

A fluorescent sensor based on binaphthol-quinoline Schiff base for relay recognition of Zn^{2+} and oxalate in aqueous media

LIJUN TANG*, DI WU, ZHENLONG HUANG and YANJIANG BIAN Department of Chemistry, Bohai University, Jinzhou 121013, China e-mail: ljtang@bhu.edu.cn

MS received 8 October 2015; revised 10 May 2016; accepted 27 May 2016

Abstract. To develop an effective fluorescent chemosensor for relay recognition of Zn^{2+} and oxalate, a new fluorescent sensor based on binaphthol-quinoline Schiff base L_1 was designed and synthesized. In DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution, L_1 exhibits highly selective fluorescence turn on response to Zn^{2+} over other metal ions. The Zn^{2+} recognition event is barely interfered by other coexisting metal ions except Cu^{2+} , Co^{2+} and Ni^{2+} . The *in situ* generated L_1 - Zn^{2+} complex was further used as a chemosensing ensemble for oxalate detection. The complex L_1 - Zn^{2+} displays high selectivity to oxalate with significant fluorescence quenching through Zn^{2+} ion displacement approach. In addition, application of L_1 for imaging of Zn^{2+} and oxalate in living HeLa cells was also examined.

Keywords. Zn²⁺ sensing; oxalate sensing; fluorescence; relay recognition

1. Introduction

The development of chemosensors for highly selective detection of biologically and environmentally important metal ions and anions has received increasing attention owing to the vital roles they play in chemical, biological and environmental processes.¹ Zn²⁺, the second most abundant transition metal ion in human body, plays paramount roles in a wide range of biological processes such as gene transcription, signal transmission, and mammalian reproduction. Disruption of Zn²⁺ concentration in cells can result in a variety of pathological processes including Alzheimer's disease, epilepsy and infantile diarrhea.² Therefore, there is a growing interest in developing selective and sensitive Zn²⁺ sensors to recognize the physiological significance of Zn²⁺ and its biomedical relevance.³

Among the biologically pivotal anions, oxalate is particularly important due to its important role especially in food chemistry and clinical analysis. Although various methods including enzyme electrode assay,⁴ chromatography,⁵ electrophoresis and electrochemistry⁶ have been used for oxalate detection, fluorescence recognition of oxalate has received substantial attention due to its simplicity and waiver of sophisticated sample pretreatment.⁷ Recent use of single sensor for relay recognition of metal ion and anion has aroused considerable interest of researchers due to the operational simplicity.⁸ As far as we are aware, utilization of a single sensor for relay recognition of Zn^{2+} and oxalate has not been documented.

Herein, a fluorescence sensor based on Schiff base L_1 (Scheme 1) for sequential detection of Zn^{2+} and oxalate has been synthesized, which exhibits relay recognition behavior toward Zn^{2+} and oxalate in aqueous solution through fluorescence 'off-on-off' changes.

2. Experimental

2.1 Instruments and reagents

Unless otherwise stated, solvents and reagents were purchased as analytical grade and were used without further purification. Double distilled water was used for spectral detection. ¹H NMR and ¹³C NMR spectra were performed on an Agilent 400 MR spectrometer, and the chemical shifts (δ) were expressed in ppm and coupling constants (J) in Hertz. High-resolution mass spectroscopy (HRMS) was conducted on a Bruker micrOTOF-Q mass spectrometer. Fluorescence measurements were carried out on a Sanco 970-CRT spectrofluorometer (Shanghai Spectrum instruments Co., Ltd., China). UV-vis absorption spectra were recorded on a SP-1900 spectrophotometer (Shanghai Spectrum instruments Co., Ltd., China). The pH measurements were made with a Model PHS-25B meter (Shanghai, China).

^{*}For correspondence

Scheme 1. Synthesis of sensor L_1 and control compound L_2 .

