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Network architecture plays a crucial role in governing the dynamics of any biological network. Further,
network structures have been shown to remain conserved across organisms for a given phenotype. Therefore,
the mapping between network structures and the output functionality not only aids in understanding of
biological systems but also finds application in synthetic biology and therapeutics. Based on the approaches
involved, most of the efforts hitherto invested in this field can be classified into three broad categories, namely,
computational efforts, rule-based methods and systems-theoretic approaches. The present review provides a
qualitative and quantitative study of all three approaches in the light of three well-researched biological
phenotypes, namely, oscillation, toggle switching, and adaptation. We also discuss the advantages, limitations,
and future research scope for all three approaches along with their possible applications to other emergent

properties of biological relevance.
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1. Introduction

Understanding biological systems requires a post-
scriptum approach, which makes a significant part of
the science essentially a reverse-engineering process. In
this quest to find out the ‘how’ of ‘parts leading to the
whole’, biologists often adopt a reductionist approach
in which specific properties of a biological system
under study are attributed to specific components, just
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as Lazebnik (2002) suggested the role of MIC (most
important component) in the regular operation of a
radio transistor. Reducing every property of the system
to one of its components leads to the conjecture that
every module or constituent behaves identically in
isolated and connected conditions. This is clearly not
true for biological systems. Studies by Del Vecchio
(2013) on loss of modularity and context-dependence
showed that clock-generating, inter-cellular modules
behave differently from their isolated versions when
connected to a downstream system. Therefore, it is
only natural to consider the manner of interconnections
along with particular knowledge of the constituent
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modules in order to understand (hence, design) bio-
logical networks (Hespanha and Sivakumar 2013).
This necessitates a different treatment of biological
entities that aims to understand the emergence of bio-
logical properties in a manner that provides equal
importance to both the particular constituents and the
interconnections (Voit 2012).

Systems biology explains any biological functional-
ity as a response emanating from a biological system
composed of several basic units such as proteins,
metabolites, etc. (Konopka 2006). This formalism has
inspired the systems-biology community to discover
how the basic network units are connected for a
specific biological functionality (Milo et al. 2002).
Further, Ma et al. (2009) and Milo et al. (2002)
hypothesized that the connection patterns for a given
biological functionality remain conserved across the
organism space. For instance, adaptation involved in
chemotaxis of E. coli requires negative feedback
between two proteins CheB and CheR (Bernardo and
Tu 2003) just as the adaptation of Ca** homeostasis in
mammalian cells employs negative feedback between
the parathyroid hormone and vitamin D (K&nigs et al.
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2020; Khammash 2021). This hypothesis has been
central to establishing a system of mapping between
the repertoire of emergent biological properties and the
type of interconnections between the constituents of the
underlying networks (figure 1). This can be used to
arrive at the possible (feasible) constituents by know-
ing the required interconnections for a given biological
functionality. From a network reconstruction perspec-
tive, knowledge of both the constituents and the
interconnections between them enables us to design
engineering systems that can mimic actual biological
networks, i.e. utilizing the potential of synthetic biol-
ogy in order to construct a model for different purposes
such as therapeutic and drug design (Cameron et al.
2014).

The particular knowledge about the network in
consideration aids in the construction of a mathematical
description of the system, thereby rendering the prob-
lem of discovering design principles a project of
qualitative systems identification (figure 2). This has
enabled non-biologists to appreciate the problems of
biological systems from a domain-agnostic perspective
and made possible the translations of specific problems
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Figure 1.

Conservation of design principles. The left panel shows the involvement of five proteins, namely, CheW, ChwA,

CheB, CheY, and CheR. The methylated compound CheA*-CheW* affects the tumbling frequency of the flagella motors in
presence of a chemo-attractant/repellent. The colours represent different proteins. The superscript “+’ refers to the methylated
state of a particular protein. The red edge with blunt end and the blue edge with the arrow end refer to the activation and
inhibition reactions, respectively, whereas the green arrow stands for the phosphorylation reaction. The methylation reaction
is denoted by a subscript ‘m’ on the reaction link. Further, the phosphorylated species is denoted by a prefix P followed by the
name. The entire network can be abstracted as a two-node negative feedback between CheA*-CheW* and the total
concentration of CheA and CheW, with the former considered as the output. The right panel shows the same for blood
pressure regulation in mammals. An increase in blood pressure is first sensed by the receptors in the blood vessels, which
then communicate this information to the brain cells to increase the radius of blood vessels so that the blood pressure on the
walls on the arteries decreases significantly. The resultant network can be translated to a negative feedback between the blood
pressure and the diameter of the blood vessels. Therefore, in both the cases, although the network under construction is
completely distinct, the resultant structure remains the same given the functionality of regulation.
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Figure 2. Reflective of the relationship between ‘understanding’ and ‘designing’ biological networks with desired

properties.

