.) and metal
hydrides such as SiH4, LiH, BeH2, MgH2, etc. 26–28 In
the present work, QTAIM analysis is used to predict the
nature of dihydrogen bonding in transition metal com-
plexes. Further, by studying M–H· · ·H–O interaction,
suitable hydride complexes can be proposed for efficient
water-splitting reactions.

2. Computational methodology

The quantitative structural and bonding information was
obtained from the topological QTAIM analysis proposed by
Bader.29,30 The molecules were scrutinized in terms of criti-
cal points (at the critical points ∇ρ = 0). Four types of critical
points were found in electron density topography, viz., (3, −3)
maxima, (3, +3) minima, (3,+1) saddle point and (3,−1) sad-
dle point. The maxima correspond to nuclear positions and a
minimum appears in caged structures. Ring-shaped molecules
show (3, +1) saddle point while (3, −1) saddle points were
seen between bonded pairs of atoms. The (3, −1) critical
points are also called bond critical point (bcp). Laplacian of
electron density at bcp, ∇2ρ, is another criteria for assess-
ing the nature of the bond, which relate with kinetic (Vc) and
potential (Gc) energy densities at the bcp through the local
virial theorem (1),

(1/4)∇2ρ = 2Gc + Vc (1)

by which partially covalent as well as closed shell interac-
tion can be resolved from the sign of the sum of Vc and
Gc. The summation (Vc + Gc) is called the total electron
energy density, Hc where a positive value represents weak
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Figure 1. Dihydrogen bond interaction and secondary
interaction of some representative complexes with water are
shown by QTAIM molecular graph. Atom colours: ash = H,
black = C, purple = O, blue = N, green = Cl, orange = P
and small red sphere = bcp.

or closed shell bonding and a negative value means partially
covalent bond.30 Wave functions (wfn) of optimized geome-
try are required to estimate QTAIM parameters. All calcula-
tions were performed at B3LYP31,32 density functional theory
as implemented in the Gaussian03 program.33 Effective core
potential (ECP) of Hay and Wadt with an added f polariza-
tion functions were used for transition metals to replace the
core electrons.34 Double-ξ valence basis set (LANL2DZ) was
selected for transition metals and for all other atoms 6-31G(d,
p) basis set was chosen.34,35 Single point calculations at the
same level were performed for describing solvation effect
using SMD method.36 To reduce computation time, various
bulky phosphine ligands of complexes were replaced with
simple phosphine ligand (PH3).

3. Results and Discussion

We have modelled Mo, W, Mn, Re, Fe and Ru metal
hydride complexes comprising of various ligands in
the coordination sphere. Theoretical observations of
structural parameters for most of the complexes were
explained in our previous paper.37 Majority of the com-
plexes contain phosphine ligands which enhance the
negative charge on the hydride ligand. Other ligands in
the complexes are H2PCH2CH2PH2, H2NCH2CH2NH2,
heterocyclic ligand, phosphine, silyl, chloro, fluoro,
C≡CH, NO, N2, and CNO. All structural formulas can
be seen in Table 1. The study focuses on DHB formation
between the hydride ligand in the complex and hydrogen
of water.

Figure 2. Correlation between ρ at DHB bcp and dHH.
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Figure 3. Correlation between ρ at DHB bcp and binding
energy. The two Ru complexes are not used in the linear plot.

The dHH of all complexes lies in the range
1.623 Å–2.062 Å (Table 1). This range is consistent
with the distance reported for the organic and linear s
or p block hydride systems as well as for many tran-
sition metal complexes.38–40 Mn(CO)4(PH3)H· · ·H2O,
Re(CO)5H· · ·H2O, Ru(PH3)3Cl(CO)H· · ·H2O, Ru
(PH3)2(CO)2(NCO)H· · ·H2O and Ru(PH3)2(CO)3

H· · ·H2O complexes show higher dHH values compared
to other complexes. The binding energy (Eint) for the
water adducts are in the range of 5.3 to 13.2 kcal/mol,
which is similar to intramolecular H· · ·H bond strength
reported by Crabtree et al. 3,41 The highest Eint

10.6 kcal/mol and 13.2 kcal/mol are observed for the Ru
complexes Ru(en)(PH3)2ClH and Ru(pae)2ClH, respec-
tively, whereas the weakest Eint 5.3 kcal/mol is observed
for Ru(PH3)3F(CO)H· · ·H2O. Lower ranges of Eint cor-
relate to larger dHH values. The binding energy of water
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Ru(pae)2ClH...H2O   Ru(en)(PH3)2ClH…H2O   

Fe(dpe)2(Py)H...H2O Fe(dpe)2(Cl)H...H2O

Mn(CO)3(dpp)H...H2O W(CH)(dpe)2H…H2O

Figure 4. QTAIM molecular graph of representative DHB complexes showing secondary interactions.

adducts is also calculated with the inclusion of solvent
effect (Eint(sol)). Solvation effects decreased Eint by 50–
60% compared to the gas phase values (Table 1).

