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Abstract. A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane 
electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a gold-
plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium boro-
hydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature per-
formances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, 
fuel, anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, 
as also cell performance durability are compared with a similar DBFC employing a Nafion®

-117
 
mem-

brane electrolyte (NME). Peak power densities of ~30 and ~40 mW cm
–2

 are observed for the DBFCs 
with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found 
to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be ~24 and ~59%, respec-
tively for the PHME-based DBFC; ~18 and ~62%, respectively for the NME-based DBFC. The PHME 
and NME–based DBFCs exhibit operational cell potentials of ~1⋅2 and ~1⋅4 V, respectively at a load cur-
rent density of 10 mA cm–2

 for ~100 h. 
 
Keywords. Poly (vinyl alcohol) hydrogel; Nafion®

-117 membrane; cross over; utilization efficiency; 
direct borohydride fuel cell; sodium borohydride; hydrogen peroxide. 

1. Introduction 

Fuel cells are electrochemical devices that continu-

ously convert chemical energy into electrical energy 

for as long as fuel and oxidant are supplied to it. 

Fuel cells bear similarities to combustion engines 

that generate energy continuously consuming a fuel 

of some sort. Fuel cells are environment-friendly 

and hence attractive energy sources for future gene-

ration. Among the various types of fuel cells, poly-

mer electrolyte fuel cells (PEFCs) are especially 

promising due to their quick start-up capabilities 

under ambient conditions. But PEFCs suffer from 

carbon monoxide poisoning of platinum anode
1–3

 

while using reformer, and hazard related to hydro-

gen storage in directly-fueled PEFCs. Therefore,  

alternative hydrogenous liquids, such as methanol, 

have found application for fueling PEFCs directly.
4–6

 

Use of methanol directly as a fuel in a PEFC simpli-

fies the engineering issues, thereby driving down 

system complexity and hence cost.7 PEFCs employ-

ing pure or aqueous methanol as fuel, referred to as 

DMFCs, however remain limited by low open-

circuit-potential, low electrochemical-activity in  

addition to methanol crossover.
4,8

 

 The problems related to low open-circuit-potential 

and low electrochemical-activity of DMFCs could 

be overcome by using various borohydrides as 

fuel.
9–16

 Sodium borohydride (NaBH4) has the 

minimal heat of hydrolysis (–80 kJ mol
–1

 H2) among 

all borohydrides.
17

 It has a capacity value of 

5⋅67 Ah g
–1

 and a hydrogen content of ~11 wt%.
18

 In 

the literature, Amendola et al
12,13

 are the first to  

report an anion exchange membrane-based DBFC. 

However, the borohydride-air fuel cell due to 

Amendola et al
12,13

 suffers from borohydride cross-

over as BH
–
4-ions can easily pass through the anion 

exchange membrane. Moreover, it would be manda-

tory to scrub CO2 from the air inlet of such a fuel 

cell to avoid carbonate fouling. In order to mitigate 

borohydride-crossover, Li et al
15,16

 developed a 

DBFC employing Nafion
®
-117 membrane as elec-

trolyte-cum-separator and transition metal-based  
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alloy as anode. Transition metal-based alloys em-

ployed as anode catalysts for electro-oxidation of 

NaBH4 in DBFCs is much cheaper than the plati-

num-based precious metal alloy catalysts employed 

for electro-oxidation of methanol in DMFCs.
8,15

 In 

addition, the operational temperature of DBFCs is 

lower than that for DMFCs.
19

 DBFCs employing 

Nafion
®
-117 membrane electrolyte

15,16,20,21
 suffer 

from alkali crossover from anode to cathode. Use of 

Nafion
®
-961 membrane electrolyte as separator re-

duces the cross-over of alkali enhancing utilization 

of oxidant at the cathode.
22,23

 Ironically, Nafion
®
 

membrane is expensive and therefore in order to in-

crease the prospect of commercialization of DBFCs, 

it would be imperative to substitute Nafion
®
 mem-

branes with alternative cost-effective membranes. 