pertaining to biology to a language that appeals to the
broader community of science (Kulkarni et al. 2014).
Disciplines ranging from mathematical systems theory
to computational graph theory have been applied to
deduce the design principles for useful biological
functionalities (George 2002; Liu et al. 2011; Wang
et al. 2016). Apart from the applications in mathe-
matical modeling of biological networks, systems the-
ory in particular has been instrumental in
understanding biological networks. George (2002)
developed a competent chemotherapy schedule for
cancer using the principles of optimal control. Graph-
theoretic methods and graph-based control theory have
been applied in large biological networks (Liu et al
2011). The concept of structural controllability has
been employed to analyse and justify a number of
network structures that emerged out of natural selec-
tion (Torday 2015). Del Vecchio (2013) and Hespanha
and Sivakumar (2013) investigated the loss of modu-
larity in biological networks from a control-theoretic
viewpoint and suggested a number of solutions that
were in agreement with experimental results. Hinc-
zewski and Thirumalai (2014) argued that a phospho-
rylation unit of a cellular signal transduction network

adopts a Wiener—Kolmogorov filtering strategy to
extract maximum amount of information from the
upstream module.

The task of establishing a mapping between the
network structures and phenotype can be facilitated
primarily by two ways: first, an exhaustive search of
the entire set of all possible network structures of all
sizes — this approach can further be divided on two
categories namely, computational screening and sys-
tems-theoretic methodologies, depending on the
required prior knowledge about the underlying rate
kinetics; second, if the functionality has a common
occurrence in engineering systems, then by using the
existing repertoire of design strategies in the domain of
engineering design, it may be possible to pinpoint
potential network motifs for the given functionality —
this is denoted as the rule-based methodology.

The search-oriented approaches can further be divi-
ded in two categories based on the search techniques
and assumed prior knowledge. In a computational
screening method, the response of the dynamical sys-
tem constituted by the chemical reactions characteristic
to a particular network structure is compared against
certain predefined performance parameters. Continuing



56 Page 4 of 23

the exercise for the ensemble of structural possibilities
and the associated parameters (rate constants), it is
possible to arrive at the admissible network structures.
Therefore, in a simulation/computational environment,
the explicit knowledge of the rate kinetics along with
the rate constants remains mandatory for assessing the
response of a particular network structure with respect
to the given phenotype.

On the other hand, systems-theoretic approaches start
with introducing a few performance parameters (p) in
such a way that there exists a well-defined mapping
between p and the standard systems-theoretic parame-
ters (such as poles, zeros, gain, system matrix, etc.)
pertaining to any dynamical system. Thus, the perfor-
mance parameters evaluated at the optimal scenario can
serve as the precise mathematical conditions expressed
in terms of systems-theoretic parameters for the given
functionality. Subsequently, these conditions are map-
ped back to the general structural requirements of the
network with the help of combinatorial mathematics.
The central assumption in this framework is that there
exists a bijective mapping between the network struc-
ture and the system matrix of the underlying dynamical
network. As pointed out by a number of studies
(Angeli et al. 2004; Sontag 2007; Ma’ayan et al. 2008;
Fangzhou et al. 2021), this assumption holds true for
most biochemical networks. Therefore, the systems-
theoretic approaches do not require explicit knowledge
on the rate kinetics of the network as long as the
mapping holds true.

Design-oriented approaches refers to the rule-based
methodology in which the prevailing design rules (in
the domain of engineering) for a given functionality are
applied towards identifying the admissible network
structures that can serve as a subset of the admissible
set. Further, the rule-based methodologies identify a
subset of the admissible network topologies.

From a synthetic design perspective, as seen in fig-
ure 2, the three aforementioned methodologies can be
used for discovering (and hence, understanding) the
essential network structures for a given functionality.
Subsequently, the admissible network structures (ob-
tained by the said methodologies) can be used as a base
for designing engineering systems that can mimic
biological systems.

For the purpose of demonstrating the efficacy and
advancement of the three approaches mentioned above,
we selected three well-defined phenomena with great
biological relevance: (i) bioswitches, (ii) simple oscil-
lation, and (iii) adaptation. It is to be noted that all
three of these functionalities are ubiquitous to every
living organism. Therefore, it can be stated from the
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hypothesis of ‘conservation of design principles’ that
there exist a few unified network structures for each of
these biological functionalities that are common to
most living organisms. Intuitively, it can be said that
these admissible network structures constitute the core
that governs a large network known to provide a par-
ticular biological functionality (Bhattacharya et al.
2018), thereby making it possible to predict the actual
response of a large network by a thorough study of its
constitutive motifs (Fiedler et al. 2013; Jorge et al.
2017).