2.2 Synthesis of chemosensor L_1 and control compound L_2

Chemosensor L_1 was synthesized as follows. A stirred solution of compounds (S)-1⁹ (342 mg, 1 mmol) and $2a^{10}$ (502.5 mg, 2.5 mmol) in absolute ethanol (50 mL) was heated to reflux for 2 h. After cooling to room temperature, the yellow precipitate formed was collected by filtration, which was washed three times with cold ethanol to give pure L_1 . Yield: 566 mg, 0.80%; M.p.: 207-208°C;. ¹H NMR (400 MHz, DMSO- d_6) δ : 12.70 (s, 2H, -OH), 10.58 (s, 2H, -NH), 9.01 (s, 2H, N=CH), 8.56 (d, J = 7.6 Hz, 2H, Ar-H), 8.49 (d, J =3.2 Hz, 2H, Ar-H), 8.38 (s, 2H, Ar-H), 8.23 (d, J =8.0 Hz, 2H, Ar-H), 8.07-8.05 (m, 2H, Ar-H), 7.59-7.50 (m, 5H, Ar-H), 7.43 (dd, J = 7.6, 4.0 Hz, 2H, Ar-H), 7.38-7.36 (m, 3H, Ar-H), 7.17-7.09 (m, 2H, Ar-H), 4.78 $(dd, J = 16.4 Hz, 4H, -CH_2-); {}^{13}C NMR (100 MHz,$ CDCl₃) *b*: 168.89, 166.71, 154.33, 148.48, 138.21, 135.90, 135.38, 134.86, 133.47, 129.17, 128.87, 127.66, 127.37, 126.78, 124.92, 123.59, 121.90, 121.29, 120.79, 117.09, 115.91, 64.05; HRMS-ESI(+): m/z = 709.2550 $[M+1]^+$.

Control compound L_2 was synthesized by a similar procedure was used for that of L_1 except that $2b^{11}$ was used. Yield: 600 mg, 85%; M.p.: 159-160°C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.06 (s, 2H, -OH), 10.20 (s, 2H, NH), 8.96 (s, 2H, N=CH), 8.34 (s, 2H, Ar-H), 8.04 (t, J = 7.2 Hz, 4H, Ar-H), 7.91 (d, J = 7.6Hz, 2H, Ar-H), 7.76 (d, J = 8.0 Hz, 2H, Ar-H), 7.68 (d, J = 7.2 Hz, 2H, Ar-H), 7.52-7.45 (m, 6H, Ar-H), 7.37-7.31 (m, 4H, Ar-H), 7.05 (d, J = 8.4 Hz, 2H, Ar-H), 4.72 (s, 4H, -CH₂-); ¹³C NMR (100 MHz, DMSO- d_6) δ :169.70, 168.07, 154.80, 135.30, 134.22, 134.13, 133.58, 129.57, 128.83, 128.56, 128.27, 127.55, 126.50, 126.33, 125.99, 125.17, 124.63, 123.68, 123.12, 122.33, 121.28, 116.61, 62.31; HRMS-ESI(+): m/z =707.2653 [M+1]⁺.

For ¹H NMR spectra of L_1 and L_2 , please see Figures S1 and S2 (in Supplementary Information).

3. Results and Discussion

3.1 Fluorescence recognition of Zn^{2+} by L_1

Chemosensor L_1 was synthesized by condensation of (*S*)-1 and 2a in absolute ethanol, and the structure of L_1 was fully characterized by ¹H NMR, ¹³C NMR and HRMS analysis. The fluorescence responses of L_1 (10 μ M) to various metal ions were investigated in DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution (Figure 1). L_1 itself displays almost negligible fluorescence emission on excitation at 359 nm, which may attributed to the combined effects of PET from phenolic moiety to quinoline fluorophore and the isomerization process of C=N bond.¹² Upon addition of 4.0 equiv. of Zn²⁺, a dramatic fluorescence enhancement at 512nm was observed, which could be attributed to the Zn²⁺ - binding induced suppression of PET and C=N isome rization. The Zn²⁺ induced green fluorescence color of

Figure 1. Changes in the fluorescence emission of L_1 (10 μ M) in DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution upon addition of 4 equiv. of various metal ion. Inset: naked eye observed fluorescence changes of L_1 solution in the presence of Zn²⁺ ions under a portable UV lamp at 365 nm.

 L_1 solution can be observed by a naked eye under illumination at 365 nm with a portable UV lamp (Figure 1, inset). Whereas, addition of equal amounts of other metal ions such as K⁺, Na⁺, Ag⁺, Pb²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Fe²⁺, Fe³⁺, Mn²⁺, Mg²⁺, Cr³⁺, Al³⁺, Ni⁺, Co²⁺, Ca²⁺, Cu²⁺ and Hg²⁺, promoted negligible fluorescence intensity changes of L_1 . The observed emission at 512 nm was supposed to come from the quinoline fluorophore,¹³ and this hypothesis was confirmed by comparison of fluorescence responses of control compound L_2 and sensor L_1 to Zn^{2+} ion (Figure S3). Under identical conditions, L_2 does not show any noticeable fluorescence emission in the absence and presence of Zn^{2+} , indicating that the quinoline moiety is responsible for the observed "turn-on" fluorescence of L₁. These results indicate that L_1 has an excellent selectivity toward Zn^{2+} ion.