To this end, PVA hydrogel membranes could be at-

tractive.  

 Poly (vinyl alcohol) (PVA), discovered by Hae-

hnel and Herrmann in 1924, is one of the most 

widely investigated polymers in the literature.
24–29

 It 

is cheap, non-toxic and chemically stable.
30

 Under 

acidic conditions, the –OH groups of PVA react with 

–CHO groups of certain aldehydes to form acetal or 

hemiacetal linkages.
31,32

 The resultant polymeric en-

tity with acetal or hemiacetal linkages is water in-

soluble and gel-like in nature. It can be cast to form 

thin large surface-area membranes suitable to be 

used as electrolyte-cum-separator in fuel cells.  

 In the light of the foregoing, in this communica-

tion, we report a DBFC with PVA hydro-gel mem-

brane as electrolyte, alkaline NaBH4 as fuel and 

acidified H2O2 as oxidant. The performance of the 

PHME-based DBFC with regard to peak power den-

sity, reactant utilization efficiency and cell perform-

ance durability is compared with a DBFC employing 

NME.  

2. Experimental  

2.1 Preparation of PVA hydrogel membrane 

electrolyte 

PHMEs were prepared by a solution casting 

method
31,32

 in which a mixture of an aqueous solu-

tion of PVA (M.W. ≈1,25,000; S D Fine-Chem Ltd., 

India) and an optimized quantity of glutaraldehyde 

(25% aq. solution, Merck Specialties Pvt. Ltd.,  

India) was cast on a glass Petri dish and left at am-

bient conditions of temperature and pressure for 

~48 h to allow water to evaporate. After the afore-

said period, the membrane was peeled off and im-

mersed in 1 M sulphuric acid (~98% GR; 

d = 1⋅84 kg L
–1

, Merck Ltd., India) for 1 h to cause 

the cross-linking reaction between PVA and glu-

taraldehyde. In a typical preparation, 80 mL of 

0⋅1 g mL
–1

 aqueous solution of PVA was mixed with 

1.6 mL of 25% aqueous glutaraldehyde by stirring 

magnetically for 4 h and cast on a glass Petri dish of 

16 × 20 cm
2
 area. The dried membrane was then 

peeled off and dipped in 1 M H2SO4 for gel forma-

tion.  

2.2 Preparation of AB5 alloy 

AB5 alloy of composition MmNi3⋅55Al0⋅3Mn0⋅4Co0⋅75, 

where Mm (Misch-metal) comprises La-30 wt.%,  

Ce-50 wt.%, Nd-15 wt.%, Pr-5 wt.%, was employed 

as anode catalyst. It was prepared by arc melting 

stoichiometric amounts of the constituent metals in a 

water-cooled copper crucible under argon atmos-

phere.
33–38

 The alloy ingots were mechanically pul-

verized to fine powders before use in DBFCs.  

2.3 Electrochemical characterization of  

borohydride fuel cells  

For the electrochemical characterization of DBFCs, 

membrane electrode assemblies (MEAs) were pre-

pared by sandwiching the PHME or pre-treated 

NME between anode and cathode. To prepare anode 

catalyst layer, a slurry of AB5 alloy obtained by  

ultra-sonicating the required amount of the alloy 

with 5 wt.% Vulcan XC-72R carbon and 7 wt% of 

Nafion
®
 solution in 2-propanol was pasted on a 

gold-plated stainless steel (SS)-316 gauge of 120 

mesh. The loading of alloy catalyst was 30 mg cm
–2

 

and was kept identical for all the MEAs. The cath-

ode was obtained by electroplating a gold layer of 

1 µm thickness onto a SS-316 gauge of 120 mesh. 

