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Abstract. In this paper the arduous attempt to find a mathematical solution for the nonlinear autocatalytic
chemical processes with a time-varying and oscillating inflow of reactant to the reaction medium has been
taken. Approximate analytical solution is proposed. Numerical solutions and analytical attempts to solve the
non-linear differential equation indicates a phase shift between the oscillatory influx of intermediate reaction
reagent X to the medium of chemical reaction and the change of its concentration in this medium. Analytical
solutions indicate that this shift may be associated with the reaction rate constants k1 and k2 and the relaxation
time τ. The relationship between the phase shift and the oscillatory flow of reactant X seems to be similar to
that obtained in the case of linear chemical reactions, as described previously, however, the former is much
more complex and different. In this paper, we would like to consider whether the effect of forced phase shift in
the case of nonlinear and non-oscillatory chemical processes occurring particularly in the living systems have
a practical application in laboratory.
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1. Introduction

Nonlinear chemical reactions, especially autocatalytic
type, have been studied experimentally by many
researchers.1,2 Reactions of this type can be reversible
or irreversible, with or without the inflow of the inter-
mediate product X. Many processes in nature are auto-
catalytic, such as the self-replication exhibited by ligase
ribozyme3 and peptides,4 self-perpetuating conforma-
tional changes such as those known to be exhibited
by prions5 or reproduction events in biological popu-
lations.6 The effect of a reversible autocatalytic process
of spontaneous decay of the catalyst population was
considered.7 The authors consider the system for which
the spontaneous production of the autocatalytic reagent
is exceedingly rare over the time scale of the experi-
ment. Micro-fluid experiments and blood coagulation
have proved that the rate of mixing controls the rate and
can regulate the rate and outcome of both biological and
non-biological autocatalytic reaction systems.8

The autocatalytic stage is involved in many chem-
ical and biochemical cycles. Well known and often
considered by many researches are the following: the
Belousov-Zhabotynski reactions9–17 oxidation of bro-
mates by nitric acid18 or Landolt reactions,19 ferrous-
bromate,20 iodide – areniate,21 chlorite-iodide, and

hydroxylamine-nitric acid,22 Fe(I1)-HNO23 reactions.
Autocatalytic processing of β-pro’-tryptase to β-pro’-
tryptase is described.24 These autocatalytic processes
possess bistable steady states observed in a stirred
tank reactor (CSTR) experiments.25 Minimal self-
replicating systems based on autocatalytic processes
were analyzed.26 Some autocatalytic reactions, for
example, may exhibit propagating reaction fronts.27–33

A theoretical work is concerned with a model
of the enzymatic system of two coupled autocat-
alytic reactions based on three variables.34–36 A three-
variable model of deterministic chaos in the Belousov–
Zhabotinsky reaction, has been described too.37 The
autocatalytic stage appears also in the hipercycle model
described by Eigen.38 A simple three-variable model
for complex oscillations with an autocatalytic stage in
an isothermal chemical system was considered.39 The-
oretical approaches used in the Belousov–Zhabotinsky
(BZ) reactions40 and arsenite-iodate waves,41 iodate
oxidation,42 aerobic oxidation of NADH by horseradish
peroxidase enzyme model43 and many others. Time-
periodic reaction-diffusion systems with application to
the autocatalysis in chemistry were considered too.44

The simulation of a complex kinetic scheme and the
results verified considering the thermal decomposition
of cumene hydroperoxide can be easily generalized
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to different kinetic models and is devoted to identify
autocatalytic processes by means of dynamical DSC
experiment.45 Autocatalytic set concept introduced in
1860 by Darwin was recently used to describe the
chemical reactions in combustion process in circulating
fluidized bed boiler.46

The model of a simple autocatalytic type reac-
tion with oscillatory, cosine-like inflow of intermediate
product X to the reaction medium (reaction field) is pre-
sented in this paper. Numerical solutions and analyti-
cal attempts to solve the non-linear differential equation
indicates a phase shift between the oscillatory influx
of intermediate reagent X to the reaction medium and
change of its concentration in this medium. Attempts
for analytical solutions indicate that this shift may be
associated with the reaction rate constants k1 and k2

and the relaxation time τ. The relationship between
the phase shift and the oscillatory flow of reactant X

seems to be similar to that obtained in the case of linear
chemical reactions, as described previously,47 however,
is much more complex (table 1).