Each living cell requires ‘switch-like’ devices to
make certain decisions that become extremely crucial
for different phases in the cell cycle. Evidently, these
switches are constructed through the associated reg-
ulatory control in the cell (Chin et al. 2008). For
instance, in the case of mammalian cell fate,
depending on the control signal, a cell can either
subject itself to differentiation or can be transformed
to stem cells. Synthesis of these two possibilities
(differentiation and transformation into a stem cell) is
accomplished through a regulatory network with
dynamics containing exactly two stable attrac-
tors (Waddington 1957; Macarthur ef al. 2009). Apart
from cell-fate decisions, controls with two stable at-
tractors are also prevalent in prokaryotes (Ozbudak
et al. 2004; Dubnau and Losick 2006; Guantes and
Poyatos 2008). Interestingly, there exists a rich
amount of literature that proves and illustrates with
experimental and theoretical observations the
requirement of at least one positive feedback loop in a
network (irrespective of organisms and particularities
of the kinetics) for it to be able to attain multistabil-
ity (Laurent and Nicolas 1999; Wen and Ferrell 2003;
Angeli et al. 2004; Macarthur et al. 2009; Hat et al.
2016; Leon et al. 2016). The discovery of positive
feedback as an admissible motif for multistability
changed the attitude of researchers toward positive
feedback that existed till the early 1980s and opened
up numerous structural possibilities. Contrary to the
proposition of Jacob and Monod (1961), it has been
proved that the metaphor of ‘valley-rift-valley’ in the
famous Waddington diagram cannot be accomplished
by a network built solely with negative feedback
loops and feed-forward paths (Waddington 1957; El-
Samad 2021). Further, due to their modular nature,
biochemical switches have been one of the early
functionalities to be designed in a synthetic environ-
ment (Gardner et al. 2000).

Along with multistate switches, every cell requires a
synchronization mechanism or a ‘clock-like device’ to
arrange its numerous activities ranging from
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locomotion, intra-cellular communication, to regulation
of important cellular behaviors in a desired
order (Roenneberg and Merrow 2003). Further, these
clock devices play an instrumental role in synchronous
Boolean networks that arise in gene levels (Otero-
Muras and Banga 2016). Several experiments have
discovered the existence of regulatory sub-networks
that control the sleep—wake cycle with endogenous
clock pulses that try to mimic the oscillation pattern in
the natural day—night cycle (Griffith 1968). Generally,
there exists a variety of oscillator modules with a
diversity of purposes (Tyson et al. 2003) ranging from
neural to epidemiological oscillations (Goldbeter
1996). In this work, we shall limit our discussions to
biochemical and circadian oscillations. The biochemi-
cal oscillator has a typical time period ranging from 1
to 20 mins. Each organism consists of multiple oscil-
lator modules with a diverse set of time periods, out of
which the circadian oscillator merits a special mention
for its interesting properties. The circadian oscillator
generates periodic responses with a time period of
nearly 24 h (circa diem), i.e., in constant environmental
conditions (darkness or light), as observed by the
French astronomer Jean Jacques d’Ortous de Mairan in
1729 through his study of the unfolding and folding of
the leaves of the Mimosa plant kept in a dark room.
When an organism is subjected to a change in envi-
ronmental conditions, for instance, in the case of travel
that consists of a significant time difference, i.e., dif-
ference in the daylight pattern, the circadian rhythm
also changes its time patterns according to the duration
of the sunlight in the destination. This necessitates the
existence of a ‘master-slave’ clock, where the down-
stream slave module follows the oscillatory properties
of the upstream master (Joshi et al. 2020). Further, it
has been shown through the seminal studies carried out
by Hardin et al. (1992) and separately by Saez and
Young (1996) that a network of multiple genes (in-
cluding perl and cry) with negative feedback can be
understood as the underlying mechanism of a circadian
clock. These findings strengthened the long-anticipated
transcriptional—translational feedback loop model
involving the negative feedback between the Period
(PER) and Cryptochrome (CRY) proteins (Fahrenkrug
et al. 2006). Recent work by Pett et al. (2018) has also
indicated the existence of a repressilator as the neces-
sary condition for sustained endogenous oscillation in
mammalian cells. Interestingly, although the specific
proteins/genes involved in providing the oscillation
vary across organisms, the existence of at least one
negative feedback remains a commonality across all the
oscillatory biochemical networks hitherto observed.
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Unlike oscillation, certain activities in every living
cells need to be invariant to the steep changes in the
surroundings, for instance, regulation of the body
temperature in different climate conditions or main-
taining a desirable blood pressure in the presence of
environmental fluctuations. These abilities in their
totality enable a living organism to survive in the
presence of the sudden changes in the surroundings.
Apart from homeostasis, bacterial chemotaxis, the
phenomena of a bacteria reacting to the presence of a
chemo-attractant or chemo-repellent whose concentra-
tion is prone to sudden change also requires the sensory
module to send a constant signal (evidently, through
chemical reactions) to the flagella motors in spite of
rapid fluctuations in the chemo-affector concentra-
tion (Bernardo and Tu 2003). Therefore, adaptation is
an essential property of every living organism that
consists of sensing environmental change and subse-
quent return to the pre-disturbance desired state. Fur-
ther, experimental studies have discovered that apart
from biochemical networks, there exist a class of net-
works such as voltage-gated sodium channels that can
also provide adaptive behavior in the presence of a
step-like disturbance (Ferrell 2016). These network
structures provide adaptation response in the presence
of a single step-type disturbance but fail to provide the
same in subsequent changes in the environ-
ment (Friedlander and Brenner 2009).