For preparing NME-based MEA, a layer of Nafion
®
 

in 2-propanol with a loading of 0⋅25 mg cm
–2 

was 

applied to the surface of each electrode. The MEA 

was obtained by hot pressing the cathode and anode 

on either side of a pre-treated NME under a load of 

60 kg cm
–2

 at 125°C for 3 min. While preparing 

PHME-based MEA, a novel method was adopted, 

wherein a thin layer of 0⋅1 g mL
–1

 aqueous solution 

of PVA was mixed with optimized quantity of aque-

ous glutaraldehyde solution and was pasted onto the 

surface of each electrode to act as binder between 

the PHME and the electrodes. The MEA was 
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Figure 1. (a) Three-dimensional side-view of the MEA employing PHME; (b) two-
dimensional side-view of the PHME-based MEA: (i) gold-plated SS mesh on anode side, (ii) an-
ode catalyst layer, (iii) PVA + glutaraldehyde binder layer on anode side, (iv) PHME, (v) 
PVA + glutaraldehyde binder layer on cathode side, (vi) gold-plated SS mesh used as cathode.  

 

 

 
 

Figure 2. A schematic diagram of a typical fluid flow 
field plate machined from high-density graphite blocks 
with an active area of 9 cm2

 that acted as storage tanks 
for fuel or oxidant. 

 

 

obtained by hand pressing the cathode and anode on 

either side of the PHME at room temperature for 

3 min. It is noteworthy to mention here that when 

the binder layer consisting of PVA + glutaraldehyde 

comes in contact with H2SO4 soaked-PHME, it  

undergoes cross-linking and in this process binds the 

PHME with catalyst layer. A schematic diagram of 

the PHME-based MEA employed in this study is 

shown in figure 1. 

 PHME and NME-based MEAs were employed to 

assemble various liquid-feed DBFCs. The electrodes 

were contacted on their rear with fluid flow field 

plates machined from high-density graphite blocks 

in which channels connecting the main tank with the 

MEA were provided to achieve minimum mass-

polarization in the DBFCs. The ridges between the 

channels in the high-density graphite blocks on both 

sides of the MEA make electrical contact with the 

electrodes. A schematic diagram of the fluid flow 

field plate with an active area of ~9 cm
2
 that is ma-

chined from high-density graphite blocks is shown 

in figure 2. The fluid flow field plate also functioned 

as a storage tank for fuel/oxidant. The graphite 

blocks were provided with electrical contacts that 

helped conduct the current to the external circuit. 

Through the channels, the tanks supply fuel and oxi-

dant to the anode and cathode, respectively. The fuel 

comprised an optimized mixture of 1⋅7 M NaBH4 in 

7⋅0 M NaOH and the oxidant comprised an opti-

mized mixture of 2⋅0 M H2O2 in 1⋅5 M H2SO4.
6
  

After installing the DBFCs in the test station, per-

formance evaluation studies were initiated. Galvano-
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static-polarization data for various DBFCs were re-

corded by employing Bitrode (Model No. LCN 2-

10-12; Bitrode Corporation Fenton, Missouri, USA).  

2.4 Cross-over studies on membrane electrolytes  

In order to evaluate the efficacies of PHME and 

NME as separators in DBFCs, ex-situ studies were 

carried out to determine the extents of cross-over of 

H2O2, NaBH4, H2SO4 and NaOH by employing a 

set-up as shown in figure 3, where ‘Tank A’ con-

tained 30 mL of an aqueous solution of the chemical 

species whose crossover is to be determined and 

‘Tank B’ was filled with 30 mL of Milipore water. 