This raises the question: is it possible to use a forced
phase shift effect in the simplest nonlinear chemical
processes occurring especially in the biological sys-
tems, for example DNA replication or formation of
thiodiglycol from thioglycolates or that which occurs
in the initial transcript of rRNA and many other auto-
processing ones? In this paper, we would like to give an
answer to this question. This work is a supplement to
our earlier work.47

2. Theory

Nonlinear reactions with oscillatory inflow of reactant
to the reaction medium are considered.

The main subject is the simplest nonlinear autocat-
alytic reaction with inflow IX of intermediate reactant
to the reaction field:

A + X
k1k2←−−−→ 2X (1)

Where, A stands for the initial product and X is the
intermediate product.

The kinetic equation of reaction (1) takes the form:

dX

dt
= k1AX − k2X

2 + IX (2)

We assume that inflow IX of the intermediate product
X is not constant in time, but it changes periodically
(cosine-like), according to the following function:

IX = a cos2 (ωt) (3)

Where, a is the oscillation amplitude and ω is the rate
(frequency) of X inflow to the reaction medium.

The equation (2) takes the form of:

dX

dt
= k1AX − k2X

2 + a cos2 (ωt) (4)

The equation (4) is nonlinear and non-homogenous.
The equation (4) has two variables: concentration of
intermediate product X and time variable t. For this

Table 1. Comparison between the linear and nonlinear processes with oscillatory, cosine-like inflow of X reactant to the
reaction medium.

Linear reaction type: Nonlinear reaction type:
A +X ↔P A +nX ↔ (n + 1)X

with oscillatory inflow of X47 with oscillatory inflow of X [this work]

analytical solution strictly possible strictly impossible, only default
delta � time independent time dependent
phase shift tan φ = 2ωτ , tan φ = 2ωτ

where τ = 1/k1A where τ = 1/
√

�

possibility of determination possible impossible
a rate constant and a relaxation time

dependence of the phase increases with increasing decreases with increasing
shift from supply-frequency X flow-frequency X flow-frequency X

dependence on initial condition independent dependent
number of possible behaviours one more than one

stabilized by the forced delay effect. stabilized not stabilized

bifurcation point not occurs occurs

dependence of the amplitude decreases with increases of X decreases with increases of X
on frequency of X inflow inflow frequency inflow frequency or does not change

influence of increasing frequency tends to π/2 but cannot tends to zero
of X inflow on the phase shift exceed this value
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reason the analytical solution of this type equation is
impossible. In the case of equation (4) it can only find a
default solution of change of X product. It is true, that
the reaction (4) has two changes over time in oscillating
manner stationary states:

x1 = k1A + √
�

2k2
and x1 = k1A − √

�

2k2
(5)

where:

√
� =

√
(k1A)2 + 4k2a cos2(ωt) in case outflow of X,

� > 0 (5a)

√
� =

√
(k1A)2 − 4k2a cos2(ωt) in case inflow of X,

� > 0 or � < 0 (5b)

The formula (5) contains changing time t variable
and it is not possible to solution. For this reason the
eq. (4) is also impossible to analytical resolve. We
assume that � is positive as in a constant inflow of X,
because it has a definite physical meaning. Based on
the analytical solution of nonlinear equation with a con-
stant inflow of product X to the reaction medium (see
Appendix) and on the analytical solve of linear type
equation with a periodically inflow of X to the reaction
medium described in our earlier paper and confirmed
experimentally47 we assume that approximate solution
of the eq. (4) can take the following form:

X = k1A − √
� − [(k1A + √

�)]c exp(
√

�t)

2k2[(1 − c exp(−√
�t)]

×(
√

� cos 2ωt + 2ω sin 2ωt) (6)

Where, pre-exponential factor c is,

c = −X02k2 + k1A − √
�

−X02k2 + (k1A + √
�)