The Zn^{2+} sensing behavior of L_1 to Zn^{2+} was then explored by fluorescence titration experiments. Incremental addition of Zn^{2+} to L_1 solution led to gradual increase in fluorescence intensity at 512 nm, which reached a plateau when 4.0 equiv. of Zn^{2+} was employed (Figure 2). Plotting of the normalized fluorescence intensity $((I-I_{\min})/(I_{\max}-I_{\min}))$ at 512 nm against $Log[Zn^{2+}]$ results in a neat linear relation (R = 0.9977) (Figure 3), and the detection limit of L_1 to Zn^{2+} was calculated to be 1.5×10^{-6} M.¹⁴ The association constant (K_s) of L₁ and Zn²⁺ was estimated to be 2.15×10⁶ M^{-1} by non-linear least squares fitting of the titration data based on a 1:1 binding equation model (Figure 4). In addition, this 1:1 binding ratio was also supported by Job's plot analysis (Figure S4). The UV-vis absorption spectrum of L_1 on incremental addition of Zn^{2+} shows ratiometric absorption changes (Figure S5). The absorption band at 394 nm of L_1 can be assigned to

Figure 2. Fluorescence spectra changes of sensor L_1 (10 μ M) in DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution on step increasing in Zn²⁺ concentration (0 to 40 μ M).

Figure 3. Normalized fluorescence intensity of L_1 solution (10 μ M) to Log[Zn²⁺]; unit for [Zn²⁺] is M.

Figure 4. Nonlinear least-squares fitting of fluorescence intensity of $L_1(at 512 \text{ nm})$ employing a 1:1 binding mode equation. Unit for $[Zn^{2+}]$ is M.

the absorption of Schiff base linked binol moiety. On gradual addition of Zn^{2+} to L_1 solution, the absorption intensity of L_1 at 394 nm decreased gradually, concomitantly, two new absorption bands centered at 357 nm and 443 nm emerged and gradually increased, and they can be attributed to the deprotonated amide-quinoline¹³ and phenolic binol Schiff base,¹⁵ respectively.

To corroborate the high selectivity of L_1 to Zn^{2+} , the competition experiments were subsequently carried out. As shown in Figure 5, on further addition of 4.0 equiv. of Zn^{2+} to the competitive metal ion containing L_1 solution, a dramatic fluorescence emission enhancement was observed except for Cu^{2+} , Ni^{2+} and Co^{2+} . The influence of Cu^{2+} is owing to its paramagnetic nature. On the other hand, the level of Ni^{2+} and Co^{2+} are very low in human body and they will have little influences on Zn^{2+} recognition in living cells. These

Figure 5. Fluorescence intensity of L_1 (10 μ M) in H₂O-DMSO (1/1, v/v, pH = 7.4) at 512 nm. The gray bars represent the emission intensity of L_1 in the presence of 4.0 equiv. of competing metal ion; the red bars represent the emission intensity of the above solution upon addition of 4.0 equiv. of Zn^{2+} .

results reveal that L_1 still has a potential applicability for Zn^{2+} detection.

To obtain further insight into the binding mode of L_1 with Zn^{2+} , ¹H NMR spectra of L_1 in the absence and presence of Zn^{2+} were compared (Figure 6). The broad peak at 12.70 ppm in free L_1 is assigned to the hydroxyl proton (H_a) (Figure 6a), which is greatly decreased upon addition of 2.0 equiv. of Zn^{2+} (Figure 6b), indicating the Zn^{2+} binding induced de-protonation process. The imine protons (H_b) in L_1 at 9.01 ppm (Figure 6a) shifted downfield to 10.76 ppm on interaction with Zn^{2+} (Figure 6b). The amide proton signal (H_d) in L_1 at 10.58 ppm (Figure 6a) was greatly decreased on addition of Zn^{2+} (Figure 6b), indicative of the deprotonation of amide group. Moreover, the quinolone proton signals of H_e (8.49 ppm) and H_j (8.56 ppm) in free L_1 also shifted downfield to 8.98 ppm and 8.64 ppm, respectively. These results reveal that the phenolic oxygen, imine and amide nitrogen, and quinolone nitrogen atoms are all involved in the complex formation. Thus, a plausible binding mode of L_1 with Zn^{2+} ions was proposed and is illustrated in Scheme 2.

