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Abstract. In this paper we explore the validity of the Rosenfeld and the Dzugutov relation for the Lennard-
Jones (LJ) system, its repulsive counterpart, the WCA system and a network forming liquid, the NTW model.
We find that for all the systems both the relations are valid at high temperature regime with an universal
exponent close to 0.8. Similar to that observed for the simple liquids, the LJ and the WCA systems show a
breakdown of the scaling laws at the low temperature regime. However for the NTW model, which is a simple
liquid, these scaling laws are valid even at lower temperature regime similar to that found for ionic melts. Thus
we find that the NTW model has mixed characteristics of simple liquids and ionic melts. Our study further
reveals a quantitative relationship between the Rosenfeld and the Arrhenius relations. For strong liquids, the
validity of the Rosenfeld relation in the low temperature regime is connected to it following the Arrhenius
behaviour in that regime. Finally we explore the role of pair entropy and residual multiparticle entropy in the
dynamics as a function of fragility of the systems.
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1. Introduction

A semi-quantitative relation between dynamical prop-
erties like diffusivity or relaxation times and the ther-
modynamics has been proposed by Rosenfeld1,2 and
recently it has been extensively studied for different
systems.3 9 The relationship suggests that the fluid
should follow X∗ = C exp[−KSex], where X∗ is the
dimensionless dynamical quantity and Sex is excess
entropy which is the difference between the total ther-
modynamic entropy (Stot ) and the corresponding ideal
gas entropy (Sid) at the same temperature (T ) and den-
sity (ρ). C and K are the constants in the Rosenfeld
relation. In a liquid due to the structural correlation
the total entropy is less than the corresponding ideal
gas entropy. Thus, the excess entropy has a negative
value. It can also be expanded in an infinite series,
Sex = S2 +S3 + ....Sn, where Sn is the entropic contribu-
tion due to n-particle spatial correlation.10 For a binary
system, the entropic contribution due to the pair corre-
lation (S2) can be written in terms of the partial radial
distribution functions,
S2

kB

=−ρ

2

∑

α,β

xαxβ

∫ ∞

0

{gαβ(r) ln gαβ(r)−[gαβ(r)−1]}dr,
(1)

∗For correspondence
†
Dedicated to the memory of the late Professor Charusita Chakravarty

where gαβ(r) is the pair correlation between particles of
type α and β, ρ is the density of the system, xα is the
mole fraction of component α in the mixture, and kB

is the Boltzmann constant. Thus the excess entropy can
be written as a contribution from the pair, S2 and higher
order terms, �S. The �S contains all the contribution
beyond two particles11 14 and is written as,

�S = Sex − S2 =
∞∑

n=3

Sn, (2)

where, Sn is the entropic contribution due to n-particle
spatial correlation.10

In liquid state theory, the structure of a liquid is
primarily described by radial distribution function and
hence its entropic contribution plays a crucial role in
predicting the dynamical quantities. For simple liquids
the pair entropy S2 provides 80–90% contribution to the
excess entropy.4,15 Based on this microscopic picture,
Dzugutov proposed a relationship between pair excess
entropy S2 and dynamical quantity which is given by
X∗ = C1 exp[−K1S2].16 Therefore, the Dzugutov scal-
ing law is considered as a special case of the Rosenfeld
scaling.

Although the Rosenfeld relation is semi-empirical in
nature, Bagchi and co-workers have derived it using
the connection between excess entropy and Zwanzig’s
rugged energy landscape model of diffusion.17 19
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Samanta et al., have found that the mode coupling dif-
fusion coefficient can be fitted to the Rosenfeld scaling
under certain approximations.20 In a recent study we
find that mode coupling theory (MCT) vertex is related
to pair excess entropy and higher order MCT calcula-
tion in the schematic limit can provide the phenomeno-
logical Rosenfeld relation.21 Thus, the scaling law has
been derived using different theories.