This review elucidates all these three approaches
aimed at discovering design principles in the light of
the existing literature. To this end, we adopted three
biological functionalities of utmost importance:
(1) oscillation, (ii) toggle switches, and (iii) adaptation.
Moreover, as depicted in figure 2, traversing the path of
understanding biological network structures through
these three approaches also paves way for the synthetic
design of sophisticated biological networks. Sections 2,
3 and 4 illustrate the work done through computational
screening, rule-based and systems-theoretic approaches
with respect to the three aforementioned functionalities.
Section 5 presents a thorough discussion and the
potential future scope of these three methods.

2. Computational screening

Every biological network can be characterized by the
underlying dynamical systems constituted by the rate
reactions and rate constants associated with the unique
stoichiometry of the network. The computational
approach scans through all possible network structures
by simulating the associated dynamical system.
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Figure 3. A schematic for computational approaches. With the prior information about the complete mathematical
description (rate kinetics, parameters) of the network, all possible network structures combined with the set of biologically
feasible parameter sets are subjected to simulation. The response for each pair of network structures and parameter set is
assessed with respect to the predefined performance indices. In the case of an optimization-based approach, the objective

function is evaluated for the entire topology—parameter space.

Further, in order to make the search exhaustive, each
network structure is examined for multiple sets of rate
constants (figure 3). The performance of a specific
topology—parameter combination is assessed through
certain performance parameters defined with respect to
the reference (desired) functionality. The computational
screening approaches have used the O-ratio to measure
robustness of a given network structure. It is to note
here that Ma et al. (2009) defined robustness as the
quality (pertaining to a given network structure) of
keeping the adaptive response unaltered in the presence
of parameter fluctuations. Given the desired response,
the Q-ratio measures the number of times a particular
network structure produces a satisfactory performance
with respect to the performance parameters character-
istic to the desired functionality to the total number of
samples drawn from the parameter space. Therefore,
the topology that produces a satisfactory performance
for most combinations of the parameters (rate con-
stants) is considered as the most robust network
structure for a given functionality.

2.1  Multiple steady states for two and three
protein networks

Since it has been found that biological switches can be
constructed through gene regulatory networks, com-
putational approaches in the existing literature have
aimed to find the particular connection patterns
between the relevant genes that can exhibit a switch-
like behavior. To this purpose, Leon et al. (2016)
started with a three-gene network. Each protein can
either repress or activate the process of the synthesis for
itself or other proteins. Considering the presence, types,

and directionality of the edges, there are 3° possible
network structures for a three-node network. It is to be
noted that each network structure is characterized by
the underlying dynamics emanating from the chemical
reactions in the pathway. Each chemical reaction in
turn is characterized by its associated rate constants.
Therefore, the stoichiometry with the concentrations of
the genes as state variables, rate constants as the
parameters, and the conservation rules together con-
stitute the underlying differential algebraic equation
system for a given network (Leon et al. 2016).

Leon et al. (2016) and Diegmiller et al. (2021)
analysed multiple network structures for networks with
at least two genes. Each network structure was exam-
ined for different parameter sets in order to assess the
robustness of the network structure in consideration.
The central idea is, given a particular network structure,
to construct a prior for the parameter vector, and
thereafter, with the prior distribution and the explicit
knowledge of the rate reactions, obtain the log-likeli-
hood in order to arrive at the posterior parameter range
best suited for the desired response. Since the rate
reactions in most of the cases are highly nonlinear, it
becomes very difficult to obtain a closed form
expression of the likelihood function. To circumvent
this problem, Leon et al. (2016) used an approximate
Bayesian computation with the sequential Monte Carlo
method, wherein the first set of parameters (p;) is
drawn from the prior distribution. The model was
simulated with p, for different initial conditions
obtained from an extensive Latin hypercube sampling.
The existence of stable steady states reflects as clusters
in the state space. The Stabilityfinder tool, developed
for this purpose, uses the K-means clustering algorithm
followed by a Gap statistic to find the number of
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clusters present in the phase space. A distance metric
(d) was introduced to compute the distance between N
and the desired number of steady states. The sample
parameter set was considered acceptable if the associ-
ated d was less than an initial threshold (gg). The fol-
lowing parameter set was obtained by considering a
weighted combination of previously accepted parame-
ter sets. Further, with each iteration, the threshold &; is
reduced until it reaches a user-specific value. Thus, for
a given network structure, the posterior parameter
distribution admissible for multistability of desired
order can be obtained with the histogram of the
ensemble of accepted parameter sets in the algorithm.