3.2 Fluorescence recognition of oxalate by L_1 - Zn^{2+} complex

The *in situ* formed L_1 -Zn²⁺ complex (prepared by mixing L_1 with 4.0 equiv. of Zn^{2+}) was envisioned to be a potential candidate for chemosensing ensemble of dicarboxylate recognition. Upon individual addition of 100 equiv. (relative to L_1) of different dicarboxylates to L_1 -Zn²⁺ solution (10 μ M based on L_1), oxalate elicited a dramatic fluorescence quenching, which is similar to the original emission state of free L_1 (Figure 7). Considering the low solubility of ZnC_2O_4 ($K_{sp} = 2.8 \times 10^{-8}$), the observed fluorescence quenching is due to oxalateinduced de-complexation of L1-Zn2+ complex. Nevertheless, addition of other dicarboxylates including succinate, glutarate, adipate, phthalate, terephthalate, and isophthalate caused no significant fluorescence spectrum changes except that malonate promoted a slight decrease in fluorescence emission. These results demonstrate that the *in situ* generated L_1 -Zn²⁺ complex can act as an ensemble for oxalate recognition. Fluorescence titration with oxalate results in gradual emission quenching of $Zn^{2+}-L_1$ at 512 nm, and the quenching process terminated when 100 equiv. of oxalate was added (Figure 8). Based on the titration data, the

Figure 6. Partial ¹H NMR spectrum (in DMSO- d_6) of L₁ in the presence of 0 (a), 2.0 (b) and 2.5 (c) equivalents of Zn²⁺.

Scheme 2. Proposed binding mode between L_1 and Zn^{2+} ions.

Figure 7. Fluorescence spectra changes of L_1 -Zn²⁺(10 μ M) in DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution upon addition of 100 equiv. of various dicarboxylates.

Figure 8. Fluorescence spectra of sensor Zn^{2+} - $L_1(10 \ \mu M)$ in DMSO-H₂O (1/1, v/v, HEPES 10 mM, pH = 7.4) solution upon gradual increase in oxalate concentration (0 to 1 mM).

detection limit of the ensemble to oxalate was estimated as 2.06×10^{-5} M (Figure S6). Results of competition experiments reveal that co-existence of equal amount

Figure 9. Change in fluorescence intensity of L_1 -Zn²⁺ (10 μ M) in H₂O-DMSO (1/1, v/v, pH = 7.4) at 512 nm. The gray bars represent the emission intensity of Zn²⁺-L₁ in the presence of 100 equiv. of competing dicarboxylates; the red bars represent the emission intensity of the above solution upon addition of 100 equiv. of oxalate.

of other dicarboxylates did not cause any remarkable influence on oxalate detection (Figure 9).

3.3 Living cell imaging studies

To investigate the practical applicability of L_1 for sequential detection of Zn^{2+} and oxalate, we evaluated its potential utility for imaging Zn^{2+} and oxalate in living cells. The human cervical HeLa cancer cell lines incubated for 0.5 h at 37°C with L_1 (5 μ M) showed no fluorescence (Figure 10d). Further addition of Zn^{2+} (10 μ M) to the pre-incubated cell for 1h exhibited a noticeable green fluorescence (Figure 10e). However, when oxalate (20 μ M) was added to HeLa cell which was incubated with L_1 (10 μ M) and Zn^{2+} (10 μ M) for 30 min at 37°C, the previous observed green fluorescence was quenched greatly (Figure 10f). These results indicate that L_1 can be used as a sensor to probe the intracellular Zn^{2+} and oxalate.

Figure 10. Fluorescence images of Zn^{2+} and oxalate in HeLa cells. (d and a) Fluorescence image of HeLa cells with addition of L_1 and its bright field image. (e and b) Fluorescence image of HeLa cells incubated with $L_1(5 \ \mu M)$ for 30 min at 37°C and then incubated with $Zn^{2+}(10 \ \mu M)$ for 30 min at 37°C and its bright-field image. (f and c) Fluorescence images of HeLa cell incubated with $L_1(10 \ \mu M)$ and $Zn^{2+}(10 \ \mu M)$ for 30 min at 37°C and then incubated with $zn^{2-}(20 \ \mu M)$ for 30 min at 37°C and its bright-field image.

