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Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical
behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals.
Computational systems biochemistry and incorporation of different omics data unravelled active metabolism
and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA),
elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important
results that were obtained using these tools. Limitations and challenges are also discussed.
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1. Introduction

Metabolism is the key process of any living organism
that comprises a series of chemical reactions involved
in building up sugars and other molecules by photo-
synthesis utilizing smaller molecules and producing
energy by respiration from those complex biological
molecules, such as proteins, lipids, nucleic acids, car-
bohydrates, etc., to sustain life. In the case of plant
systems, the term ‘metabolism’ directly points towards
some cellular processes such as glycolysis, the tricar-
boxylic acid cycle (TCA cycle), the Calvin cycle, the
pentose phosphate pathway, the electron transport
chain, etc., which take place in the cytosol and other
different cellular compartments such as mitochondria,
chloroplasts, and peroxisomes. Most of the reactions of
metabolic pathways are catalyzed by different
enzymes, and therefore, they can be regulated by
varying the activities of those enzymes. On the other
hand, there are other factors like substrate and product

concentrations, as well as ion concentrations, that act as
co-factors for different enzymes, pH levels, genomic
and transcriptomic variations, and stress conditions
which can up- or down-regulate metabolic pathways.
Several important pathways of central carbon metabo-
lism occur within plant mitochondria and synthesis the
important players. Various shuttle systems and trans-
porters help mitochondria maintain their interactions
with the cytosol, chloroplast, peroxisome, etc. In this
review, we focus on mitochondrial metabolism and its
interactions with other cellular compartments and their
regulations. In the following sections, we will elaborate
on the computational approaches that can integrate
different omics and simulation data to understand
metabolic interactions at the cellular level. Flux balance
analysis (FBA) (Orth et al. 2010) is one of the
important mathematical constraint-based modeling
approaches to understand flux distributions in meta-
bolic networks under different cellular conditions.
Regulation of metabolism due to differential gene
expressions and variations in enzyme concentrations
can be analyzed by modifying the classical FBA
method. Flux variability analysis (FVA) may indicate
new feasible pathways which can be then validated

This article is part of the Topical Collection: Plant
Mitochondria: Properties and Interactions with Other
Organelles.

http://www.ias.ac.in/jbiosci

J Biosci           (2024) 49:56 � Indian Academy of Sciences
DOI: 10.1007/s12038-023-00416-5 (0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1235-2540
http://crossmark.crossref.org/dialog/?doi=10.1007/s12038-023-00416-5&amp;domain=pdf
http://www.ias.ac.in//jbiosci


either through proteomics or gene expression data,
i.e., whether under different conditions these differ-
ent sets of metabolic pathways get activated. Fur-
thermore, elementary flux mode analysis (EFMA)
(Schuster et al. 1999) gives us alternative modes of
different metabolic pathways. The flux coupling
finder (FCF) (Burgard et al. 2004) can indicate
coupled metabolic reactions, i.e., whether a change
in one reaction will result in a corresponding change
in a coupled reaction.

2. Biochemical pathways of biomass production
in plant leaves

Incident light energy is converted to chemical energy in
the form of adenosine triphosphate (ATP) and nicoti-
namide adenine dinucleotide phosphate hydrogen
(NADPH) by the two photosystems – I and II,
embedded in the thylakoid membrane of chloroplasts.
These reactions, occurring in the presence of light, are
called light reactions (Arnon 1971). The ATP and
NADPH produced by light reactions enter the Calvin–
Benson cycle, which takes place in the stroma of the
chloroplast. The main enzyme that works in the Cal-
vin–Benson cycle is ribulose-1,5-bisphosphate car-
boxylase/oxygenase (RuBisCO) (Sharkey 2023). Three
molecules of ribulose-1,5-bisphosphate (RuBP) and
three molecules of CO2 enter the cycle and generate six
molecules of glyceraldehyde-3-phosphate (GAP). One
molecule is released and gets utilized in the production
of glucose, and the remaining are used in regenerating
three molecules of RuBP. The sugar produced in the
chloroplast enters the glycolytic pathway in the cytosol,
where both GAP and glucose are converted to pyruvate
as the end product of this pathway. Now, pyruvate
leaves the cytosol, and the mitochondrion comes into
play. In the next section, we discuss mitochondrial
metabolism in detail. Mitochondrial metabolism and its
interactions with other organelles are described
schematically in figure 1.

2.1 Mitochondrial metabolism

Mitochondrial metabolism is closely related to
cytosolic and chloroplastic metabolisms, and a major
part of mitochondrial metabolism is covered by the
TCA cycle (also known as the citric acid or Krebs
cycle), the electron transport chain (ETC), and ATP
synthesis. These metabolic pathways can also be reg-
ulated in different ways. A schematic overview of the

regulations of mitochondrial metabolism is shown in
figure 2.
Either pyruvate, the end product of glycolysis, enters

the mitochondrial matrix directly with the help of
mitochondrial pyruvate carriers (MPC) present in the
inner mitochondrial membrane, or the mitochondrial
NAD-malic enzyme (NAD-ME) synthesizes pyruvate
inside mitochondria by oxidatively decarboxylated
malate, which is derived from phosphoenolpyruvate
(PEP) (Rustin et al. 1980). It can also be synthesized
from alanine with the help of alanine aminotransferase
inside the mitochondrial matrix (Le et al. 2022).
Oxaloacetate (OAA) is produced by cytosolic PEP
carboxylase, followed by the production of malate, and
both metabolites are transported to the mitochondrion
to maintain the pyruvate pool inside the mitochondrial
matrix (Zoglowek et al. 1988; Hanning et al. 1999). In
the mitochondrial matrix, pyruvate is converted to
acetyl CoA by oxidative decarboxylation through the
action of the mitochondrial pyruvate dehydrogenase
complex (PDC), which releases CO2 and reduces
NAD? to NADH (Tovar-Méndez et al. 2003; Araujo
et al. 2012). Acetyl CoA is also used in the fatty acid
biosynthesis. Acetyl CoA can be derived, depending on
the organism and cell type, from b-oxidation of fatty
acids or from the degradation of ketogenic amino acids
(Sweetlove et al. 2010). Mitochondrial PDC is inhib-
ited by acetyl CoA (Tovar-Méndez et al. 2003) and
light (Poolman et al. 2013), and activated by thiamine
pyrophosphate (Bocobza et al. 2013).