This algorithm was applied to the well-known two-
node bistable network — also known as the Gardner
switch — characterized by two mutually repressing
nodes (genes, in this case). With Michaelis—Menten
rate kinetics, the Stabilityfinder tool was implemented
to deduce the posterior for four parameters: the rate of
synthesis for each gene and the co-operativity indices
for each repression. The degradation for each repressor
has been assumed to be linear, with degradation rates
being unity. The computationally burdensome simula-
tions have been parallelized using Graphic Processing
Units. The results from this study reconfirmed Gard-
ner’s hypothesis that, in order for a two-gene positive
feedback network (with an even number of repressing
edges) to exhibit bistability, the synthesis rates should
be balanced and the cooperative indices should be
greater than unity.

The study revealed that the previously existing
conditions for a deterministic Gardner switch to pro-
vide a bistable behavior stands true in the stochastic
scenario as well (Losick and Desplan 2008). The more
generalized version (in terms of the form of dynamics)
of the Gardner switch (Gardner et al. 2000) obtained
by Lu et al. (2006) has also been investigated. Inter-
estingly, it has been found that a pair of additional
positive self-loops along with a mutual repression
between the two proteins can induce tristable behavior.
Although it has been conjectured that presence of four
or more stable states can only be obtained through a
network with at least three proteins, establishing a
mapping between the number of stable steady states
and the resultant network structure still remains an
open challenge.

2.2 All possible three-node oscillators

Investigating network motifs through computational
means for the sole purpose of finding the necessary
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(and hopefully sufficient) structural conditions behind
oscillations was attempted first by Pett ef al. (2018). It
has been well established in the literature that a two-
node network with a negative feedback can provide an
oscillatory response (Bela Novak and Tyson 2008).
Later, three- and higher-order networks consisting of at
least a wholesome negative feedback have also been
shown to portray oscillatory responses (Rdssler 1972;
Frank 1974; Novak and Tyson 1993; Pomerening et al.
2005). In order to circumvent the computational burden
in examining the entire topology—parameter space and,
at the same time, to draw reliable conclusions, Pett
et al. (2018) started with a well-known, experimentally
validated circadian oscillator network that involves
Bmall, Per2, Cryl, Dbp, and the nuclear receptor Rev-
erb-o (Pett et al. 2018). Experimental studies have
shown that the network contains 17 edges with 34
parameters. From the given network, elimination of
random nodes (both one at a time or multiple deletion)
have been performed and it has been found that a three-
protein network (eliminating Bmal or Dbp) can provide
robust oscillations with both negative and positive
feedbacks. Subsequent studies on gene knockouts from
the basic network validate the theoretical findings by
Thomas (1981) that a complete graph requires at least
one negative feedback to provide oscillations. It is to be
noted, that the basic assumption in all these studies has
been that the elements of the system matrix obtained by
linearizing the nonlinear system of rate equations do
not change signs in the entire state space.

Another computational effort by Li et al. (2017)
examined protein networks to find the structures that
produce robust oscillations. To begin with, Li et al.
(2017) examined all possible structural combinations
of a two-protein network. Each network structure was
simulated for multiple sets of parameters and initial
conditions. This methodology has also been extended
to three-node networks. Interestingly, it has been found
that a negative feedback with an incoherency in the
respective nodes yields more robust oscillations than a
simple negative feedback. It is to be noted that the
requirement of incoherency refers to a specific pattern
of interconnections. For instance, in the case of an
incoherent two-node network with a negative feedback
between two proteins A B, if B represses A, then the
condition of incoherency binds A to have a positive
self-activation. Notably, these network structures have
been validated experimentally (Higgins 1964; Gold-
beter and Lefever 1972).

Apart from direct computational screening, there
exist other optimization-based approaches that rely on
mixed-integer programming to deduce the network
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structure along with the parameters. Otero-Muras and
Banga (2016) developed an approach wherein the
desired functionality is represented by a standard
function. Subsequently, the difference between the
desired and obtained responses is minimized, subject to
the rate constants and structural variables, which are
represented as a signed stoichiometry matrix. This
leads to mixed-integer nonlinear programming which
produces the admissible topology—parameter combi-
nations given the desired functionality. The study
revealed that the existence of a negative feedback loop
together with incoherent self-loops is admissible for
oscillations in a delay-free system.