√
�

(7)

X0– is the initial concentration of the product X. X0

is calculated from the following initial conditions: when
X = X0 → t = 0 and it takes the form:

X0 = k1A − √
� − (k1A + √

�)c
√

�

2k2 − c2k2
(8)

The relaxation time τ follows from the eq. (6) and takes
the form:

τ = 1√
�

= 1√
(k1A)2 ± 4k2a cos2(ωt)

(9)

As follows from eqs. (9) and (8) the determination of
τ is impossible in this case, namely, nonlinear chemical
processes with the oscillatory, cosine-like inflow to the
reaction medium. The problem here is the time variable
delta. This factor indicates the fundamental difference
between linear and nonlinear reaction with oscillatory
in time inflow of chemical reagent X to the reaction
medium.

As in the linear reaction with oscillatory inflow of X

to the reaction medium47 the sum of two trigonometric
functions in brackets in eq. (6) can be replaced by a sin-
gle trigonometric function after introducing an auxiliary
angle φ defined as:

tan φ = 2ω√
�

= 2ωτ (10)

where,

φ = arctan
2ω√
�

= arctan 2ωτ (11)

After substitution eq. (11) into eq. (6) and some mathe-
matical transformations we obtain:

X = k1A − √
� − [(k1A + √

�)]c exp(
√

�t)
√

�

2k2[(1 − c exp(−√
�t)]

× 1

cos φ
cos(2ωt − φ) (12)

where,

cos φ =
√

�√
(
√

�)2 + 4ω2

(12a)

Let us consider now a high-order autocatalysis level
reaction type:

A + 2X
k1k2←−−−→ 3X (13)

with a time constant inflow IX of X reagent to the
reaction medium is described by the kinetic equation:

dX

dt
= k1AX2 − k2X

3 + IX (14)

The reaction has two stable stationary states. The ana-
lytical solution for these states is given by eq. (5).

When the inflow is oscillatory and time dependent,
described by the eq. (3) approximate solution of the
eq. (14) takes the form similar to eq. (6). The solution
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of eq. (14) applies only for one of the stable station-
ary state. It is known that the system tends to only one
stable stationary state.

For the higher degrees of the nonlinear and oscilla-
tory autocatalytic processes, seems to be that there is
a dependency similar to eq. (2). For the higher degrees
of autocatalysis in real space, i.e., three-dimensional
space, there are only two stable steady states and the
system seeks one of them.

It seems that the formula (6) also can apply to the
one of the stable stationary state to the high-order
autocatalytic reactions with the general formula:

dX

dt
= k1AX(n−1) − k2X

n + a cos2(ωt) (15)

In general the formula (6) takes the form:

X = k1A − n
√

� − [(k1A + n
√

�)]c exp(
n
√

�t)

2k2[(1 − c exp(− n
√

�t)]
×(

n
√

� cos 2ωt + 2ω sin 2ωt) (16)

where, n denotes the order of autocatalysis.
X0 and c are as described for n = 2 by eq. (7) and

eq. (8) but with n
√

�.
The equation (4) can be numerically solved using

four-order Runge-Kutta algorithm (figure 1). Figures
1a, 1b and 1c present the numerical analysis (based
on the Runge-Kutta algorithm) of a delay effect and
an amplitude modification in the case of high-order
nonlinear autocatalytic processes. All simulations were
performed for the initial conditions: X = 1, t = 0 and
an integration step h = 0.01. The numerical calcula-
tions show a delay between the concentration of inflow
product X to the reaction medium (field) and its con-
centration in this medium. The amplitude of X in the
reaction field is modified too. The phase shift and
amplitude modification depends on frequency ω of X

inflow, as well as on values of k1A and k2. For a given
level of autocatalysis the numerical solution shows the
following dependence: when the influx of reagent X to
the field (medium) reaction is more intense, the delay in
concentration in the reaction field is less or unchanged.
(figures 1a–c, 2a–b, 3a–b and table 2).