2.1.1 TCA cycle: The TCA cycle comprises a series of
eight oxidative steps that release two carbon atoms as
CO2 and generate NADH and FADH2, which are fur-
ther used in the mitochondrial ETC. The condensation
of oxaloacetate (OAA) and acetyl CoA by citrate
synthase (CS) occurs in the first step of the TCA cycle
to produce citrate. The enzyme citrate synthase is
regulated by oxidation and reduction of cysteine resi-
dues present in the enzyme (Nishio and Mizushima
2020). Thioredoxins (TRX) reduce the intra- and
intermolecular disulfide bonds of the enzyme and form
the active dimer of the enzyme (Schmidtmann et al.
2014). An increase in enzyme activity is also observed
when it gets reduced with dithiothreitol (DTT) (Stevens
et al. 1997). In response to light, its activity increases
by 1.4-fold (Unger and Vasconcelos 1989) and
hydrogen peroxide (Schmidtmann et al. 2014), and
diamide (Stevens et al. 1997) can decrease the activity
of the enzyme by 54% and 25%, respectively, due to
the formation of mixed disulfides by oxidation. This
enzyme is again inhibited by higher temperature (50�C)
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Figure 1. Schematic representation of plant metabolism including four compartments: cytosol, mitochondrion, peroxisome,
and chloroplast. This includes a brief overview of the following metabolic pathways: (i) mitochondrial tricarboxylic acid
cycle (TCA cycle) producing reductants and amino acid precursors, (ii) mitochondrial electron transport chain (ETC)
producing ATP, (iii) chloroplastic Calvin–Benson cycle (C3 cycle) that generates one molecule of the three carbon sugar,
glyceraldehyde-3-phosphate, and (iv) photorespiration (C2 cycle) which spans all the four compartments and is involved in
protecting the cell from photoinhibition.
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and higher concentration of ATP, NADH, succinyl-
CoA, citrate, and 2-oxoglutarate (Alejandre et al. 1979)
and activated by ADP (Barbareschi et al. 1974; Siedow
and Day 2000).
Citrate is converted to isocitrate by aconitase via the

bound intermediate cis-aconitate. The important
metabolites of the TCA cycle, fumarate, malate, suc-
cinate, and trans-aconitate, have little inhibitory control
over the enzyme aconitase. In the presence of light,
succinate dehydrogenase gets inhibited, which results
in the accumulation of succinate. The increased level of
succinate causes inhibition of mitochondrial aconitase,
which stimulates the efflux of citrate from mitochon-
dria (Eprintsev et al. 2015). Previous studies have also
shown that a few more events, such as the presence of
nitric oxide (Gupta et al. 2012) and a plant metabolite,
citramalate (Sipari et al. 2020), lack of manganese
superoxide dismutase (Morgan et al. 2008), and accu-
mulation of H2O2 in mitochondria due to the sup-
pression of the mitochondrial ETC, can inhibit the
activity of aconitase (Verniquet et al. 1991; Nunes-Nesi
et al. 2013). Its activity gets completely blocked at 50
lM H2O2 (Tretter and Adam-Vizi 2000).
In the next step, NAD- or NADP-dependent isoci-

trate dehydrogenases (NAD-ICDH/NADP-ICDH)
oxidatively decarboxylate isocitrate to 2-oxoglutarate
and generate CO2 and NADH or NADPH, respectively.
NAD-ICDH found only in mitochondria (Lancien et al.
1998) is inhibited by NADH (in a competitive manner)
(McIntosh and Oliver 1992) and high concentration of
isocitrate (Popova and de Carvalho 1998). On the other
hand, NADP-ICDH found in mitochondria, plastids,
peroxisomes, and cytosol (Hodges et al. 2003) is
inhibited by NADPH non-competitively (McIntosh and
Oliver 1992; Igamberdiev and Gardeström 2003).

Citrate regulates the enzyme in a competitive manner:
at low isocitrate concentrations, activation occurs by
citrate, but at high isocitrate concentrations, citrate
appears to be a competitive inhibitor (Cox and Davies
1969). Various organic acids (2-oxoglutarate, citrate,
cis- and trans-aconitate, gly-oxylate, and oxaloacetate),
ions of metals (Mn2?, Mg2?, Zn2?, etc.), and some
nucleoside phosphates such as ATP regulate the
activities of NAD-ICDH and NADP-ICDH (McIntosh
and Oliver 1992; Popova and de Carvalho 1998). A
previous study showed that the activity of NAD-ICDH
present in pumpkin cotyledon is increased by 15% at
pH 7.2 and by 70% at pH 8.0 at optimal citrate con-
centration of 0.5 mM (Popova and de Carvalho 1998).
Another oxidative decarboxylation reaction occurs

when succinyl CoA is generated from 2-oxoglu-
tarate, generating CO2 and NADH as by-products.
The reaction is catalyzed by the enzyme 2-oxoglu-
tarate dehydrogenase complex (OGDHC), which is
regulated by the levels of both its substrates, i.e.,
2-oxoglutarate and NADH and products, i.e., suc-
cinyl-CoA, and some other factors, such as Ca2?,
ATP/ADP, NADH/NAD?, and thiamine pyrophos-
phate (Wedding and Black 1971; Strumilo 2005;
Bunik and Fernie 2009).
Succinyl-CoA ligase (ScoAL), also called succinate

thiokinase or succinyl-CoA synthetase, subsequently
catalyzes the synthesis of succinate from succinyl-CoA
along with the formation of ATP from ADP and Pi.
Low concentration of 2-oxoglutarate activates the
enzyme, whereas citrate, isocitrate, succinate, fumarate,
malonate, and intermediates of the porphyrin biosyn-
thesis pathway (Palmer and Wedding 1966) inhibit the
enzyme at their high concentrations (Studart-Guimar-
ães et al. 2005).

Figure 2. Different regulations of mitochondrial metabolism.
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Next, succinate dehydrogenase (SDH) combines two
reactions: the oxidation of succinate to fumarate and
the reduction of ubiquinone to ubiquinol. The latter is
an essential step for transferring electrons from redox
equivalents to oxygen during the process of the ETC.
SDH is also known as complex II, a major component
of the ETC. Both ATP and ADP can activate the
enzyme. On the other hand, the activity of the enzyme
is negatively affected by potassium (Affourtit et al.
2001), TRX (Daloso et al. 2015), and nitric oxide (NO)
(Simonin and Galina 2013).
In the next step, fumarate is reversibly converted to

malate by hydration/dehydration. The investigation of
regulation of fumarase from pea (Pisum sativum L.),
reveals that the alpha-keto acids pyruvate and 2-ox-
oglutarate at millimolar concentrations and the adenine
nucleotides ATP, ADP, and AMP can inhibit the
enzyme (Behal and Oliver 1997). However, the
enzyme gets activated by Mg2?, K?, and Ca2?

(Eprintsev et al. 2018) and deactivated by TRX
(Daloso et al. 2015).
In the last step of the cycle, malate is oxidized to

oxaloacetate by a reversible reaction catalyzed by
NAD-dependent malate dehydrogenase. It is likely that
accumulation of NADH leads to an inhibition of the
mitochondrial malate dehydrogenase (Nunes-Nesi
et al. 2013). At low malate concentration, this enzyme
appears to be most active (Wedding et al. 1976).
The two most important shuttles – malate-aspartate

and malate-OAA – use malate (Zoglowek et al. 1988)
for the transport of substrate and redox equivalents
across the mitochondrial membrane to maintain the
redox balance in the cell. The cycle not only generates
the reducing equivalents NADH and FADH2 to syn-
thesize ATP by oxidative phosphorylation through the
ETC, but also supplies carbon skeletons for the syn-
thesis of different biological compounds. For example,
2-oxoglutarate acts as a precursor for amino acid
biosynthesis.