The two tanks were sandwiched by PHME or NME 

and held tightly in place with the help of a clamp 

(not shown in figure 3). The set-up was then kept at 

room temperature to allow the chemical species to 

crossover across the membrane. After elapse of the 

stipulated time, a small volume of the solution from 

‘Tank B’ was pipetted out and analyzed for quantifi-

cation of the analyte crossing over through the 

membrane. Determination of extent of H2O2 cross-

over was carried out by redox titration against stan-

dardized KMnO4.
39

 Extent of NaBH4 crossover was 

determined spectrophotometrically
39

 by employing a 

UV-Visible spectrophotometer (UV–2450, Shima-

dzu). The extent of cross-over of H2SO4 and NaOH 

 

 

 
 
Figure 3. Schematic diagram of the set-up for ex-situ 
determination of extent of crossover of various chemical 
species employed in DBFCs through PHME and NME. 
‘Tank A’ holds an aqueous solution of H2O2, NaBH4, 
H2SO4 or NaOH and ‘Tank B’ holds an equal volume of 
Millipore water. 

was determined by titrating against Na2CO3 and  

potassium phthalate, respectively.  

2.5 Utilization efficiency studies on fuel and  

oxidant  

Utilization efficiencies5 of NaBH4 and H2O2 in the 

DBFCs were determined from chronopotentiometric 

data recorded galvanostatically by employing an 

Autolab Electrochemical System (Eco Chemie, The 

Netherlands). 

 In a typical experiment, a 7 mL charge of fuel 

comprising 1⋅7 M NaBH4 in 7 M aqueous NaOH 

was injected into the anode chamber and a 7 mL 

charge of oxidant comprising 2 M H2O2 in 1⋅5 M 

aqueous H2SO4 was injected into the cathode cham-

ber of the DBFC. The DBFC was then subjected to 

galvanostatic chronopotentiometric study at a load 

current density of 23 mA cm
–2

. The fuel utilization 

efficiency of the DBFC was evaluated from the data 

collected by monitoring the anode potential until an 

abrupt change occurred in the anode polarization 

curve. In a similar fashion, the oxidant utilization  

efficiency was obtained by recording the cathode 

potential data until the inflection point. 

2.6 Cell performance durability studies on  

borohydride fuel cells 

Cell performance durability studies on DBFCs  

employing PHME and NME were carried out by  

recording their cell potentials as a function of time 

under a constant load current density of 10 mA cm
–2

. 

In a typical experiment, the anode was supplied with 

a continuous flow of alkaline NaBH4 in a gravity-

driven process and the cathode was supplied with a 

continuous charge of acidified H2O2 also in a gra-

vity-driven arrangement for a continuous period of 

100 h. Outlets were provided to allow the used fuel 

and oxidant to pass out of the anode and cathode 

compartments, respectively. 

3. Results and discussion  

The PHMEs employed in this study are ~210 µm 

thick, transparent, colorless, and mechanically as 

well as chemically stable.
31

 The membrane casting 

procedure is designed so as to obtain a membrane of 

thickness close to that of Nafion-117. The use of a 

thinner membrane results in a lower open circuit 

voltage of the cell due to the increased cross-over of 
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Table 1. Data pertaining to the crossover studies on DBFCs with PVA hydrogel and Nafion
®
-117 membrane electro-

lytes.  

 PVA hydrogel membrane  Nafion
®
-117 membrane 

  electrolyte electrolyte 
 

 Time (h) Time (h) 
 

Analyte     Parameter 1 2 3 24 1 2 3 24 
 

H2O2 Percentage crossed (%) 1⋅8 3⋅9 5⋅4 27⋅3 0⋅5 1⋅0 1⋅4 8⋅7 
 Crossover rate (m mol cm

–2
 h

–1
) 1⋅5 1⋅7 1⋅5 1⋅0 0⋅4 0⋅4 0⋅4 0⋅3 

 
NaBH4 Percentage crossed (%) – – – 0⋅068 – – – 0⋅142 
 Crossover rate (m mol cm

–2
 h

–1
) – – – 0⋅0002 – – – 0⋅0004 

 
H2SO4 Percentage crossed (%) 0⋅7 1⋅4 2⋅4 20⋅5 0⋅2 0⋅5 0⋅5 3⋅4 
 Crossover rate (m mol cm