In the linear type reaction with oscillatory, cosine-
like inflow of the intermediate product X to the reaction
medium (field), the analytical solution of linear kinetic
equation shows that the delay is ruled by the formula:
tan � = ωt .47 This formula was confirmed experimen-
tally and was used to determination of the rate constant
k of the saponification of ethyl acetate (used as a reagent
A) with sodium hydroxide (used as a reagent X).
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Figure 1. The results of numerical calculation for the auto-
catalytic reactions with oscillatory stimulus (described by
eq. (4)) both for k1A > k2 (upper lines) and k1A < k2 (lower
lines) for a) ω = 0.2, b) 0.6 and c) 1.2. For k1A < k2 (lower
lines) from the bottom, the lines correspond 2X, 3X, 4X, 5X
and 6X; for k1A > k2 (upper lines) from the top (upper lines),
the lines correspond 2X, 3X, 4X, 5X and 6X. The black line
at the bottom of figure is a periodical, cosine-like inflow of
the intermediate product X. The calculation parameters are
initial concentration of X:X0 = 1, initial time: t0 = 0,
integration step h = 0.01, k1A = 0.5, k2 = 0.3, a = 0.1.
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Figure 2. Illustration of a) the phase delay φ maximum and b) the phase
delay minimum, dependence on frequency ω; 0.2, 0.4, 0.6, 0.9, 1.2 of the X
inflow and on autocatalysis degree for k1A > k2 : k1A = 0.5, k2 = 0.3.

In the presented model
√

� probably depends on
the order of autocatalysis in case when

√
� is positive

this is, for k1A > k2. For higher levels of autocataly-
sis a sign of the delta (positive or negative) probably
determines whether a system oscillations disappear or not
(at a fixed frequency inflow of X reagent, see figures
1a–c,). When the k1A is greater than k2 (delta is
positive) the damping of the amplitude of the oscilla-
tions and decrease in the phase shift are observed in
the system with an increase in the degree of autocatal-
ysis (figures 1a–c (upper lines) and figures 2a–b and
table 2) (the shift between the oscillatory inflow of X

reagent to the reaction medium and its concentration
in this medium). This is visible both in maximum and

minimum of X inflow (figures 2a–b). As shown in the
figures 2a and 2b, when the k1A is greater than k2 the

phase shift depends strictly on the frequency ω of sup-
ply of X reagent to the reaction medium – decreases
with increasing of ω inflow of reactant X at the given
degree of autocatalysis. As shown in the figures 2a and
2b, with the increase in the degree of autocatalysis,
phase shift between the concentration of the reactant X

and the inflow is reduced. At six-order of autocatalysis
the phase shift does not seem to depend on frequency
ω of flow of X. A similar correlation is observed in the
amplitude values obtained from numerical calculation
as show in table 2. When the k1A is smaller than the
k2 (� is negative) the oscillation of X are sustained (with



1030 Aldona Krupska

2 3 4 5 6
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

ph
as

e 
de

la
y 

φ

degree of autocatalysis

 ω = 0.2
ω = 0.4
ω = 0.6

 ω = 0.9
ω = 1.2

delay maximum for k
1
A = 0.3 and k

2
 = 0.5 

(b)

(a)

2 3 4 5 6
0,0

0,5

1,0

1,5

2,0

 ω = 0.2
ω = 0.4
ω = 0.6

 ω = 0.9
ω = 1.2

delay minimum for k
1
A = 0.3 and k

2
 = 0.5

ph
as

e 
de

la
y 

φ

degree of autocatalysis

Figure 3. Illustration of a) the phase delay φ maximum and b) the phase
delay minimum, dependence on frequency ω; 0.2, 0.4, 0.6, 0.9, 1.2 of the X
inflow and on autocatalysis degree for k1A < k2 : k1A = 0.3, k2 = 0.5.

Table 2. Juxtaposition of the values of amplitude obtained from the numerical cal-
culations for the case: k1A > k2, k1A = 0.5, k2 = 0.3. ω is a frequency of X supply,
2X, 3X, 4X, 5X and 6X denote the degree of autocatalysis.