The Rosenfeld scaling relation is found to be valid
for a wide variety of liquids including simple liquids,4

water,22 ionic melts,5,6,8 model polymeric melts3 and
even for the data obtained in different experiments.23 25

However the Rosenfeld behaviour is not same for all
the systems. For most of the systems like simple liquids
and water the scaling breaks down in the low temper-
ature regime. For ionic liquids, the Rosenfeld relation-
ship is found to be valid up to much lower temperature
and the value of the Rosenfeld exponents are differ-
ent from that found for simple liquids.8 The ionic melts
are known to be network forming liquids. Recently
Coslovich and Pastore have proposed a new model of a
simple liquid (NTW model) which mimics the proper-
ties like the structure and the dynamics of the network
forming liquids.26,27 Since earlier studies have reported
the Rosenfeld behaviour to be different for simple
and network forming liquids,7,8 it will be interest-
ingly to investigate the Rosenfeld scaling of the NTW
model.

In this present work, using molecular dynamics
simulations we perform a comparative study of the
validity of the Rosenfeld relation for a few simple liq-
uids, the LJ system, its repulsive counterpart known
as WCA (Weeks-Chandler-Andersen) system and the
NTW model. The earlier study of the Rosenfeld rela-
tionship for the LJ and WCA systems have been per-
formed in a moderate density range (1.05–1.25).7 Here
we study a higher density range from 1.2 to 1.6 and
find that the LJ and WCA systems follow the Rosen-
feld and Dzugutov scaling laws only up to moderately
high temperature. On the other hand, similar to that
found for ionic melts8 the Rosenfeld relationship for
the NTW model is valid upto a much lower temper-
ature. However, the Rosenfeld exponent at high tem-
perature appears to be similar to that found for simple
liquids which is different from the value obtained
for the ionic melts.8 Thus our result shows that the
NTW model has mixed characteristics of simple liq-
uids and ionic melts. We show a connection between
the validity of the Rosenfeld relation and the Arrhenius
behaviour. Our study predicts that for the NTW model
the validity of the Rosenfeld relation at the low temper-
ature is connected to it being a strong liquid. We also
study the independent role of pair entropy and residual

multiparticle entropy on the dynamics as function of
fragility of the system.

The paper is organized as follows: The simulation
details are given in Section 2. Section 3 contains a dis-
cussion of presented results and Section 4 contains a
brief conclusion.

2. Simulation Details

In this study, we perform extensive molecular dynam-
ics simulations for three-dimensional binary mixtures
in the canonical ensemble. The system contains NA par-
ticles of type A and NB particles of type B under peri-
odic boundary conditions. The total number density is
fixed at ρ = N/V with the total number of particles
N = NA + NB and a system volume V . The models
studied here, are the well-known models of glass-
forming liquids: the binary Kob-Andersen Lennard-
Jones (LJ) liquids28 and the corresponding WCA
version (WCA)29 and a network-forming (NTW)26 liq-
uid that mimics SiO2 with short-range spherical poten-
tials. The molecular dynamics (MD) simulations have
been carried out using the LAMMPS package.30 For
all state points, three to five independent samples with
run lengths > 100τ (τ is the α- relaxation time) are
analyzed.

2.1 LJ and WCA: Binary mixture of Kob Andersen
Lennard-Jones particles and
corresponding WCA version

The most frequently studied model for glass form-
ing liquids is Kob-Andersen model which is a binary
mixture (80:20) of Lennard-Jones (LJ) particles.28 The
interatomic pair potential between species α and β, with
α, β = A,B, Uαβ(r) is described by a shifted and
truncated Lennard-Jones (LJ) potential, as given by:

Uαβ(r)=
⎧
⎨

⎩

U
(LJ)

αβ (r; σαβ, εαβ)−U
(LJ)

αβ (r
(c)

αβ ; σαβ, εαβ),

r ≤ r
(c)

αβ

0, r >r
(c)

αβ

(3)

where, U
(LJ)

αβ (r; σαβ, εαβ) = 4εαβ[(σαβ/r)12 − (σαβ/r)6]
and r

(c)

αβ = 2.5σαβ for the LJ systems (LJ) and r
(c)

αβ

is equal to the position of the minimum of U
(LJ)

αβ

for the WCA systems ( WCA).29 Length, tempera-
ture and time are given in units of σAA, kBT /εAA and
τ = √

(mAσ 2
AA/εAA), respectively. Here we have simu-

lated Kob Andersen Model with the interaction param-
eters σAA = 1.0, σAB = 0.8, σBB = 0.88, εAA = 1,
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εAB = 1.5, εBB = 0.5, mA = mB = 1.0. We have
performed MD simulations in the canonical ensemble
(NVT) using Nosé-Hoover thermostat with integration
timestep 0.005τ . The time constants for Nosé-Hoover
thermostat are taken to be 100 time steps. The sample
is kept in a cubic box with periodic boundary condition.
System size is N = 500, NA = 400 (N = total number
of particles, NA = number of particles of type A) and
we have studied a broad range of density ρ from 1.2 to
1.6 with different temperature ranges given in Table 1.