2.1.2 Electron transport chain and ATP synthesis:
Oxidative phosphorylation comprises two important
processes, the ETC and ATP synthesis. It generates
ATP by using the redox equivalents NADH and
FADH2 from the TCA cycle.
The electron transport chain is made up of four

enzyme complexes present within the inner membrane
of mitochondria. The high energy electrons are trans-
ferred from the reducing equivalents NADH and
FADH2 through a series of reactions to oxygen, the
final electron acceptor, by losing its energy, which is
used to pump out protons from the matrix into the inter-

membrane space. Complex I, also known as NADH
dehydrogenase, and complex II, also known as succi-
nate dehydrogenase, accept two electrons from NADH
and FADH2, respectively. They cause the oxidation of
NADH and FADH2, respectively, and pass the elec-
trons to complex III (Q-cytochrome c oxidoreductase),
the first cytochrome (cyt) in the pathway, via coenzyme
Q (also known as quinone and CoQ). Complex IV
passes the electrons to oxygen, which generates water.
Complex I, III, and IV release 4H?, 4H?, and 2H? into
the intermembrane space, respectively, while complex
II does not directly pump any protons out. Hence, a
concentration difference of protons (higher in the
intermembrane space than the matrix), i.e., a pH gra-
dient, is developed across the membrane. A voltage
gradient is also developed due to the difference of
charge. These two collectively constitute an electro-
chemical gradient (equivalent to *150–200 mV)
which exerts a proton motive force (pmf) across the
inner mitochondrial membrane and this pmf is used by
the enzyme ATP synthase, a multi-protein complex, to
generate ATP.
The generation of one ATP molecule requires four

protons (three protons go through ATP synthase and
one is used for the transport of Pi and ADP into
mitochondria). ATP synthase is made up of two com-
ponents, FO (rotor), and F1 (catalytic head and stalk)
(Seelert and Dencher 2011). FO is a transmembrane
protein complex, embedded in the inner mitochondrial
membrane, which accepts protons and rotates the F1
head. A complete rotation of ATP synthase transfers ten
protons from the intermembrane space to the matrix
and generates three ATP molecules. These ATP mole-
cules are utilized for different cellular activities and
survival of the cell.

2.1.3 Alternative oxidase: In addition to cytochrome
oxidase, mitochondria contain an alternative oxidase
(AOX) that directly couples the oxidation of ubiquinol
with the reduction of O2 to H2O without proton
translocation from the matrix to the mitochondrial
inter-membrane space (Jacoby et al. 2012). High-en-
ergy electrons are partitioned between two paths in the
ETC: the cytochrome pathway (complex III, cyt c,
complex IV) and AOX. Notably, AOX bypasses the
flow of electrons through complexes III and IV, pro-
hibiting the excessive reduction of the downstream
complexes of the ETC and thus dissipates the free
energy of electrons in the form of heat (Moore and
Siedow 1991; Rhoads and Subbaiah 2007). This
reduces the level of ATP synthesis. However, if AOX
takes electrons from NADH, a diminished amount of
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ATP is still synthesized as these electrons arise via the
proton pumping complex I. Therefore, if FADH2 pro-
vides the electron flow to AOX, the electron flow will
be completely uncoupled from ATP turnover since
complex II, unlike complex I, is not proton-pumping.
Briefly, the mitochondrial ETC can dramatically mod-
ulate the production of ATP depending on the com-
ponents of the path used for electron flow to cope with
different physiological conditions (Millar et al. 2011).
The alternative oxidase is located in the inner mito-

chondrial membrane in a dimeric form. The dimer
exists in two different states: an oxidized state, in
which the dimer is covalently cross-linked by an
intermolecular disulfide bridge, and a reduced state, in
which the disulfide bond is reduced to its component
sulfhydryls and non-covalent interactions maintain the
dimeric structure of AOX (Moore et al. 1995). The
oxidized form is four- to five-fold less active than the
reduced form, and the two forms are regulated by
reversible oxidation-reduction of the cysteine bond
between two monomers (Umbach and Siedow 1993).
An increase in reducing equivalents (NADH, NADPH)
can activate AOX (Sluse and Jarmuszkiewicz 1998).
AOX can be activated by pyruvate (Pastore et al. 2001)
and succinate (Vanlerberghe and McIntosh 1997; Sluse
and Jarmuszkiewicz 1998; Saha et al. 2016). Electron
transfer between cyt oxidase and AOX can be affected
by the level of ubiquinone concentration. In the
absence of ADP or in the presence of cytochrome chain
inhibitors such as nitric oxide (NO), carbon monoxide
(CO), hydrogen sulfide (H2S), hydrogen cyanide
(HCN), etc., the cytochrome pathway activity becomes
low and AOX gets activated (Sluse and Jar-
muszkiewicz 1998; Cooper and Brown 2008). AOX
activity can be altered in response to stress (Vanler-
berghe 2013). Temperature has an effect on AOX
activity in plants (Campbell et al. 2007; Armstrong
et al. 2008; Searle et al. 2011; Shi et al. 2013). In a
study, it was reported that in a callus culture of Ara-
bidopsis, shifting to a chilling temperature in addition
to ethylene treatment was required to induce AOX
activity (Wang et al. 2012). Furthermore, higher
amount of AOX protein was seen in Arabidopsis
grown at 12�C than warm grown plants, and knock-
down plants with low AOX levels showed no growth
in low temperatures (Fiorani et al. 2005). Similarly,
when chilling-sensitive maize was given a short-term
cold treatment (5 days at 5�C), the respiration shifted
its usage from cyt oxidase to AOX in such a way that,
in the new condition, 60% of total respiration occurred
through AOX (Ribas-Carbo et al. 2000). Furthermore,
cyt activity was found to be reduced and AOX activity

was increased in tobacco in response to ozone treat-
ment (Ederli et al. 2006). A shift from cyt oxidase to
AOX oxidase was observed in response to high light
intensity (Poolman et al. 2013).

2.1.4 Interactions of mitochondria with other orga-
nelles through photorespiration: Photorespiration is a
wasteful but important biological process which
includes a light-dependent uptake of O2 and release of
CO2 and limits plant growth by regulating the photo-
synthetic electron flow in different light intensities
(Huang et al. 2015). It is called a wasteful process
because it does not generate ATP or sugar. Ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO),
the main enzyme of the Calvin–Benson cycle, is a
bifunctional enzyme since it catalyzes carboxylation
and oxygenation of ribulose-1,5-bisphosphate (RuBP).
One molecule of 2-phosphoglycolate is produced when
O2 interacts with RuBisCO. Phosphoglycolate accu-
mulation in the cell is toxic as it prevents different
important steps of the central carbon metabolism by
inhibiting two enzymes, triose-phosphate isomerase
and sedoheptulose-1,7-bisphosphate phosphatase (Flu-
gel et al. 2017). Phosphoglycolate is recycled by con-
verting to phosphoglycerate through photorespiration,
which is also known as the C2 cycle or glycolate cycle
or oxidative photosynthetic carbon cycle (Leegood
et al. 1995). It involves a series of enzymatic reactions
in the peroxisome, mitochondrion, and chloroplast
(Oikawa et al. 2019). 2-Phosphoglycolate is dephos-
phorylated by glycolate-2-phosphatase within the
chloroplast to form glycolate and this reaction recycles
Pi within the chloroplast. Glycolate then leaves the
chloroplast and gets oxidized by glycolate oxidase
inside the peroxisome and generates glyoxylate along
with the generation of hydrogen peroxide, which is
then decomposed in the peroxisome by catalases. Ser-
ine-glyoxylate aminotransferase (SGAT) and gluta-
mate-glyoxylate aminotransferase (GGAT) then
convert glyoxylate to glycine. Glycine then moves to
the mitochondrion from the peroxisome and is oxidized
to ammonia and serine by glycine decarboxylase
(GDC) with the help of another enzyme called serine
hydroxymethyltransferase 1 (SHMT1) (Neuburger
et al. 1986). Regulation of GDC is important, as a
previous study showed that the increased activity of the
GDC enhances net photosynthesis and growth of
Arabidopsis thaliana (Timm et al. 2012). Mitochon-
drial NADH/NAD? ratios regulate GDC activity
in vivo (Bourguignon et al. 1988; Igamberdiev and
Gardeström 2003) and mitochondrial thioredoxins
(Trx) Trx o1 (Reinholdt et al. 2019) and Trx h2 (da
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Fonseca-Pereira et al. 2020) regulate photorespiratory
carbon flow from chloroplasts to mitochondria by
regulating GDC activity (Timm and Hagemann 2020).
In the next step, serine is then transported to the per-
oxisome and is converted to glycerate, and in this form
the chloroplast gets its photorespiratory carbon. Glyc-
erate kinase phosphorylates glycerate and generates
phosphoglycerate that re-enters the photosynthesis
cycle (Ogren 1984).