Degree of autocatalysis ω = 0.2 ω = 0.4 ω = 0.6 ω = 0.9 ω = 1.2

2X 0.14 0.1 0.08 0.05 0.04
3X 0.1 0.08 0.07 0.04 0.03
4X 0.06 0.06 0.05 0.04 0.03
5X 0.03 0.03 0.03 0.02 0.02
6X 0.02 0.02 0.02 0.02 0.01

increase of degree of autocatalysis ((figure 1a), figure
1b), figure 1c) – lower graphs)) and the phase delay

does not change with increasing of degree of autocatal-
ysis at the given frequency ω of X inflow (figures 3a
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and 3b). But, in this case, the phase shift depends on
frequency ω of X inflow at the given degree of auto-
catalysis (figures 3a and 3b). In both cases (when k1A is
greater than k2 or k1A is smaller than the k2) the phase
shift depends on frequency ω of inflow of X at the given
degree of autocatalysis. When the frequency ω of X

inflow to the reaction medium is greater, the phase shift
(phase delay) of the concentration of X in this medium
is reduced at a given order of autocatalysis as shown in
the figure 2 and figure 3. It is opposite to the effect in
linear reactions.47 Apart from that, bifurcation point is
visible in figures 1a–c.

3. Results and Discussion

3.1 Physical interpretation - connection between the
exponential relaxation and the forced delay effect in
the linear and nonlinear systems and some examples

In nature the most of relaxation processes have an
exponential character. In the biological and chemical
systems, relaxation takes place exponentially in almost
70–80%. In chemistry the first order and autocatalytic
non oscillating type of reactions have an exponential
relaxation. Especially the nonlinear autocatalytic pro-
cesses play an important role in biological systems.

If (in the non-oscillating and exponentially relaxing
systems) intermediate product X flows in the oscilla-
tory manner to the reaction medium (as a variable time
cosine type function) it will be seen the phase shift in
the concentration of X in response to the supply of this
component to the medium. This process is called as a
forced (by the oscillating stimulus), the effect of phase
shift. Phase shift (phase delay) is strictly connected with
the relaxation process.

There is a one common formula for all oscillating and
non-oscillating linear systems relaxing exponential and
forced by a periodical stimulus: tan � = ωt , where ω –
is a frequency of stimulus, τ – is a relaxation time. This
formula is mainly used for determination of the relax-
ation time τ , especially in physical systems. In the lin-
ear first-order chemical reactions, the forced phase delay
effect turned out to as a good method for determination
of the rate constant k1 and the relaxation time τ .47

There are common factors relating to all the linear
relaxing exponentially systems both oscillatory and non
oscillatory forced by oscillatory stimulus. Parameters of
the forced oscillation do not depend on the initial con-
ditions. These oscillations have the frequency of driv-
ing force and are characterized by amplitude and phase
shift (with respect to the appropriate stimulus).

There are some differences characterizing the nonlin-
ear systems with respect to the linear ones. There are the

common characteristic for the nonlinear systems, both
oscillatory and non oscillatory, forced by oscillatory
stimulus. In this work we present the non-oscillating
and nonlinear system forced by oscillatory stimulus.
Parameters of the forced oscillation strictly depend on
the initial conditions. Nonlinear systems are sensitive
to the initial conditions. The oscillations have the fre-
quency of driving force and are characterized by ampli-
tude and phase shift (as in the linear systems). There is
no one set rule which describes the behaviour of the
nonlinear systems. This is due to the fact that the non-
linear systems are far from thermodynamic equilibrium.

The forced phase shift in the nonlinear systems
is even less frequent than in the linear ones. There
are known examples of nonlinear physical systems in
which there is a forced phase shift effect. It is diffi-
cult to find examples of nonlinear chemical systems in
which the forced phase shift effect is observed. A spe-
cial class of reaction-diffusion equations to a sys-
tem incorporating time delay effects were theoretically
considered.48 The equations applied e.g., to a nonlinear
reaction-diffusion Lotka-Volterra system.