Molecular graph as seen in QTAIM is provided in Fig-
ure 1 for some representative cases. A bcp is observed
for the H· · ·H DHB interaction in all the complexes. The
ρ value at bcp for all the systems is in the range 0.011–
0.028 a.u. The strength of DHB is proportional to ρ and
it decreases with increase in dHH distance (Figure 2).
The Laplacian ∇2ρ of all the systems fall in this range
0.033–0.048 a.u. which is similar to the range reported

by Grabowski et al., (0.049–0.016 a.u.) for a wide
spectrum of dihydrogen interactions.42

The M–H· · ·HO type DHB formation leads to a slight
elongation (0.005 Å–0.020 Å) of OH bond distance of
water (dOH). Further, the H· · ·HO angle (θ) is in the range
141–179◦ suggesting that among various possible ori-
entations of water around the hydride ligand, a collinear
approach of M–H and OH bonds is mostly preferred,
indicating the highly directional nature of DHB.

An increasing trend in binding energy (Eint) with an
increase in the ρ value at the DHB bcp is observed
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for most of the complexes (Figure 3) indicating that
the water adduct formation depends on the strength of
DHB energy. The deviations in the linear trend can be
attributed to interactions other than DHB (secondary
interactions). For instance, a noticeable deviation in the
plot shown by Ru(pae)2ClH· · ·H2O can be attributed to
the two NH· · ·OH, interactions as seen in the QTAIM
molecular graph (Figure 4) between the oxygen of
water and the NH bonds of the chelating ligands. Such
interactions lead to significant rise in binding energy
(13.2 kcal/mol). The complexes, Fe(dpe)2(PY)H· · ·H2O
and Fe(dpe)2(Cl)H· · ·H2O also exhibit a similar kind
of interaction between the PH bonds of the chelat-
ing ligand and oxygen of water. Similarly, the higher
binding energy of Ru(en)(PH3)2ClH· · ·H2O can be
attributed to the presence of one NH· · ·OH, inter-
action (Figure 4). A secondary interaction between
a CH2 unit of a chelating ligand and oxygen of
water is also possible. However, such interactions are
very weak and do not significantly alter the correla-
tion trend. Examples belonging to this class of com-
plexes are Mn(CO)3(dpp)H· · ·H2O, Mn(dpe)2N2H· · ·
H2O, Fe(dpe)2(CN)H· · ·H2O, Ru(dpe)ClH· · ·H2O,
Ru(dpm)2ClH· · ·H2O and Mo(dpe)2(NO)H· · ·H2O.

The positive ∇2ρ values observed for all the dihydro-
gen complexes suggest their weak non-covalent nature
and such interactions lead to the contraction of elec-
tron density towards each hydrogen nucleus. In all the
cases, |Vc| > 2Gc indicating that the interactions are
non-covalent.30 According to Ziółkowski et al., a bcp
showing a purely non-covalent interaction has the ratio
−Gc/Vc greater than one.43 Figure 5 gives a linear
relationship between DHB bond distance and −Gc/Vc

which indicates that only eight out of forty complexes
studied herein fulfil this criterion. The purely covalent to
partially covalent complexes can also be distinguished
well from the sign of Hc (Table 1). Positive Hc values in
the range 0.000 to 0.0013 au correspond to purely non-
covalent closed shell interaction while the rest in the
range −0.0001 and −0.0027 a.u. can be attributed to the
partially covalent interaction.42,44 The DHB complexes
with dHH in the range of 1.863–2.062 Å belong to purely
non-covalent and those in the range 1.623–1.815 Å
belong to partially covalent complexes (Figure 5). The
partially covalent nature of the DHB is conducive for
H2 elimination reactions.45,46

4. Conclusions

The nature of dihydrogen bonding in octahedral metal
hydride complexes (metal = Mn, Re, Mo, W, Fe and
Ru) with H2O has been studied using QTAIM analysis.

y = 0.7543x - 0.3793
R = 0.989
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Figure 5. Correlation between QTAIM parameters and
dHH.

A bcp between H· · ·H bond indicates a weak dihydro-
gen bond (DHB) formation between the hydrogen of
water and the hydride of the metal complex. Partially
covalent nature of DHB is revealed for the majority
of the complexes while a few of them showed closed
shell and purely non-covalent interactions. The highly
directional nature of DHB is revealed through struc-
tural analysis while the energetics showed stabilizing
secondary interactions between the oxygen of water and
nearby ligands. The partially covalent character of DHB
is helpful for promoting H2 elimination reaction from the
complexes.

Supporting Information (SI)

Tables showing secondary interaction data, and coordinates of
all complexes are given in supplementary information avail-
able at www.ias.ac.in/chemsci.
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