–2
 h

–1
) 0⋅6 0⋅6 0⋅6 0⋅7 0⋅1 0⋅2 0⋅1 0⋅1 

 
NaOH  Percentage crossed (%) 0⋅6 1⋅1 1⋅7 18⋅3 1⋅1 2⋅3 3⋅4 14⋅7 
 Crossover rate (m mol cm–2

 h
–1

) 1⋅5 1⋅5 1⋅5 1⋅6 3⋅1 3⋅1 3⋅1 1⋅2 

 

 

 
 

Figure 4. Cell performance data for DBFCs with (i) 
polyvinyl alcohol hydrogel membrane, and (ii) Nafion

®
-

117 membrane electrolytes. 

 

 

BH
–
4 ions from anode to cathode across the mem-

brane.
40

 The mid-point ASTM glass transition tem-

perature for the PHME obtained from time 

modulated differential scanning calorimetry using 

TOPEM software is found to be 381⋅3 K.
41

 The ionic 

conductivity of as-prepared PHME is due to H2SO4 

that is used to catalyze the cross-linking between 

PVA and glutaraldehyde. The schematic diagram of 

the PHME-based MEA employed in this study is 

shown in figure 1. Figure 1(a) shows the three-

dimensional side view and figure 1(b) shows the 

two-dimensional side view. As shown in figure 1(b), 

the components of the MEA are gold-plated SS 

mesh on anode side onto which the catalyst is coated 

(i), anode catalyst layer (ii), PVA + glutaraldehyde 

binder layer on anode side (iii), PHME (iv), PVA + 

glutaraldehyde binder layer on cathode side (v), 

gold-coated SS mesh used as cathode (vi).  

 The performance data for DBFCs with optimized 

PHME and NME are presented as graphs (i) and (ii) 

respectively in figure 4. The open circuit potentials 

of DBFCs with PHME and NME are ~1⋅4 and 

~1⋅7 V, respectively. The cell potentials and power 

densities of the PHME-based DBFC are lower than 

those of the NME-based DBFC. The peak power 

densities for the PHME and NME-based DBFCs are 

found to be ~30 and ~40 mW cm
–2

, respectively at 

ambient temperature. The load-current densities cor-

responding to peak power densities for the DBFCs 

with PHME and NME are ~45 and ~60 mA cm
–2

, re-

spectively. The nominally better cell performance of 

the NME-based DBFC could be due to the higher 

ionic conductivity of NME (10
–1

 S cm
–1

) that, unlike 

PHME (10
–2

 S cm
–1

), is an ionomer with pendant  

–SO3H side groups.  

 Data pertaining to the crossover of various chemi-

cal species involved in the two membrane-based 

DBFCs are summarized in table 1. The rate of H2O2 

crossing over across PHME is found to be higher 

than that through NME. The mobility of H2O2 across 

the two membranes could be influenced by the 

physical characteristics of the two membranes such 

as thickness and density. The thicknesses of the two 

membranes being almost identical, the densities of 

the two membranes could be the determining factor. 
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The density of the in-house prepared PHME and 

commercially prepared NME employed in this study 

have been determined to be 1⋅2 and 2⋅2 g cm
–3

,  

respectively. The relatively low density of PHME 

could be responsible for the higher cross over rate of 

H2O2. 

 The percentage of NaBH4 crossover across the 

two membranes is very small. Owing to this reason, 

the data for NaBH4 crossover after a period of 24 h 

only is reported here. The rate of NaBH4 crossover 

has been found to be nominally less across the 

PHME as compared to that across the NME. The 

crossover rate of H2SO4 across PHME is almost five 

times of that across NME. The higher rate of cross-

over of H2SO4 across PHME can be explained by 

considering the structural features of the two mem-

branes and the mode of transportation of H2SO4 in 

aqueous medium. PHME is a nonionic membrane 

whereas NME is an ionomeric membrane with nega-

tively charged –SO
–
3 groups attached to the Nafion

®
 

backbone. When H2SO4 is mixed with an aqueous 

medium like PHME, the protons get bonded to the 

network of H-bonded water molecules through  

H-bonding whereas the sulphate ion is surrounded 

by shells polar water molecules. The H-bonded pro-

tons transport by the Grötthus-type mechanism 

whereas the HSO
–
4 ions transport by free diffusion. 