2.3 Only two admissible structures for adaptation
in a three-node network

Similar to toggle switching and oscillation, computa-
tional screening methods have also been applied in the
context of adaptation with great success. Ma et al
(2009), in their seminal studies, adopted a biochemical
networks with three nodes. As a first step, the quantum
of adaptation attained by a given network has been
characterized by two performance parameters, namely,
sensitivity and precision. Sensitivity is computed as the
ratio of the relative difference between the peak and the
initial levels of the output to the relative change in the
input, whereas precision is defined as the ratio of the
relative changes between the initial and final output
levels to the changes in the input. The bare minimum
values of sensitivity and precision that the response of a
particular network structure should contain in order to
be enlisted as the admissible motif have been chosen as
1 and 12 respectively. The study investigated 16,038
possible network structures. Each structure was
examined for 10,000 different sets of parameters (rate
constants) totaling ~ 1.6 x 10 number of simulations.
A numerical measure of robustness is defined as the
ratio between the number of parameter sets for which a
particular network structure showed satisfactory adap-
tive performance to the total number of parameter
combinations considered. The study revealed that only
395 topologies were able to provide a sensitivity and
precision value greater than the threshold. Also, all
these 395 topologies have been shown to either contain
a negative feedback loop with a buffer node (NFBLB)
or at least two mutually opposing (incoherent) feed-
forward paths from the input to the output node
(IFFLP). The buffer node in NFBLB refers to the
specific protein in the negative feedback loop whose
dynamics need to be independent of its own
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concentration in order for the network structure to
provide perfect adaptation. Upon robustness analysis, it
was found that IFFLP is comparatively less robust than
the NFBLB topology. Further, addition of negative
feedbacks to both NFBLB and IFFLP has been shown
to increase robustness (Ma et al. 2009).

Another important intervention by Qiao et al. (2019)
began with a two-node biochemical network. Similar to
Ma et al. (2009), a variant of Michaelis—Menten
kinetics was adopted but the input signal was consid-
ered to be stemming from the scalar Langevin equation,
i.e. the stochasticity in the network was introduced
through the input. Each possible network structure for
two- and three-node setups was investigated for mul-
tiple parameter sets.

The ratio between the output and the input signal-to-
noise power ratio (SNR) was measured for each net-
work structure, in addition to sensitivity and precision.
The variance required to compute the ratio of output
and input SNR was derived by using the Palson dis-
sipative theorem (PDT). Subsequently, a correlation
study was done by pairing the adaptation and noise
attenuation credentials. As a result, it has been found
that although sensitivity has a positive correlation with
SNR, the correlation between precision and SNR was
found to be negative for all the network structures
admissible for adaptation. This suggests an inherent
incompatibility of a three-node network to provide
perfect adaptation and simultaneously minimize output
variance. Therefore, the only way to achieve this goal
was to connect an adaptation module with a distinct
noise-filtering module. Further, it has been shown
through computational study that an adaptation module
followed by a noise filtering downstream can yield
more robust response than the other way round.

Computational approaches have been able to gener-
ate highly reliable predictions for small-scale networks.
Given particular kinetics, the structural conditions
produced from these approaches have often been used
as the benchmark to assess the correctness of the pre-
dictions yielded by the other two methods. Further, the
study of robustness, i.e. sensitivity of the response with
respect to the parameters, becomes quite straightfor-
ward in this method, which is not necessarily the case
for the following methods (Ma et al. 2009).

3. Rule-based methods

Unlike search-oriented brute force or mixed-integer
optimization, the rule-based method adopts a design-
oriented approach. The repertoire of design tools in the
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Figure 4. A schematic of rule-based methodologies at work. With the qualitative information about the mathematical
description (form of rate dynamics, I/O nodes) of the network, well-known engineering principles for circuit synthesis are
applied to construct the topology that satisfies the specified design requirements. The design specifications are obtained from

the performance parameters.

existing literature is utilized to construct a biological
network that can provide the desired functionality
(figure 4). This approach has been instrumental in
constructing the building blocks (basic modules) of
large biological networks. It is also worth mentioning
that this approach has an implicit assumption that
biological networks are essentially modular, i.e. the
functionality of a particular system remains unaltered if
it 1s connected with a downstream node. Also, the fact
that a biological network requires to adhere to specific
rules to produce a particular response necessitates a
translation of biological rules into a more generic
(context-free) language of design specifications.