3. Different simulation techniques to analyze
regulations of metabolism

The active metabolism within different cellular com-
partments and their variations can be analyzed using
different approaches of metabolic flux analysis (such as
flux balance analysis and elementary flux mode anal-
ysis) and flux coupling analysis. The metabolic mod-
eling techniques can be grouped into two categories:
(i) kinetic modeling (Rohwer 2012) and (ii) structural
modeling (Schuster and Fell 2007). The details of the
different kinetic properties of different enzymes
involved in a network are required for kinetic model-
ing. Therefore, these huge requirements limit its
application to small systems having small number of
reactions. However, only limited experimental data are
required for structural modeling, such as the stoi-
chiometry and reversibility of all biochemical reactions
that participate in the network, the uptake rates of
essential nutrients, and the biomass composition of the
cell, tissue, or organism (Lotz et al. 2014). Thus, the
structural modeling technique is widely used in gen-
ome-scale metabolic modeling and its analysis. Gen-
ome-scale metabolic models (GSMs) of different
organisms, including bacteria, simple eukaryotes, and
plants, are now available.
Researchers have reconstructed several genome-

scale metabolic models to analyze both C3 and C4 plant
metabolisms. This list includes Arabidopsis (Ara-
bidopsis thaliana) (Poolman et al. 2009; de Oliveira
Dal’Molin et al. 2010; Mintz-Oron et al. 2012), rice
(Oryza sativa) (Poolman et al. 2013), maize (Zea mays)
(Saha et al. 2011), tomato (Solanum lycopersicum L.)
(Yuan et al. 2016), soybean (Glycine max) (Moreira
et al. 2019), and Setaria viridis (Shaw and Cheung
2019). Moreover, there was an earlier effort to recon-
struct a genome-scale metabolic model (C4GEM) (de
Oliveira Dal’Molin et al. 2010) to study general C4

plant metabolism using the reactions of maize (Zea
mays), sorghum (Shorghum bicolor), and sugarcane
(Saccharum officinarum).

3.1 Flux balance analysis

Flux balance analysis (FBA) is a constraint-based
modeling approach that allows the identification of
optimal flux through the reactions of a metabolic net-
work in a steady state by applying mass balance con-
straint to the stoichiometric model and maximizing or
minimizing the objective function, defined according to
the desired objective (Orth et al. 2010; Lotz et al.
2014). The metabolic reactions and the objective are
mathematically represented by a system of linear
equations, and these equations are solved using linear
programming. As this approach does not require the
kinetic parameters of the enzymes involved in the
system, even for large networks, FBA can be computed
very quickly. This method is used to predict all possible
flux distributions of a specific system for different
environmental and physiological conditions of the
system (Orth et al. 2010).
In the first step, reactions of a metabolic network are

represented in the form of a stoichiometry matrix, S of
size m9n, where m represents the number of metabo-
lites and n represents the number of reactions of the
network. The elements of each column represent the
stoichiometric coefficients of the substrates and prod-
ucts of the corresponding reaction. A negative value is
given to a substrate that is being consumed, a positive
value is given to a product that is being produced, and
zero represents a metabolite that is absent in that par-
ticular reaction.
At steady state, the rate of production and the rate of

consumption are equal for each internal metabolite in
the model and that can be mathematically represented
as

Sv ¼ 0

where the vector v represents the flux through all the n
number of reactions and S is the stoichiometry matrix.
The optimization problem can be defined as

maximize or minimize z ¼ cTv

The flux constraints are given as

cl� v� cu

where z is the objective function, cT is the transpose of
a vector (c) of weights that indicate how much a
reaction contributes to the objective, v is the vector of
all fluxes, S is the stoichiometry matrix, and cl and cu
are the vectors of lower and upper bound of fluxes,
respectively. In the case of an irreversible reaction, the
lower bound cl becomes 0 and the allowable flux is
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limited to be greater than or equal to 0. The method is
schematically described in figure 3.

3.2 Elementary flux mode analysis

Another structural modelling technique is the ele-
mentary flux mode analysis (EFMA) (Schuster et al.
1999). It is a mathematical tool in which the meta-
bolic network is decomposed into several elementary
modes, which cannot be further broken. By definition,
an elementary mode is a set of reactions that cannot
be decomposed further. Any feasible route of a
metabolic network from a substrate to a product can
be represented as a linear combination of elementary
modes.
All reactions of the metabolic network and the

information whether they are reversible or irreversible
can be represented mathematically as a matrix, called a
stoichiometry matrix, S, in which the rows represent
the reactions and the column represent the internal
metabolites. The reactions which always operate
together are lumped to reduce the size of the matrix.
The first step to compute elementary modes of the

metabolic network is the construction of initial tableau,
T0, which is a matrix formed by creating a transposed

matrix of the stoichiometry matrix S, and augmented
by the identity matrix, I.

T0 ¼ ST jI
� �

In the next step, from T0 we compute a second tableau
T1 in which we obtain a null vector for the first column,
i.e., all the elements of the first column are 0, by
pairwise linear combination of rows. By this process,
for all the columns of the transposed stoichiometry
matrix, null vectors are obtained consecutively.
In the final tableau there is a null matrix on the left-

hand side, and the identity matrix on the right-hand
side is now replaced by a matrix of elementary modes.
Each row of the matrix represents a specific elementary
mode. A linear combination of two or more elementary
modes corresponds to a steady state flux distribution of
the network.