2.2 NTW: tetrahedral network-forming liquids

We study a model of network-forming liquids26 inter-
acting via spherical short-ranged potentials. This model
is simple model and mimics SiO2 glasses, in which
tetrahedral networks strongly dominate the dynamics
with an Arrhenius behavior for the structural relaxation
time, even near the glass transition temperature. The
interaction potentials are given as

Uαβ(r) = εαβ

[(σαβ

r

)12 − (1 − δαβ)
(σαβ

r

)6
]

. (4)

Here δαβ is the Kronecker delta function. The inter-
action is truncated and shifted at r = 2.5σαβ . The
size, mass, and energy ratios are given as σAB/σAA =
0.49, σBB/σAA = 0.85,mB/mA = 0.57, εAB/εAA =
24, εBB/εAA = 1.

System size is N = 500, NA = 165 (N = total
number of particles, NA = number of particles of
type A). The number density of NTW mixtures is ρ =
1.655. These parameters are adjusted to reproduce the
radial distribution functions of the SiO2 amorphous
states. Tetrahedral networks are found to be formed
due to the highly asymmetric size ratio and the strong
attraction between the different components. This value
corresponds to the density ρ = 2.37gÅ−3 of the
so-called van Beest-Kramer-van Santen (BKS) model
for the silica glass.31,32

Table 1. The temperature range simulated for different
systems.

System (density) Temperature range

LJ(1.2) 5.00–0.45
WCA(1.2) 5.00–0.30
LJ(1.4) 5.00–1.00
WCA(1.4) 5.00–0.95
LJ(1.6) 5.00–1.89
WCA(1.6) 5.00–1.89
NTW(1.655) 1.00–0.31

2.3 Definitions and background

2.3a Relaxation time: We have calculated the relax-
ation times from the decay of the overlap function q(t),
from the condition q(t = τα)/N = 1/e. q(t) is defined
as

〈q(t)〉 ≡
〈∫

drρ(r, t0)ρ(r, t + t0)

〉

=
〈

N∑

i=1

N∑

j=1

δ(rj (t0) − ri(t + t0))

〉

=
〈

N∑

i=1

δ(ri(t0) − ri(t + t0))

〉

+
〈
∑

i

∑

j 
=i

δ(ri(t0) − rj (t + t0))

〉
. (5)

The overlap function is a two-point time correlation
function of local density ρ(r, t). It has been used in
many recent studies of slow relaxation.21,33 In this work,
we consider only the self-part of the total overlap func-
tion (i.e. neglecting the i 
= j terms in the double
summation). Earlier it has been shown to be a good
approximation to the full overlap function. So, the over-
lap function can be well approximated by its self part,
and written as,

〈q(t)〉 ≈
〈

N∑

i=1

δ(ri(t0) − ri(t + t0))

〉
. (6)

Again, the δ function is approximated by a Heavi-
side step function 
(x) which defines the condition of
“overlap” between two particle positions separated by a
time interval t:

〈q(t)〉 ≈
〈

N∑

i=1


(| ri(t0) − ri(t + t0) |)
〉


(x) = 1, x ≤ a implying “overlap”

= 0, otherwise. (7)

The time dependent overlap function thus depends on
the choice of the cut-off parameter a, which we choose
to be 0.3. This parameter is chosen such that particle
positions separated due to small amplitude vibrational
motion are treated as the same, or that a2 is compara-
ble to the value of the MSD in the plateau between the
ballistic and diffusive regimes.

Relaxation times obtained from the decay of the self
intermediate scattering function Fs(k, t) using the def-
inition Fs(k, t = τα) = 1/e at a fixed k � 2π/rmax ,
where rmax is the position of the first peak of the
radial distribution function of A type particles. The self
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intermediate scattering function is calculated from the
simulated trajectory as

Fs(k, t) = 1

N

〈
N∑

i=1

exp(−ik.(ri(t) − ri(0)))

〉
. (8)

For NTW model, the cut off parameter for overlap
function is taken as a = 0.2, as the decay time is similar
to the decay observed from Fs(k, t) at k = 8.2.27

Since relaxation times from q(t) and Fs(k, t) behave
very similarly, we have used the time scale obtained
from q(t).