Mobility of proton in aqueous medium is the highest 

among all the ions.
31,42

 So, the ion determining the 

rate of transportation of H2SO4 across the two mem-

branes is SO
2
4
–
. Now, SO

2
4
–
 will experience a repul-

sive force while transporting through NME because 

of the negatively charged backbone of Nafion
®
 iono-

mer. This explains the low mobility of H2SO4 across 

NME as compared to PHME. The rate of NaOH 

crossover through the PHME is almost half of that 

through the NME. This can be explained in a similar 

manner as that of H2SO4. Similar to H
+
 ion, the OH

–
 

ion in aqueous medium bonds to the matrix of  

H-bonded water molecules and may predominantly 

transport by the Grötthus-type mechanism. The 

unique mode of transportation of OH
–
 explains its 

high mobility in aqueous medium, next only to H
+
 

ion mobility.
42

 So, the mobility of NaOH in aqueous 

medium-based membrane electrolytes will predomi-

nantly be dependent on the mobility of Na
+
 that 

takes place by free diffusion. The electrostatic  

attraction between Na
+
 ion and –SO

–
3 ions present in 

the Nafion
®
 backbone facilitates the transportation 

of Na
+
 across the NME. In contrast, the polymeric 

network in PHME being electrically neutral offers 

no such assistance in the transportation of NaOH. 

This explains the higher crossover rate of NaOH in 

NME as compared to that in PHME. The mobility of 

various ions in Nafion
®
-117 membrane reported in 

the literature
43

 supports this explanation.  

 The data pertaining to utilization efficiencies22 of 

NaBH4 and H2O2 for the PHME and NME-based 

DBFCs are shown in figure 5. Cell potential data for 

PHME and NME-based DBFCs are shown as graphs 

(i) and (ii), respectively. Cathode potential data for 

PHME and NME-based DBFCs are shown as graphs 

(iii) and (iv), respectively. Anode potential data for 

PHME and NME-based DBFCs are shown as graphs 

(v) and (vi), respectively. The utilization efficiencies 

of NaBH4 and H2O2 are found to be ~24% and 

~59%, respectively for the PHME-based DBFC. For 

NME-based DBFC, the utilization efficiencies of 

NaBH4 and H2O2 are found to be ~18% and ~62%, 

respectively. As documented in table 1, although the 

crossover rate of NaBH4 across both the membranes 

is very low, its utilization efficiency in the DBFCs is 

also low. The loss of NaBH4 in the DBFCs could be 

mainly due to hydrolysis reaction.
17

 The fact that the 

utilization efficiencies of fuel and oxidant in the 

PHME-based DBFC are comparable to those in the 

NME-based DBFC shows that the PHME can be a 

viable electrolyte for use in DBFCs. 

 

 

 
 
Figure 5. Chronopotentiometric data for determination 
of utilization efficiencies of NaBH4 and H2O2 in DBFCs: 
(i) cell potential data for PHME-based DBFC, (ii) cell po-
tential data for NME-based DBFC, (iii) cathode potential 
data for PHME-based DBFC, (iv) cathode potential data 
for NME-based DBFC, (v) anode potential data for 
PHME-based DBFC, (vi) anode potential data for NME-
based DBFC. 
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Figure 6. Data pertaining to cell performance durability 
tests on DBFCs with (i) polyvinyl alcohol hydrogel mem-
brane, and (ii) Nafion®

-117 membrane electrolytes. 
 