3.1 Biological switches: admissible topologies
and their stability properties

The first successful application of rule-based design of
biological switch dates back to the year 2000, when
Gardner et al. (2000) synthetically constructed a
genetic toggle switch in Escherichia coli. In this paper,
the authors proposed to design a biochemical switch
exhibiting bistability in E. coli. A two-protein network
with positive feedback accomplished by mutual inhi-
bition was considered as the ideal network structure for
producing switch-like behavior. The dynamics of the
resultant network were assumed to be

. K,
— — 1
* 1 —+ ygxy X ( )
, K
y L —y (2)

- 1 4 xO

where x and y are the concentrations of the repressor
proteins and 0;; is the cooperativity index of gene j in
the synthesis of gene j. Notably, the parameter region in
which the system defined in equations 1 and 2 produces
bistable behavior is proportional to the cooperativity
indices (0, 0y) of the network. More importantly, it
has been concluded that for guaranteeing bistability, at
least one of the co-operativity indices has to be greater
than unity (figure 5).

Apart from the design principles obtained via syn-
thetic design, Angeli et al. (2004) designed a strategy
to assess the stability characteristics of a positive
feedback system (Angeli et al. 2004). Instead of ana-
lysing the entire N-node network, this method first
divides the network into process and control modules
in such a way that the steady states of the output state
for the open-loop system (y*) can be written as the
function of the control input (u) in a particular way. Let
us denote that at the steady state as

Yo =f(u) 3)

Angeli et al. (2004) developed a graphical approach
wherein f(u) is plotted with respect to u along with the
straight line g(u) =u. The intersection points
(u*,f(u*)) are noted. It can be shown that (f(u*),u*)
is a stable equilibrium if the following condition is
satisfied

fu)<u - (4)

Further, Angeli ef al. (2004) showed that if the open-
loop system is monotone and the resultant network
does not contain any negative loop, then each

o and  f(u) >u
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Figure 5. Example of bistable behavior. The left figure is simulated with v = 0.7 and the same for the figure at right is
v = 0.865. The dynamical system in equations 1 and 2 possesses a pitch-fork bifurcation at v = 0.865 resulting in two
stable steady states.The parameter set considered for the purpose of simulation is «; = 0.9, o, = 1.05, f; =200, S, =9.89,

Y1 =7 =398 K;=29.87 K,=1.008.

interaction point satisfying equation 5 provides an
injective mapping with a stable steady state of the
closed-loop system. Therefore, the conditions used in
this methodology provide the reason why a positive
feedback network with monotone dynamics can
produce switch-like behavior.

3.2 Negative feedback with delay promotes
oscillations: Studies on small-scale networks

As opposed to biological switches, oscillation, from the
perspective of dynamical systems theory, requires the
underlying dynamical system to possess at least one
stable limit circle. An oscillatory behavior can be
characterized by its amplitude and time period.
Although the design of a circadian oscillator has been
prioritized in the existing literature, the design strate-
gies adopted in most cases can be easily extended to
the construction of oscillators with arbitrary frequency.
For instance, Albert Goldbeter (1996) observed that
similar to circadian oscillators, design principles for the
CAMP oscillator in mammals contain a negative
feedback with delay. What differentiates the biochem-
ical networks from other prevalent ones in biology is

that the system matrix for the associated linearized
network dynamics can be thought of as a variant of the
digraph matrix for the same biochemical network. This
opens up the scope for the application of certain
instrumental results in the field of combinatorial matrix
theory (Maybee et al. 1989).

Biological oscillation is known to involve feedback
loops. Initial applications of rule-based methods in
designing biological networks involved the well-known
engineering principle of ‘negative feedback with delay’
for designing oscillators (Mackey and Glass 1997). The
basic idea is to introduce delay in the feedback loop along
with integral control. The integral of the error signal
provides a finite phase margin which can be met by the
additional delay in the feedback loop. In the case of a
linear system, a delay slightly greater than the required
phase margin can lead to unstable behavior, leading to
failure of oscillation. Further, even if the delay accurately
compensates for the delay margin, contrary to the bio-
logical oscillators, the resultant oscillation produces a
sustained tonal oscillation, with the amplitude being a
function of the initial condition. Therefore, nonlinearity
either in the process or the feedback loop is required to
produce stable oscillatory responses, with amplitude
independent of the initial conditions.
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Mackey and Glass (1997) studied a single state
model with explicit delay wherein the rate of the pro-
tein synthesis at any particular instance ¢ is a function
of the protein concentration at (1 — 7). A self-repressive
loop with sigmoidal kinetics can potentially generate
oscillatory responses for certain admissible sets of rate
constants. Further, it has been shown that a large value
of co-operativity increases the nonlinearity, thereby
increasing the chances of exhibiting a stable oscillatory
response.