3.2 Discussion

The nonlinear, non-oscillating and an auto-processing-
autocatalytic chemical reactions are considered in
this paper. The simplest nonlinear autocatalytic type
reaction with the oscillatory inflow of X reagent to the
reaction medium (reaction field) is much more compli-
cated in comparison to the linear first-order reac-
tion with the X reagent inflow to the reaction medium.
In our case, the delay in the concentration of X chem-
ical reagent in the reaction medium is connected with
its frequency of inflow to the reaction medium. As in
the linear first-order process we also observed the phase
shift between the X inflows to the reaction medium and
change its concentration in this medium. The amplitude
modification is observed too. However in the nonlin-
ear autocatalytic processes the � is connected with an
oscillatory time dependent inflow of X and is variable in
time (Eqs. 5a and 5b). Connected with the � the relax-
ation time τ is also variable in time. Apart from � and
τ are also dependent on k1A and k2. For this reason the
relaxation time τ as well as k1A and k2 are not possible
to determination. Nonlinear autocatalytic processes of
high-order have also a one stable stationary state, which
rule this same or similar formula as the simplest auto-
catalytic process one. Determination of the relaxation
time τ and rate constants k1 and k2 are impossible too.

We observe that with increasing frequency of X

inflow to the reaction medium the phase shift tends to
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zero. In the linear first-order reaction, the phase shift
tends to π/2 with increasing frequency of X inflow.
It may be connected with the fundamental difference
between the systems linear and nonlinear. It is proba-
bly connected with � oscillating in time. The fact that
the phase shift decreases with increasing ω inflow X

seems to be important especially in the biological sys-
tems. High frequency ωX component supply needed for
the occurrence of a chemical reaction reduces the delay
of its delivery. This is very important for the proper
conduct of the chemical process in a living organism.
Most nonlinear biological processes, such as, enzymatic
reactions, DNA replication, biosynthesis of protein and
many others occurs with very great speed of 1012 s. It
follows that the reagent X must also be provided at
the same rate. The rate is 1000 times greater than the
rate of transmission of any signal, which is 109 s. When
the delivery rate of reagent X is very rapid, about 1012

s, a delay in phase is observed. Also, any oscillations
are extinguished. In the linear reactions it is inverse; the
higher the frequency of reactant X supply to the reac-
tion medium, the greater is the phase delay, and tends
to a maximum of 90◦ (but does not exceed this value).
This explains the very important role of nonlinearity in
biology. For a biological system to function effectively
there can be no delay in the chemical process. If the
reactant flow rate decreases, the delay may occur, which
may have an adverse effect on the functioning of the
biological system. Presented model explains the behav-
ior of the nonlinear system, depending on the frequency
of X reagent flow to the reaction field. In some cases,
when k1A < k2 (� probably is negative) the oscilla-
tions are sustained in system. This fact is also important
in the living systems that allows to preserve stability.

Table 1 presents a comparison between the lin-
ear and nonlinear chemical processes referring to the
forced phase delay effect. Large differences are appar-
ent between the linear first order chemical reactions
with the oscillatory inflow of X reactant and the nonlinear
autocatalytic ones with the same inflow. It is a funda-
mental difference between the linear chemical reactions
with forced delays effect47 (table 1). In the linear
first-order reactions with an oscillatory inflow of X

reagent to the reaction medium there is only one sta-
tionary state and there is only one analytical solution.
The relaxation time τ is strictly connected with k1A

and tan φ = 2ωτ . In the nonlinear processes with the
oscillatory inflow of X reagent to the reaction medium
is much more complicated. In the first-order linear
reactions with oscillatory inflow of X to the reaction
medium, the phase delay φ is greater with increase of
frequency ω of its inflow. In the autocatalytic nonlin-
ear reactions, the phase shift is reduced with an increase

in frequency ω of X inflow to the reaction medium
(figures 2a and 2b, figures 3a and 3b) at a given degree
of autocatalysis. For the higher order of autocatalysis
(five and six), the phase delay seems to not depend on
frequency ω of X inflow in some cases (when k1A > k2,
see figures 2a and 2b).