3.3 Flux coupling analysis

Flux coupling finder (FCF) is a procedure to find the
blocked and coupled reactions in the genome-scale
metabolic system. Like EFMA, it does not require
computation of null-space matrices, which is a prob-
lematic task for large networks. Instead, it requires the

Figure 3. Schematic overview of the method of flux balance analysis: (a) We have considered three reactions (R1, R2, and
R3) of a metabolic network, and at the beginning the solution space is unconstrained; (b) reactions are then represented in a
form of stoichiometry matrix, S; (c) reactions at steady state are represented in the form of fluxes; (d) allowable solution
space after applying constraints; and (e) optimal solution after optimizing the objective function, i.e., minimizing or
maximizing it using linear programming.
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solution of a sequence of linear programs (LPs) (Bur-
gard et al. 2004).
By solving the linear programming problem, we can

easily identify the blocked reactions by identifying the
reactions having 0 as maximum flux value. Blocked
reactions are those which are incapable of carrying any
flux under steady state condition. Here, limitation of
the uptake of resources, i.e., carbon, nitrogen, etc., and
transport of the metabolites out of the cells are used as
constraints (Burgard et al. 2004).
Coupled reactions can be identified by calculating

the maximum and minimum flux ratios (Fmax and
Fmin), where F=x1/x2 for every pair of metabolites (x1
and x2) and Fmin and Fmax represent minimum x1/x2 and
maximum x1/x2, respectively. Results can infer the
following:

1. When Fmin=0, Fmax=C, a finite value, the fluxes
are directionally coupled, i.e., a non-zero flux of
one reaction (x1) implies a non-zero for another
reaction (x2) but not the reverse,

2. When Fmin=c, a finite value, Fmax=infinite, the
fluxes are directionally coupled but in the opposite
direction in comparison with the previous result
i.e., the non-zero flux of the second reaction (x2)
implies a non-zero flux for the 1st reaction (x1).

3. If Fmin and Fmax both are finite but unequal, the
fluxes are partially coupled, that is, a non-zero flux
for one reaction (x1) implies a non-zero but
variable flux through another reaction (x2) and
vice versa

4. If Fmin and Fmax both are finite and equal, the
fluxes are fully coupled, i.e., a non-zero flux for
one reaction (x1) implies a non-zero and a fixed
flux through another reaction (x2) and vice-versa

5. If Fmin and Fmax vary from 0 to infinity, the fluxes
are uncoupled.

The equivalent knockouts, i.e., the reactions whose
deletion causes the flux of a particular reaction to be 0
and the affected reactions, i.e., the reactions whose
fluxes become 0 after deleting a particular reaction, can
also be identified by this approach.

4. Application of the previously described
approaches for analyzing metabolic interactions

4.1 Application of flux balance analysis (FBA)
to analyze the metabolic interactions in plants

4.1.1 Can we identify active metabolic pathways
working in different cellular conditions using FBA?

Metabolism can be defined as the combination of a
number of metabolic pathways that occur within a
cellular system. All the reactions of different pathways
of a cell may or may not be acting together at a time.
FBA gives us the optimal flux distributions through the
reactions in different cellular conditions by solving
biochemical networks using linear programming. Dif-
ferent objective functions are used according to the
phenotype of interest. For example, biomass produc-
tion is used as an objective function in predicting
growth. Moreover, different cellular conditions can be
applied to a model by applying constraints such as
changing the bounds of the flux values of the reactions
(Orth et al. 2010). In a previous study (Chatterjee et al.
2017) on the genome-scale model of Oryza sativa
indica, the effect of gradually increasing photorespi-
ration, which can be represented as high to low ratios
of carboxylase and oxygenase activity of RuBisCO,
was analyzed by fixing its ratio during model simula-
tions. Here, the objective function used was mini-
mization of total cellular flux while producing biomass
components in an experimentally fixed proportion. The
result showed that the photon demand for the produc-
tion of ATP and NADPH to synthesize biomass
decreases with a decrease in photorespiration. They
also reported that cyclic photophosphorylation is active
only when photorespiration is high, whereas non-cyclic
photophosphorylation is always active (Chatterjee et al.
2017).

4.1.2 Is it possible to capture the feasible alternative
pathways and variations in reactions occurring in dif-
ferent cellular compartments when a reaction is
not working completely or partially inside the cell? The
knockout or complete inhibition of a reaction resem-
bles deletion of that reaction from a metabolic model
and can be done by fixing its flux value to zero. This in
silico reaction deletion strategy has been used along
with FBA on a genome-scale metabolic model of rice
leaf to identify the essential reactions of the model
(Shaw and Kundu 2015). Reactions that are so
important for a model that deletions of them inhibit the
synthesis of biomass are called essential reactions. For
example, the light-dependent non-cyclic reaction has
been reported as an essential reaction as it should be
active in every condition of cell in order to produce
ATP and NADPH, required for the synthesis of bio-
mass. Another essential reaction is the carboxylase
reaction of RuBisCO, without which the cell cannot fix
CO2 for the production of biomass. The O2 and CO2

transporters are also essential, as they are necessary for
plant survival and biomass production.
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This study of metabolic plasticity has also success-
fully identified several alternative pathways and inter-
actions between different compartments (Shaw and
Kundu 2015). The term ‘alternative pathways’ basi-
cally means the number of ways in which a cell can
adjust its metabolism and tolerate a given perturbation
in order to synthesize its required energy and biomass.
This study has reported the usage of different alterna-
tive pathways as a result of reaction deletion. For
example, phosphoglycerate kinase, which is a key
enzyme of glycolysis, generates ATP from ADP along
with the conversion of 1,3-bisphosphoglycerate to
3-phosphoglycertae. Shaw and Kundu (2015) have
shown that deletion of this reaction increases the pho-
ton demand of the cell by 12.79%. The reason behind
this is the readjustment of the cell to fulfil the ATP
demand by utilizing other pathways to synthesize
biomass. Another example of cellular adaptation in the
cellulose biosynthesis pathway is by removing the
enzyme phosphoglucomutase that converts glucose-6-
phosphate to glucose-1-phosphate. This reaction is
followed by the conversion of glucose-1-phosphate and
UTP to UDP-glucose and pyrophosphate by the
enzyme UDP-glucosepyrophosphorylase. It has been
observed that in the absence of phosphoglucomutase,
the cell utilizes another pathway for the production of
cellulose and the photon demand increased by 6%.
Another study (Poolman et al. 2009) on the model
plant Arabidopsis thaliana has shown that when a low
amount of ATP is needed for a cell, the ATP require-
ment can be fulfilled by a truncated TCA cycle, gly-
colysis, and ETC, and alternative modes of the TCA
cycle come into play (Poolman et al. 2009).
Moreover, the results of the reaction deletion method

(Shaw and Kundu 2015) show that deletion of different
reactions in different cellular compartments can acti-
vate different biochemical modes in the cell. For
example, the deletion of complexes I and V in mito-
chondria upregulates the malate–oxaloacetate shuttle in
the chloroplast and the light-dependent cyclic reaction,
and downregulates the light-dependent non-cyclic
reaction. This causes variation in the ratio of ATP and
NADPH, which are produced by the light-dependent
cyclic and non-cyclic reactions. On the other hand, the
effects of partial inhibition of a reaction within a
metabolic network can be investigated by limiting the
flux to a fraction of its wild-type value. A previous
study (Chavali et al. 2008) has evaluated the effect of
the presence of an inhibitor of a reaction by varying the
flux through that reaction from its wild-type value to
zero. Variations in growth rate have been observed with
the variation in the flux of mitochondrial F0F1-ATP

synthase. This study on the metabolic network also
gives insight into the effect of gene deletion, with the
identification of 69 single lethal gene deletions and 56
non-trivial lethal double-gene deletions (Chavali et al.
2008).