4. Conclusions

In summary, we have developed a new fluorescence sensor based on Schiff base (L_1) for relay recognition of Zn²⁺ and oxalate in aqueous media. Sensor L_1 exhibits high selectivity and sensitivity for sequential detection of Zn²⁺ and oxalate with good anti-inferences ability. Imaging studies of living HeLa cells imaging studies indicate that this new fluorescent sensor holds great potential for biological applications for relay detection of Zn²⁺ and oxalate. Since the *S* enantiomer of binaphthol derivative was used in this work, we anticipate that the *in situ* formed chiral zinc complex could exert recognition behavior to a chiral analyte in a future work.

Supplementary Information

Supplementary Information (Figures S1–S6) is available at www.ias.ac.in/chemsci.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 21176029, 21476029), Liaoning BaiQianWan Talents Program (No. 2012921057), and the Program for Liaoning Excellent Talents in University (LR2015001) for financial support.

References

- 1. Berg J M and Shi Y 1996 Science 271 1081
- 2. Walker C F and Black R E 2004 Annu. Rev. Nutr. 24 255
- 3. (a) Chen Y, Bai Y, Han Z, He W and Guo Z 2015 Chem. Soc. Rev. 44 4517; (b) Jiang P and Guo Z 2004 Coord. Chem. Rev. 248 205; (c) Xu Z, Yoon J and Spring D R 2010 Chem. Soc. Rev. 39 1996; (d) Bhaumik C, Maity D, Das S and Baitalik S 2012 RSC Adv. 2 2581; (e) Mardanya S, Karmakar S, Das S and Baitalik S 2015 Sens. Actuators, B 206 701; (f) Mondal D, Bar M, Maity D and Baitalik S 2015 J. Phys. Chem. C 119 25429; (g) Ding A, Tang F, Wang T, Tao X and Yang J 2015 J. Chem. Sci. 127 375; (h) Chao D 2016 J. Chem. Sci. 128 133
- 4. Capra R H, Strumia M, Vadgama P M and Baruzzi A M 2005 Anal. Chimi. Acta 530 49
- Li H, Chai X-S, DeMartini N, Zhan H and Fu S 2008 J. Chromatogr. A 1192 208
- Liu Y, Huang J, Wang D, Hou H and You T 2010 Anal. Methods 2 855
- (a) Tang L, Park J, Kim H-J, Kim Y, Kim S J, Chin J and Kim K M 2008 J. Am. Chem. Soc. 130 12606; (b) Hu M and Feng G 2012 Chem. Commun. 48 6951; (c) Wang G, Zhu H, Lin Y, Chen Y and Fu N 2015 Sens. Actuators, B 206 624; (d) He C, Qian X, Xu Y, Yang C, Yin L and Zhu W 2011 Dalton Trans. 40 1034
- (a) Mummidivarapu V S, Nehra A, Hinge V K and Rao C P 2012 Org. Lett. 14 2968; (b) Yang Y, Yin C, Huo F, Chao J and Zhang Y 2014 Sens. Actuators, B 204 402; (c) Tang L, Zhou P, Huang Z, Zhao J and Cai M 2013

Tetrahedron Lett. **54** 5948; (d) Tang L, Cai M, Zhou P, Zhao J, Zhong K, Hou S and Bian Y 2013 *RSC Adv.* **3** 16802; (e) Peng Y, Dong Y-M, Dong M and Wang Y-W 2012 J. Org. Chem. **77** 9072; (f) Tang L, Dai X, Cai M, Zhao J, Zhou P and Huang Z 2014 Spectrochim. Acta, Part A **122** 656; (g) Kaur N and Alreja P 2015 J. Chem. Sci. **127** 1253

- Ye F, Zheng Z-J, Deng W-H, Zheng L-S, Deng Y, Xia C-G and Xu L-W 2013 *Chem. - Eur. J.* 8 2242
- 10. Zhu J-F, Yuan H, Chan W-H and Lee A W M 2010 *Org. Biomol. Chem.* **8** 3957
- Shi F, Shen J K, Chen D, Fog K, Thirstrup K, Hentzer M, Karlsson J-J, Menon V, Jones K A, Smith K E and Smith G 2011 ACS Med. Chem. Lett. 2 303
- 12. Sun Y-Q, Wang P, Liu J, Zhang J and Guo W 2012 Analyst 137 3430
- 13. Zhang Y, Guo X, Si W, Jia L and Qian X 2008 *Org. Lett.* 10 473
- 14. Lin W, Yuan L, Cao Z, Feng Y and Long L 2009 *Chem. -Eur. J.* **15** 5096
- 15. Lu Q, Hou J, Wang J, Xu B, Zhang J and Yu X 2013 *Chin. J. Chem.* **31** 641