 

 The data pertaining to the cell performance dura-

bility studies on the PHME and NME-based DBFCs 

are shown as graphs (i) and (ii), respectively in fig-

ure 6. For the PHME-based DBFC, a sharp fall in 

cell potential from ~1⋅6 to ~1⋅2 V is observed when 

loaded with a small initial current. On continuation 

of current loading for ~100 h, there was little  

decrease in the cell potential. In the case of NME-

based DBFC, no initial sharp fall in cell potential is 

observed. The cell potential for the NME-based 

DBFC is found to be higher than that for the PHME-

based DBFC during the entire period of the durabi-

lity test.  

4. Conclusions 

The study demonstrates that it is possible to assem-

ble and operate a DBFC with PVA hydrogel mem-

brane as electrolyte, alkaline NaBH4 as fuel and 

acidified H2O2 as oxidant. A maximum power den-

sity of ~30 mW cm
–2

 is observed for the PHME-

based DBFC in contrast to ~40 mW cm
–2

 for the 

NME-based DBFC at ambient temperature. The rate 

of H2O2 crossover across PHME is found to be  

almost three times that through NME. The percent-

age of NaBH4 crossover across the two membrane 

electrolytes is very small. The crossover rates of 

NaBH4 across PHME and NME has been found to 

be 1⋅8 × 10
–3

 and 3⋅8 × 10
–3

 m mol cm
–2

 h
–1

, respec-

tively. The crossover rate of H2SO4 across PHME is 

almost five times that across NME. The rate of 

NaOH crossing over through the PHME is almost 

half of that through the NME. The utilization effi-

ciencies of NaBH4 and H2O2 are found to be ~24% 

and ~59%, respectively for the PHME-based DBFC. 

For NME-based DBFC, the utilization efficiencies 

of NaBH4 and H2O2 are ~18% and ~62% respec-

tively. The PHME and NME–based DBFCs show 

cell potentials of ~1⋅2 and ~1⋅4 V respectively at a 

load current density of 10 mA cm
–2

 for ~100 h at 

ambient temperature. The performance of the 

PHME-based DBFC compares well with the NME-

based DBFC.  

Acknowledgement 

The financial support from US Army Communica-

tion and Electronics Research Development and  

Engineering Center (CERDEC) is gratefully ac-

knowledged. 

References 

1. Larminie J and Dicks A 2000 Fuel cell systems ex-
plained (New York: Wiley) 

2. Isono T, Suzuki S, Kaneko M, Akiyama Y, Miyake Y 
and Yonezu I 2000 J. Power Sources 86 269 

3. Igarashi H, Fujino T and Watanabe M 1995 J. Elec-
troanal. Chem. 391 119 

4. Prakash G K S, Smart M C, Wang Q.-J, Atti A, Pley-
net V, Yang B, McGrath K, Olah G A, Narayanan S 
R, Chun W, Valdez T and Surampudi S 2004 J. Fluo-
rine Chem. 125 1217 

5. Aricò A S, Srinivasan S and Antonucci V 2001 Fuel 
Cells 1 1 

6. Shukla A K, Jackson C L, Scott K and Raman R K 
2002 Electrochim. Acta 47 3401 

7. Shukla A K, Jackson C L and Scott K 2003 Bull.  
Mater. Sci. 26 207 

8. Shukla A K, Raman R K, Choudhury N A, Priolkar K 
R, Sarode P R, Emura S and Kumashiro R 2004 J. 
Electroanal. Chem. 563 181 

9. Indig M E and Snyder R N 1962 J. Electrochem. Soc. 
109 1104 

10. Jung M and Kroeger H H 1970 US Patent 3,511,710 
11. Lee J.-Y 1997 US Patent 5,599,640 
12. Amendola S C 1998 US Patent 5,804,329 
13. Amendola S C, Onnerud P, Kelly M, Petillo P, Sharp-

Goldman S and Binder M 1999 J. Power Sources 84 
130 

14. Suda S 2002 US Patent 6,358,488 
15. Li Z P, Liu B H, Arai K and Suda S 2003 J. Electro-

chem Soc. 150 A868. 
16. Li Z P, Liu B H, Arai K, Asaba K and Suda S 2004 J. 