4.1.3 Incorporation of different omics data can mimic
availability of metabolites and enzymes in a cell: A
study (Shaw and Kundu 2013) on the genome-scale
metabolic model of rice (Oryza sativa) investigated the
effect of different transporters that transport metabo-
lites from one compartment to another on the photon
requirement for biomass synthesis and inter-compart-
mental interactions within a cell, depending on gene
expression. They showed that the number of photons
needed for biomass synthesis depends on the capacity
of intra-cellular transporters. Different modes of the
TCA cycle, cyclic or non-cyclic and different interac-
tions between the compartments have also been ana-
lyzed in this study. For example, when sufficient
amount of ATP is produced by chloroplastic light
reactions, the over-production of ATP is prevented by
truncating the TCA cycle and downregulating the ETC,
whereas when alternative sources do not work, the
TCA cycle operates in cyclic mode (Shaw and Kundu
2013). The effect of variations of different enzymatic
gene expressions can further be analyzed in future
using this method. Another study (Cheung et al. 2015)
on a diel genome-scale model of A. thaliana leaf
incorporated flux weighting factors to analyze the
metabolic flexibility of a network. The cost-weighted
FBA revealed several alternative modes of different
pathways which were inactive when investigated using
conventional FBA. For example, this study has shown
the usage of different alternative pathways to dispose of
the excess amount of reductants at different light
intensities.
In a recent study (Maiti et al. 2023), FBA has been

used to study a multi-segment model of a C4 plant,
Setaria viridis. They divided the leaf into four seg-
ments from the base, the most immature segment
having the most proliferating cells, to the tip, the most
immature segment having the most differentiated cells,
including two growing segments in between. The dif-
ferent growth rates of each leaf segment of the plant
were used as constraints, and transcriptomic data were
incorporated in the objective function of the simulation.
They observed metabolic variability in different seg-
ments of the leaf, and all the biomass components were
not produced in each segment. Instead, different seg-
ments produced biomass components at different ratios
and these components were exchanged according to the
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need of the leaf segments. The requirement of carbon
in a growing tip was fulfilled by the supply from the
base of the leaf, whereas the mid-segments provided
amino acids such as phenylalanine, glutamate, etc., to
the base more than tip. Supply of the protein building
blocks from the mid-segments reduces transport cost,
as the mid-segments are closer to the base than the tip.
Sucrose is the main transport element in the plant
through phloem sap. It is observed that in a leaf, the
plant prefers sucrose transport from the most mature
segment, the tip. However, the dependencies of fatty
acids are fulfilled from the neighboring cells (Maiti
et al. 2023). A similar computational technique has
been used in analyzing maize leaf metabolism at a
multi-scale level (Bogart and Myers 2016).

4.1.4 Can we explain regulation of plant hormones
by integrating omics data in metabolic network? It is
known that different plant hormones are differentially
produced under varied conditions at different parts of a
plant. It is expected that the genes of their biosynthetic
pathways may be co-regulated. For example, one can
determine whether the genes involved in the biosyn-
thetic pathway of hormones (say, auxin, gibberellin,
etc.) are transcriptionally regulated by the same set of
transcription factors. This can be achieved by inte-
grating gene expression data and quantifying the co-
occurrence of cis-regulatory elements present in a set of
promoter sequences (Deb and Kundu 2015). Laksh-
manan et al. (2015) integrated rice gene expression
data under different light treatments with the rice
metabolic network to unravel the transcriptional regu-
lation of different phytohormone biosynthesis, to
identify differentially regulating metabolic pathways
(e.g., upregulation of photosynthesis and secondary
metabolism in blue light) and also showed that
upregulation of the abscisic acid (ABA) biosynthesis
gene is related to the accumulation of ABA that can
reduce ethylene biosynthesis inhibiting plant stem
growth.

4.1.5 More realistic flux distribution patterns can be
predicted by incorporating different constraints
to mimic real scenarios in plants: Cheung et al. (2013)
predicted a more accurate flux distribution by the
incorporation of the energy cost for transportation of
different molecules through plasma membranes and
membranes of other organelles and the maintenance of
cell. They incorporated the ATP requirement as a cost
to the transporters of plasma membrane in order to
import nutrients to the cell and the cost to the mem-
branes of mitochondrion, peroxisome, and tonoplast as

a cost of intracellular metabolite transport. The central
metabolic pathways are not only involved in biomass
production, but they also provide energy. And this
energy is utilized for transporting ions, metabolites, and
macromolecules and cell maintenance along with the
synthesis of biomass. Thus, incorporating these costs to
the model bring about noticeable changes in the flux
distribution pattern of the central carbon metabolism.
Simulation of this extended model predicted that 67%
of the total energy is utilized for producing biomass
and the remaining is used for cell maintenance. Gly-
colysis and the TCA cycle also give more accurate flux
distributions, whereas no change of flux is observed in
the case of the oxidative pentose phosphate pathway
(OPPP). Addition of the ratio of fluxes through OPPP
and the glycolysis pathway as another constraint gives
more realistic results. They also analyzed the model for
elevated temperature and hyperosmotic conditions.
When temperature is increased, ATP and NADPH
maintenance cost is increased and the carbon conver-
sion coefficient decreases. However, in the case of
hyperosmotic conditions, slow growth of Arabidopsis
is observed due to restricted glucose uptake.

4.1.6 Interactions between light and dark metabolism
can be captured during day–night cycles using FBA:
Some analyses of leaf metabolism by FBA have been
done on the models exposed to continuous light. In
plants, there are different effects of day and night on
leaves, and these effects should be incorporated into
models in order to have more realistic flux distribution
patterns for different objective functions. Cheung et al.
(2014) have constructed a diel genome-scale model of
Arabidopsis by applying constraints to a pre-existing
model of Arabiopsis in such a way that metabolites
produced during the day can be used for overnight
cellular maintenance and metabolites stored at night
can be used for different purposes. In this study, the
two models of day and night phases were used as a
single optimization problem. The day phase represents
autotrophic metabolism where photon influx is
allowed, whereas the night phase represents hetero-
trophic metabolism by restricting the value of photon
flux to zero. They observed many differences in the
two cases. For example, in the case of the diel model,
starch synthesis was observed during the day to supply
the carbon source for the night where no fixation of
CO2 is possible, while in the model continuously
exposed to light, no starch synthesis is required as there
is continuous assimilation of CO2 occurring in the leaf.
Another important difference is observed in the case of
usage of citrate for glutamate and glutamine synthesis.
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In the model with continuous light, citrate is synthe-
sized in the peroxisome by citrate synthase and used in
glutamate and glutamine synthesis. However, in the
case of the diel model, citrate, synthesized by the
mitochondrial TCA cycle at night, is stored in the
vacuole and used further for the production of 2-ox-
oglutarate followed by the production of glutamate
synthesis. They also predicted that in a similar way,
nitrate is imported to the vacuole from the xylem
during the night, and it leaves the vacuole during
daytime and is utilized in producing amino acids,
which are then released into the phloem during the
night. In the light phase, the photosynthetic electron
transport pathways and the Calvin–Benson cycle have
maximum fluxes through them for the synthesis of
sucrose, starch, and amino acids, and the TCA cycle is
operated in a non-cyclic fashion. However, in the dark
phase, starch is degraded to provide carbon to the cell
and large fluxes are observed through glycolysis,
OPPP, the TCA cycle, and mitochondrial ETC. In this
phase, the TCA is operated in full cyclic mode.
In another study (Tan and Cheung 2020), stomatal

opening and closing due to variation in the metabolism
of guard cells of C3 plants during day and night have
been analyzed. The authors constructed a model con-
sisting of four phases: opening of stomata at the time of
sunrise (1 h), daytime (11 h), closure of stomata at the
time of sunset (1 h), and nighttime (11 h). In the four
phases all the reactions are same, whereas different
constraints are applied depending on the phases. They
have observed that in the open phases, K? and malate
are accumulated through the import by the K?/H?