We find that the diffusivities (D), obtained from the
mean squared displacement (MSD) of the particles, fol-
low a similar trend like inverse of relaxation time. How-
ever, we have used the relaxation time data in this
present work.

2.3b Excess Entropy: The thermodynamic excess
entropy, Sex , is defined as the difference between the
total entropy (Stotal) and the ideal gas entropy (Sid) at
the same temperature (T ) and density (ρ) for all the
model glass formers.4,7 The entropy was initially evalu-
ated at a high temperature (Tr) and low reduced density
(ρr) where the system can be assumed to behave as an
ideal gas. Entropies at any other state points, relative to
this reference ideal state point, can be calculated using
a combination of isochoric and isothermal paths, ensur-
ing that no phase transitions occur along the path. The
entropy of the liquid has been calculated via thermo-
dynamic integration starting from the ideal gas binary
mixture reference point, along the T = Tr isotherm, up
to the studied ρ = ρt density.

The entropy change along an isothermal path is given
by,7

Sex(Tr, ρt )=S(Tr, ρt)−S(Tr, ρr)
U(Tr, ρr)−U(Tr, ρt )

Tr

−
∫ ρt

ρr

P (ρ)

Tr

N

ρ2
dρ, (9)

and along the isochoric path it is given by,7

Sex(Tt , ρt )=S(Tt , ρt )−S(Tr, ρt )=
∫ Tt

Tr

1

T

(
∂U

∂T

)

ρ

dT .

(10)

To calculate the integral in the above equation, we
use a standard technique used for supercooled liquid.34

We fit the temperature dependence of the potential
energy using the functional form, U = a + bT c, where
a, b, c are the fitting parameters. The low temperature
trajectories have been averaged over 500τ (where τ is
the relaxation time defined in Section 2.3a).

3. Results and Discussion

In case of simple liquids at the high temperatures, the
dimensionless scaled relaxation time (τ ∗) follows the
Rosenfeld relation which is given by,

τ ∗ = C exp(−KSex), (11)

where, C, K are the fitting parameters and Sex is the
excess entropy. The scaled relaxation time τ ∗ can be writ-
ten as τ ∗ = τρ−1/3(kBT /m)−1/2, where m is the mass
of the particle. Note that, for NTW model we have used
the mass as m = ∑

i ximi , where xi is the mole fraction
of the i-th particle. We plot the Rosenfeld behavior
both for LJ and WCA systems at different densities
and for the NTW model at ρ = 1.655 (Figure 1).
We find that the relationship is valid at high tempera-
ture regime. Interestingly all the systems show a master
plot at high temperature and the Rosenfeld exponent
(K) is close to 0.8. Note that earlier studies have
reported that the Rosenfeld scaling is valid at high tem-
perature both for LJ and WCA systems with the same
value of the exponent K .7 However the density range
studied here is much higher, thus, predicting that the
Rosenfeld relationship is valid over a wider range of
densities. Our study also shows that although at low
temperatures the WCA system does not follow any
density-temperature scaling,21,35,36 at high temperatures
it shows a master plot. The NTW model on the other
hand, although is a model of a simple liquid, is known
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Figure 1. The scaled relaxation time vs. excess entropy
(Sex). In the high temperature regime, the Rosenfeld scaling
law follow a universal behavior with the exponent 0.8. The
ln τ ∗ is shifted by −0.2 for NTW model to obtain the master
plot. Note that, the slope remains unaltered with this shifting.
The slope of the black dashed line is close to 0.8. (inset). For
the NTW model the scaled relaxation time vs. excess entropy
(Sex). The low temperature regime is fitted to another straight
line with different slope which is equal to 3.35.
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to show characteristics of ionic melts, to be specific
the SiO2 system.26 However the value of the Rosenfeld
scaling exponent (K) for NTW model is similar to that
of the simple liquids and different from that reported for
SiO2.8

Our next observation is that in the low tempera-
ture regime although the LJ and WCA systems show
a breakdown of the scaling law, the NTW model fol-
lows the scaling law with higher value of the exponent
(inset of Figure 1). This behavior of the NTW model
is similar to that reported for the ionic melts.8 Thus,
our study reveals that although the NTW model follows
the Rosenfeld behaviour up to a much lower tempera-
ture like other network forming liquids, its Rosenfeld
exponent is similar to that found for simple liquids
(K ∼ 0.8). Therefore, the NTW model appears to have
mixed characteristics of network forming liquids and
simple liquids.