Power Sources 126 28 
17. Fakioğlu E, Yürüm Y and Veziroğlu T N 2004 Int. J. 

Hydrogen Energy 29 1371 
18. Suda S 2003 In Handbook of fuel cells: Fundamen-

tals, technology and applications (eds) W Vielstich, 
H A Gasteiger and A Lamm Fuel Cell Technology 
and Applications (Wiley) vol 3, p 115–120 



N A Choudhury et al 

 

654 

19. Leon C P D, Walsh F C, Pletcher D, Browning D J 
and Lakeman J B 2006 J. Power Sources 155 172 

20. Choudhury N A, Raman R K, Sampath S and Shukla 
A K 2005 J. Power Sources 143 1 

21. Raman R K, Choudhury N A and Shukla A K 2004 
Electrochem. and Solid-State Lett. 7 A488 

22. Raman R K and Shukla A K 2007 Fuel Cells 7 225 
23. Raman R K, Prashant S K and Shukla A K 2006 J. 

Power Sources 162 1073  
24. Lewandowski A, Skorapaka K and Malinska J 2000 

Solid State Ionics 133 265 
25. Vargas R A, Zapata V H, Matallana E and Vargas M 

A 2001 Electrochim. Acta 46 1699 
26. Rhim J W, Hwang H S, Kim D S, Park H B, Lee C H, 

Lee Y M, Moon G Y and Nam S Y 2005 Macromol. 
Res. 13 135 

27. Kang M S, Kim J H, Won J, Moon S H and Kang Y S 
2005 J. Membr. Sci. 247 127 

28. Araujo A M, Neves M T, Azevedo W M, Oliveira  
G G, Ferreira D L, Coelho R A L, Figueiredo E A P 
and Carvalho L B 1997 Biotechnology Tech. 11 67 

29. Qiao J, Hamaya T and Okada T 2005 J. Mater. Chem. 
15 4414 

30. Kim S Y, Shin H S, Lee Y M and Jeong C N 1999 J. 
Appl. Polym. Sci. 73 1675 

31. Choudhury N A, Shukla A K, Sampath S and Pitchu-
mani S 2006 J. Electrochem. Soc. 153 A614 

32. Dasenbrock C O, Ridgway T H, Seliskar C J and 
Heineman W R 1998 Electrochim. Acta 43 3497 

33. Kumar V G, Shaju K M, Munichandraiah N and 
Shukla A K 1998 J. Power Sources 76 106 

34. Shukla A K, Venugopalan S and Hariprakash B 2001 
J. Power Sources 100 125 

35. Tliha M, Mathlouthi H, Lamloumi J and Percheron-
Guegan A 2007 J. Alloys Compounds 436 221 

36. Srivastava S and Srivastava O N 1998 J. Alloys 
Compounds 267 240 

37. Li R, Wu J-M and Wang X-I 2000 J. Alloys Com-
pounds 311 40 

38. Wang L, Ma C, Sun Y and Suda S 2005 J. Power 
Sources 391 318 

39. Jeffery G H, Bassett J, Mendham J and Denney R C 
1989 Vogel’s textbook of quantitative chemical 
analysis (Fifth edition) 

40. Liu B H, Li Z P, Zhu J K and Suda S 2008 J. Power 
Sources 183 151 

41. Sahu A K, Selvarani G, Pitchumani S, Sridhar P, 
Shukla A K, Narayanan N, Banerjee A and Chandra-
kumar N 2008 J. Electrochem Soc. 155 B686S 

42. Puri B R, Sharma L R and Pathania M S 1996 Princi-
ples of physical chemistry (Shoban Lal Nagin Chand 
and Co., Educational Publishers: India) 

43. Stenina I A, Sistat Ph, Rebrov A I, Pourcelly G and 
Yaroslavtsev A B 2004, Desalination 170 49 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