symporter and degradation of starch stored at night,
respectively. The conversion of the Calvin–Benson
cycle products to phospoenolpyruvate (PEP) by gly-
colysis and then conversion of PEP to first OAA and
then malate is another way in which malate is accu-
mulated. Accumulation of osmolytes and ions is
responsible for the opening of stomata in this phase. In
the day phase, sucrose is imported for the maintenance
of stomatal opening and K? is exported outside the
guard cell. This large amount of sucrose is produced
from degradation of malate and the rest is provided by
the Calvin–Benson cycle. In the closed phase, sucrose
is degraded, and hexose phosphate is produced. This
hexose phosphate is used in starch synthesis and pro-
duction of NADPH through OPPP and ATP through
the TCA cycle and mitochondrial ETC. In the night
phase, the starch produced in the closed phase is used
for the production of ATP and NADPH in order to
maintain the metabolism of the guard cell. The
remaining starch in the night phase is utilized as a

source of malate during the open phase for stomatal
opening (Tan and Cheung 2020).

4.1.7 Can we investigate the effect of different inten-
sities of light on cellular metabolism? Poolman et al.
(2013) simulated a model of the rice plant with dif-
ferent photon values using FBA and analyzed the
results. In this study, it was shown that in low light,
ATP is generated by mitochondria in association with
oxidation of pyruvate and malate and decreases as light
intensity increases. At high light intensity, the model
shifts from using cytochrome oxidase to alternative
oxidase in mitochondria to protect the plant against
harmful effects of excess light (Bartoli et al. 2005).
Results also shows that photorespiration increases as
photon flux increases, and at high light level, pho-
torespiration is fully active to dissipate the effect of
excess energy. The same result has been observed in
another study (Chatterjee et al. 2017).

4.1.8 Explaining how redox is balanced in a cell
in different levels of photorespiration: Chatterjee et al.
(2017) further showed that with increased photorespi-
ration, to meet the requirement of NADH for peroxi-
somal hydroxy pyruvate reductase (HPR1), different
combinations of reactions and transporters are involved
in different levels of photorespiration and the cellular
energy demand is maintained. As photorespiration
increases, the import of malate to mitochondria
decreases, and it stops at medium light. As light
increases, to supply more NADH to the peroxisome,
mitochondrial malate dehydrogenase works in the
opposite direction and produces malate. When light is
further increased, chloroplastic triose phosphate
exchange involving glyceraldehyde-3-phosphate
(GAP) and 3-phosphoglycerate (PGA) comes into play.
They make available chloroplastic NADH and ATP in
the cytosol and supply that NADH to the peroxisome to
fulfil the reductant demand of HPR1. In this manner,
the dynamic interplay between the four compartments
mitochondrion, chloroplast, cytosol, and peroxisome
has been observed in order to dissipate the effect of
high light through photorespiration. Further, it is ana-
lyzed that pyruvate dehydrogenase in mitochondria
gets inactivated by light (Poolman et al. 2013). This
light scanning can be done for analyzing the activity of
other enzymes of metabolic pathways in the presence
and absence of light.

4.1.9 Can we study the effect of nutrient availability
and other factors on metabolism? Refinement of the
results of FBA can be done by incorporating
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thermodynamic and biological information of the
reactions of the model as constraints. These additional
constraints allow the usage of proteomics and meta-
bolomics data along with FBA. The thermodynamic
link between flux directions and metabolite concen-
trations is incorporated in the model in such a way that
reaction directionality is always consistent with mea-
sured metabolite concentrations and the Gibbs free
energy for the reaction (Hoppe et al. 2007). On the
other hand, the concentrations of the catalyzing
enzymes in the network, represented by weighting
coefficients, are used as a set of constraints to the
model (De et al. 2008).
The availability of nutrients (such as nitrogen, oxy-

gen, etc.) in the environment also affects the system.
Previous studies have shown that maximum cell
growth rates under different environmental conditions,
such as aerobic or anaerobic environments, various
carbon sources, ammonium, or nitrate as nitrogen
source, etc., can be accurately predicted using FBA
(Varma and Palsson 1994; Mahadevan and Schilling
2003). For example, the maximum growth rate for
E. coli on glucose under aerobic conditions predicted
by FBA coincides with the experimentally observed
growth rates for adaptively evolved E. coli strains
(Long et al. 2017), and acetate is secreted as a meta-
bolic by-product at high growth rates, as observed in
experimental studies (Varma and Palsson 1994;
Mahadevan and Schilling 2003). The maximum rates
of nutrient uptake limit the maximum growth rate of
the system (Varma and Palsson 1994). Another study
examined the growth of the system on glucose and
succinate due to changes in the internal conditions of
the network (such as the removal of a reaction) and
environmental conditions (such as the availability of
substrate and oxygen) using a combined application of
pathway analysis and flux balance analysis (Schilling
et al. 2000).

4.1.10 Metabolic interactions in a symbiotic relation-
ship between bacteria and plants: An interesting study
was performed by Pfau et al. (2018) to understand the
metabolic interactions between nitrogen-fixing
microorganisms and plants. They took the genome-
scale model of the plant Medicago truncatula as a
model for legumes and linked the model with a model
of Sinorhizobium meliloti as the symbiont. The results
of FBA showed that the growth of the plant in the
presence of its symbiont is reduced as it needs to
supply carbon sources to the symbiont. There is growth
of the plant even in low levels of nitrogen because of
sufficient supply from the symbiont. They have further

observed that, since oxidative phosphorylation pro-
vides most of the energy required for the fixation of
nitrogen by nitrogenase enzyme in bacteroids, the
concentration of oxygen is an important factor in
controlling nitrogen fixation. A large amount of O2

irreversibly inhibits the nitrogenase complex. The
amount of oxygen present is maintained by the plant by
leghemoglobin (Pfau et al. 2018).