As mentioned in the introduction, the pair entropy
S2 provides 80–90% contribution to the excess
entropy4,15,21 and thus, the Rosenfeld relationship can
be written in terms of S2 which is given by,

τ ∗ = C1 exp(−K1S2), (12)

where, C1, K1 are the fitting parameters and S2 is the
pair entropy and this scaling behavior is known as
Dzugutov scaling law. In Figure 2 we plot the Dzugutov
scaling behavior and similar to the Rosenfeld relation-
ship we find it to be valid at high temperature regime.
The value of the exponent K1 ∼ 0.8, this indicates
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S
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τ∗ =τ
ρ−1

/3
T
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2 m
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2
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1.4 LJ
1.6 LJ
1.2 WCA
1.4 WCA
1.6 WCA
NTW
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Figure 2. The scaled relaxation time vs. pair entropy (S2).
In the high temperature regime, the Dzugutov scaling law
follow a universal behavior with the exponent 0.8. The slope
of the black dashed line is close to 0.8. (inset) For the NTW
model the scaled relaxation time vs. pair entropy (S2). The
low temperature regime is also fitted to another straight line
with different slope which is equal to 2.52.

that both the Rosenfeld and Dzugutov scaling follows
an universal exponent. We also find that similar to the
Rosenfeld relation, the Dzugutov scaling behavior is
valid for NTW model upto a much lower temperature
(inset of Figure 2) with a higher value of exponent.

Next we explore the origin of validity of the
Rosenfeld scaling for the network forming liquid even
in the lower temperature regime. For any system at high
temperatures, the temperature dependence of the relax-
ation time can be expressed in terms of Arrhenius law
which is given by,

τ = τ0 exp(E/T ), (13)

where, E is the activation energy. Note that the ionic
melts and NTW model are strong liquids which fol-
low Arrhenius behaviour even in the lower tempera-
ture regime. In Figure 3a we plot the relaxation time
for NTW model and find that both the high tempera-
ture and low temperature regimes can be fitted to two
independent straight lines with the activation energies
E(high) = 1.50 and E(low) = 5.83, respectively.

The Rosenfeld scaling law can also be written in
terms of unscaled relaxation time21 given by,

τ = C ′ exp(−K ′Sex). (14)

We plot the τ vs. −Sex in Figure 3b and find that
the Rosenfeld behavior is valid up to a low tempera-
ture regime with different values of the exponent which
are given in Table 2. Note that the break in the Rosenfeld
behaviour happens exactly at the same position where
the break in the Arrhenius behavior is observed. Thus,
these two plots show qualitatively similar behavior.

Now to establish a quantitative connection between
the Arrhenius and the Rosenfeld relations, we equate
Eqs. 13 and 14 and can write it as,

E

T
∼ −K ′Sex. (15)

The above equation suggests that for strong liquids
where E is independent of temperature if Sex ∝ 1/T ,
the activation energy (E) is proportional to the Rosen-
feld exponent (K ′).

Next we show, that for NTW model the Sex vs. 1/T plot
indeed shows a linear behavior (Figure 3c) for the whole
temperature range. Thus, from Eq. 15 we expect that

E(low)

E(high)
∼ K ′(low)

K ′(high)
. (16)

We calculate the ratio of the activation energies and
find that E(low)

E(high)
= 3.89 which is close to the value of

K ′(low)

K ′(high)
= 3.60.

Note that for most of the systems both the Rosenfeld
relationship and the Arrhenius behaviour are known
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Figure 3. For the NTW model (a) the temperature dependence of the relaxation time. Both
the high and low temperature regimes follow Arrhenius relationship and can be fitted to two
independent straight lines. (b) The validity of the Rosenfeld relationship. The break in both
the plots (a and b) occur at the same value of the τ . (c) Sex vs. 1/T shows a linear behavior
over the whole temperature regime.