The following question arises: is it possible that any
application of the forced phase delay affect the non-
linear autocatalytic processes? In order to answer this
question let’s cite one researcher - Laister. Laister48 in
the abstract of his article writes:

“For a significant class of nonlinear equations it
is shown that an unstable equilibrium solution of the
reaction-diffusion system cannot be stabilized by the
introduction of delay”.48 In our case the nonlinear
autocatalytic but without diffusion processes, cannot
be stabilized by forced delay effect. For this reason the
forced delay effect in the nonlinear chemical processes
cannot be applied for determination of a rate constant
or a relaxation time.

The phase delays’ phenomena seem also to play an
important role in some biological processes. It has been
proved that the p19 protein induces G1/S phase delay,
thereby maintaining cells in a reversible quiescence
state and preventing entry into apoptosis49 N-methyl-D
Revised: aspartate (NMDA) induces a rapid phase shift
of mPer 1promotor gene in cultured SCN. It has been
shown that NMDA induces phase shifts at various time
points.50

Autocatalytic processes are connected with the class
of reactions which are most closely associated with
creation. Stuart Kauffman in his book wrote that life
initially arose as autocatalytic chemical networks.51

The theoretical model presented in this paper can
also be applied to the theory of heterogeneous cataly-
sis. In practice, the present model does not apply here,
because of the intermediate species which are not avail-
able outside reactor. But this model may be useful to
explain the role of autocatalytic stage occurring during
heterogeneous catalysis.

4. Conclusions

Our theory shows that in the nonlinear and non-
oscillating chemical processes, the phase shift and
oscillation amplitude decrease with increasing flow fre-
quency of the intermediate product X to the reac-
tion medium. For this reason, the forced phase delay
effect seems to play an important role in all nonlinear
processes in biological systems.

The phase delay effect (phase shift) in the nonlin-
ear and non-oscillating chemical processes forced by
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the oscillatory inflow of chemical reagent cannot be
used for determination of both a rate constant and a
relaxation time because of a time variable �.

It seems that there is one common mathematical
formula possible to describe nonlinear autocatalytic
processes of all orders.
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Appendix

Derivation of the approximate solution of the irresolv-
able nonlinear equation (eqs. (6) and (16)) in this work
are based on analytical calculation for the nonlinear
autocatalytic reaction with a constant in time inflow of
the reactant X to the reaction medium and on the ana-
lytical solution for the simple linear reaction with oscil-
latory, cosine-like inflow of X to the reaction medium
described in the ref.47

Derivation of Eq. (6) and (16):
The main subject of our consideration is the simplest

nonlinear autocatalytic reaction:

A + X
k1k2←−−−→ 2X IX = const. (A1)

where A stands for the initial product, X is the interme-
diate product, IX denotes constant in time inflow of the
intermediate product X to the reaction field (medium).

We assume that the product X flow to the reaction
medium If the inflow IX of intermediate product X is
constant in time, the kinetic equation (1) has the form:

dX

dt
= k1AX − k2X

2 + IX (A2)

The reaction (2) has the following stationary states:

x1 = k1A + √
�

2k2
x1 = k1A − √

�

2k2
(A3)

where:
√

� =
√

(k1A)2 + 4k2IX in case outflow of X� > 0

is always positive (A3a)

√
� =

√
(k1A)2−4k2IX in case inflow of

X� > 0 or � < 0 (A3b)

We assume that � is positive.
The analytical solution of the X product change

described by equation (2) takes the form:

X =
k1A − √

� − [(k1A + √
�)]c exp

(√
�t

)

2k2[(1 − c exp(
√

�t)] (A4)

where, pre-exponential factor c is,

c = −X02k2 + k1A − √
�

−X02k2 + k1A + √
�

(A5)

X0– is the initial concentration of the product X. X0 is
calculated from the following initial conditions:

when X = X0 → t = 0 and X0 takes the form:

X0 = k1A − √
� − (k1A + √

�)c

2k2 − c2k2
(A6)

From the equation (4) follows the relaxation time τ for
this reaction which takes the form:

τ = 1√
�

= 1√
(k1A)2 − 4k2IX

(A7)

Analytical solution for the linear reactions with oscilla-
tory, cosine-like inflow of intermediate product X to the
reaction medium is described in our earlier paper (see
ref.47).
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