4.2 Usage of elementary flux mode analysis
(EFMA) for determining various modes
of metabolism

The EFMA method was used in a previous study to
investigate photorespiration and its interactions with
other mitochondrial metabolisms and ATP synthesis
(Huma et al. 2018). The authors constructed a model
consisting of four compartments: mitochondrion,
chloroplast, peroxisome, and cytosol. After simulating
the model, they identified 43 essential reactions out of
the 74 reactions active in at least one elementary flux
mode (EFM), and 56 EFMs have been obtained in the
cellular model of C3 plant metabolism that represent all
feasible routes of photorespiration. They classified the
EFMs into four major groups. Different combinations
of modes are active in different circumstances,
depending on the environmental conditions and other
factors. For example, in some energy-dissipating
modes, they observed that mitochondrial malate
dehydrogenase (MalDH) operates in the reverse
direction producing oxaloacetate from malate which is
produced in and transported from the chloroplast,
cytosol, and/or peroxisome. This is called an energy-
dissipating mode, as it oxidizes excess NADH. In these
modes, excess photons are absorbed by photorespira-
tion, but have no effect on cellular metabolism. In
short, these modes are active to protect the photosystem
from getting inhibited by excess light, which is called
photoinhibition. In some EFMs, MalDH is active in the
forward direction, producing malate and excess
NADH. In these modes, ATP is generated by both
cyclic and non-cyclic photophosphorylations. When
cyclic photophosphorylation is limited, to meet the
cell’s ATP demand, non-cyclic photophosphorylation
produces ATP in such a manner that excess NADPH is
produced. However, in EFMs in which mitochondrial
MalDH is inactive, excess amount of reductants is
produced by the non-cyclic light reaction in order to
maintain photorespiration and the evolution of a net
amount of O2 is observed. Photorespiration gets cou-
pled with nitrogen assimilation and the glutathione
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ascorbate cycle to reoxidize this excess amount of
reduction. One of the major findings is that the
assimilation quotient, i.e., the amount of CO2 fixed per
O2 released, does not change with photorespiration
unless nitrogen assimilation is associated with it.
Another study (Rohwer and Botha 2001) using ele-

mentary mode analysis (EMA) revealed 14 elementary
modes in the central carbon metabolism and sucrose
accumulation in sugarcane. Flux modes leading from
extracellular glucose or fructose to vacuolar sucrose
accumulation, leading from extracellular glucose or
fructose to glycolysis and respiration, and a set of five
futile cycles have been identified in this study (Rohwer
and Botha 2001). EMA can also be expanded by
introducing the power-law formula into EMA in order
to link an enzyme activity profile to a metabolic flux
distribution. A method called enzyme control flux
(ECF) successfully predicts the changes in flux distri-
bution due to a change in an enzyme profile in E. coli
and B. subtilis (Kurata et al. 2007). Thus, we can
expect that regulation of mitochondrial metabolism
(described earlier) in different environmental, enzy-
matic, and stressed conditions can be examined using
EMA.

5. Challenges

In this review, we have focused on some computational
approaches like FBA and EFMA and discussed how
they have been used in previous studies to investigate
the metabolism of mitochondria, its regulations, and its
interactions with other organelles. We have also dis-
cussed how over-represented cis-regulatory interactions
can be integrated to find potential co-regulation of plant
hormones. Below, we briefly discuss a few computa-
tional tools which can be used to obtain greater insight
into plant metabolism and its interactions.
To analyze different regulations, previous studies

have shown that expression data can be incorporated in
FBA in two ways: by directly using them to constrain
flux through specific reactions in the model or adding
various mathematical rules to the model. In the first
approach, one can set the fluxes of reactions to zero if
their expressions are low, and if they have high
expression values, then that value is set to be the upper
bound of the particular reaction (Åkesson et al. 2004;
Becker and Palsson 2008; Shlomi et al. 2008; Colijn
et al. 2009; van Berlo et al. 2009; Jerby et al. 2010;
Jensen and Papin 2011; Maiti et al. 2023). In the sec-
ond approach, different mathematical modifications of
FBA have been effected to incorporate expression data

(Covert et al. 2004, 2008; Shlomi et al. 2007; Lee et al.
2008).
One of such modifications is known as regulatory

flux balance analysis (rFBA), which requires Boolean
rules that represent transcriptomic data to be applied
over an existing stoichiometric model of metabolism
(Covert et al. 2001; Covert and Palsson 2002, 2003).
The ‘ON’ and ‘OFF’ states of the gene products (such
as proteins) are defined by the Boolean rules to con-
strain the flux through the corresponding reactions
catalyzed by them in the metabolism. For example, in a
particular environmental condition, the flux of a reac-
tion catalyzed by a gene product is set to zero if the
transcription of the particular gene is turned ‘OFF’.
Several studies of rFBA on stoichiometric models of
E. coli and S. cerevisiae metabolisms showed consis-
tency with experimental measurements (Covert and
Palsson 2003; Herrgård et al. 2006). For example, in a
study on genome-scale metabolism of E. coli, FBA
without gene regulatory constraints shows only 86%
agreement with experimental results, while rFBA
shows 91% agreement (Covert et al. 2001; Covert and
Palsson 2003).
To overcome the restriction of application of

expression data in a binary manner, another approach
called probabilistic regulation of metabolism (PROM)
has been developed to apply continuous flux restric-
tions based on gene expression data. This method
shows 95% accuracy in E. coli and Mycobacterium
tuberculosis metabolisms (Chandrasekaran and Price
2010).
Transcriptionally controlled flux balance analysis

(tFBA) (van Berlo et al. 2009) is another extension of
FBA to regulate flux through a reaction if the expres-
sion of the associated gene changes significantly from
one condition to another.
Furthermore, parsimonious flux balance analysis

(pFBA) maximizes biomass yield and minimizes total
flux through a network instead of using expression data
(Lewis et al. 2010). Linear bound FBA (LBFBA) gives
greater accuracy than pFBA in predicting fluxes by
using expression data. Other expression-based methods
that incorporate transcriptomic data have been
reviewed in a previous study (Machado and Herrgård
2014). Thus, it is possible to use this vast field of FBA
to analyze metabolic and genetic regulations (described
earlier) of mitochondrial metabolism.
Furthermore, three stoichiometric models of H.

pylori, E. coli, and S. cerevisiae have been analyzed
using flux coupling finder (FCF) to provide a detailed
analysis of the coupling of their reactions (Burgard
et al. 2004). The result showed that 10%, 14%, and
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29% of their respective reactions were blocked
unconditionally. Moreover, they found that the per-
centage of blocked reactions depends on the size of the
network: the larger the network, the higher is the per-
centage of blocked reactions. Furthermore, it can be
concluded that larger models of E. coli and S. cere-
visiae have greater flexibility and redundancy, since the
percentage of reactions in coupled sets decreases sub-
stantially with model size. Anaerobic conditions also
have little impact on the coupling of reactions (Burgard
et al. 2004). Similar analysis can be done for the
models of different plant species in order to investigate
the coupling of reactions in different cellular
conditions.
Proper implementation of the above-mentioned tools

will help us to further analyze (i) the metabolic inter-
actions by regulating the TCA cycle and other meta-
bolic pathways of plants by incorporating different
omics data to the model, (ii) more realistic results by
incorporating the enzymatic costs of reactions and
different constraints to mimic the different cellular
conditions of plants, (iii) how robust a plant system is
to maintain its overall metabolism and redox when
different cells produce different biomass depending on
the availability of light and nutrients, (iv) the change in
metabolic interactions with the change in pH, i.e.,
concentration of H? in the cell, and (v) the coupling of
different reactions, i.e., how change in one reaction
affects the other reactions of the metabolic pathways of
plants using FCF.
Although several computational studies shed light on

plant metabolism, its variations and regulations, a large
number of cellular events like change in enzymatic
activities, interactions of cellular metabolism with
signaling pathways, and differential growths of differ-
ent parts of a plant and its metabolic variations are
unexplained even today.
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