Table 2. The fitting parameters of the Rosenfeld scaling,
τ = C ′ exp(−K ′Sex).

NTW ln C ′ K ′
high T 3.07 0.86
low T 12.98 3.10

to be valid only in the high temperature regime. For
the fragile systems, in the low temperature regime,
the activation energy becomes temperature dependent
and there is a breakdown of the Arrhenius behaviour.
However, strong liquids like the NTW model follows
an Arrhenius temperature dependence even in the low
temperature regime (Figure 3a) and also follows the
Rosenfeld scaling (Figure 3b). Thus we may conclude
that the breakdown of the Rosenfeld relationship is con-
nected to the temperature dependence of the activation
energy, E.

Next we explore the role of residual multi particle
entropy (RMPE) in the dynamics. In Figure 4 we plot
the scaled relaxation time with RMPE, �S. Similar to
that found earlier,7 for all the systems, there is initially
a positive correlation between the relaxation time and
�S and as the temperature is lowered the correlation

−0.4 −0.2 0 0.2 0.4 0.6

ΔS
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/3
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1/
2 m
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1.2 LJ
1.4 LJ
1.6 LJ
1.2 WCA
1.4 WCA
1.6 WCA
NTW

Figure 4. The scaled relaxation time vs. RMPE (�S). To
start with the same high temperature value of �S, for NTW
model the x-axis is shifted by −0.2.

becomes negative. This role reversal of RMPE has been
observed earlier where we have reported that the small
positive value of RMPE speeds up the relaxation time.37

Although at moderately high temperatures, the data
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Figure 5. Correlation of RMPE (�S) with pair entropy
(S2). For NTW model the �S (y-axis) is shifted by −0.2.

show a master plot, at low temperature the dependence
of relaxation time on RMPE becomes system depen-
dent. Similar observation is made in Figure 2 where τ ∗

vs. S2 also shows a deviation at low temperature.
Note that these systems cover a wide range of

fragility where the LJ system and WCA at high density
are the most fragile systems and NTW model is the least
fragile one (strongest). Thus, the S2 and �S dependence
of the scaled relaxation time τ ∗ show a variation with
fragility. It appears that for the strong liquid, there is a
weaker dependence of τ ∗ on S2 and �S.

To understand this, in Figure 5 we plot �S with pair
entropy for all the systems and find a data collapse. The
plot shows that at high temperatures, there is a posi-
tive correlation of S2 and RMPE up to a point where
S2 = −2.5KB .7 Below S2 = −2.5KB , S2 decreases
with increasing �S and the rate of the negative correla-
tion is independent of fragility. Since the S2 and the �S

act in opposite directions, their combined effect which
is seen in the Sex and thus in the relaxation time is much
weaker. This is precisely the reason behind the spread
observed in Figures 2 and 4. Note that τ ∗ vs. Sex plot
shows a less spread with fragility (Figure 1).

4. Conclusion

In this present work we find that both the Rosenfeld and
Dzugutov scaling laws are valid at the high tempera-
ture regime for LJ and WCA systems (ρ = 1.2 − 1.6)
and for the NTW model (ρ = 1.655). Interestingly, for
all the systems the exponents of both the scaling laws
are universal at high temperatures7 and different from
the value predicted for the ionic melts.8 For the LJ and

the WCA systems both the scaling laws break down
in the low temperature regime. However, we show that
like other network forming liquids (ionic melts),8 the
scaling laws for the NTW model are valid even in the
lower temperature regime. Thus, although in terms of
validity of these semi-empirical relationships, the NTW
model behaves like other network forming liquids, the
value of the exponent appears to be similar to that found
for the other simple liquids. Our study establishes that
the Rosenfeld and the Arrhenius relations are correlated
both qualitatively and quantitatively. Thus, for the NTW
model, the validity of the Rosenfeld relationship at
lower temperatures can be connected to it being a strong
liquid following Arrhenius behaviour in this regime.
We also study the independent role of pair entropy and
residual multiparticle entropy on the dynamics for the
systems with different fragilities. Our study reveals that
for stronger liquids the dynamics has a weaker depen-
dence on the S2 and �S. This weaker dependence can
be traced back to the fact that the effect of S2 and �S

on the dynamics act in the opposite directions with a
similar rate.
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