Instead of the explicit use of delay in the network
dynamics, the introduction of multiple indirect paths or
additional positive feedbacks can also serve the pur-
pose. It can also be shown that a single protein system
without delay cannot provide oscillations. Therefore,
the absence of explicit delay has to be traded off by
increasing the order of the network, i.e., introducing at
least one more protein in the network. In the case of a
two-protein network, Novak and Tyson (2008) sug-
gested that negative feedback between two proteins
with repression of the degradation of at least one pro-
tein can provide oscillations. Given two proteins A and
B with concentrations x;(¢) and x,(z), the proposed
network dynamics can be written as

. x12

X] = —————— — Y11X] 5
Bis + xg‘ Y11 ( )

. %22X2

Xy = 021X1 — YopX2 — (6>

axs 4+ bx; + ¢

It can be seen that for a particular design choice of
(Y22, 22, a,b,c), the expression g% can become posi-
tive, indicating an effective self-loop for the node B.
The resultant positive self-loop acts as a potential
memory device which makes the current value of x; a
function of its past value.

Apart from these two topologies, negative feedbacks
with incoherent amplification are also shown to be able to
provide oscillation. Pomerening et al. (2005) and Anan-
thasubramaniam and Herzel (2014) suggested at least one
positive feedback loop along with the customary negative
feedback to attain incoherent amplification of at least one
node in the network. The experimental studies performed
on the mitotic oscillator present in sea urchin embryos and
Xenopus eggs (Goldbeter 1996) provided greater insight
into the possible network structures for oscillations. Fur-
ther, the models proposed by Goldbeter (2002) showed
that a negative feedback loop with three proteins accom-
panied by a positive feedback produces robust oscillations
and can reliably explain the behavior of the mitotic
oscillators.
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Moreover, as demonstrated in figure 6, rule-based
methods have deduced three types of design principles for
oscillation, namely, (1) negative feedback with delay, (2)
negative feedback with positive feedback, and (3) nega-
tive feedback with incoherent amplification. It has been
conjectured by Novak and Tyson (2008) that negative
feedback is absolutely necessary for a biological network
ofany size to provide an oscillatory response. Further, it is
to be noted that the class of oscillators which facilitates
incoherent amplification with the presence of positive
feedbacks over and above the mandatory negative feed-
back offers a robust performance of oscillations in the
presence of parametric variations.

3.3 Integral control facilitates adaptation

The rule-based attempts on adaptation, an essential
property of every living organism to regulate the sys-
tem with respect to the desired state, have been based
on the well-known engineering principle of using
negative feedback for the purpose of regulation. The
basic idea is to use a pure or proportional-integral
control such that the output of the response follows the
desired signal perfectly.

To illustrate this, let us consider a closed-loop linear,
time-invariant system G¢;(s). The corresponding open-
loop and control transfer functions are denoted as
Gp(s) and G¢(s), respectively. Further, the disturbance
(D(s)) is assumed to be added to the output of the
open-loop plant. The controller is provided with the
desired set points (R(s)). Considering negative feed-
back for stability purposes, the output (Y(s)) can be
written as

GP(S)

_ GP(S)GC(S)
Y(s) 1+ Gp(s)Gel(s)

1+ GP(S)GC(S)R(S) +

D(s)
(7)

For the system to reject a step-type disturbance

(D(s) =1) and follow a constant reference, the
following should hold:

lim y(7) = lir% sY(s) = R(s) (final value theorem)
1—00 §—
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Figure 6. Example of oscillatory behavior. (a) Simulation to

a single protein negative feedback motif with delay. As long as

there exists sufficient nonlinearity and long delay it can produce sustained oscillation. (b) The response of a network
involving two proteins and two intermediates connected in a negative feedback fashion. The multi-stepped, long negative

feedback can act as potential delay necessary for sustained
constants both for (a) and (b) have been provided in the App

oscillation. The associated rate equations along with the rate
endix. (¢) Response of a two-protein network with wholesome

negative feedback and incoherency in the output node. The self-inhibition of the degradation of the output protein acts as an
equivalent of positive feedback. The necessary parameters used here o, =4, 12 =1, 711 = 0.05, 051 = 0.32, y55, = 0.053, 035

=1,a=0.1,b=1and c=25.

Since the reference r(7) is a constant signal, its Laplace
counterpart can always be expressed as (s) = % , where
ko is a constant. Therefore, equation 9 can be satisfied
if and only if G.(s) can be expressed as @, where
®(s) and s are co-primes. This indicates the presence of
an integral feedback control as a sufficient condition
for perfect adaptation (Astrom and Richard 2010).
From the perspective of bifurcation analysis, the
condition for perfect adaptation can be cast as the
invariance of the output steady state (concentration of
CheP in bacterial chemotaxis) with respect to a step-
change in the chemoaffector. Interestingly, it is seen
that in the two-state model built by Barkai and Stan
(1997) for bacterial chemotaxis, the steady-state con-
centration of the output state CheP remains invariant to

the inputs for all possible biologically feasible values
of total receptor concentration. Tau-Mu et al. (2000)
showed that the Barkai—Leibler model employs a pure
integral controller to render a zero sensitivity of the
output steady state to the external input and other
parameters through the internal model principle.
Subsequently, Briat et al. (2016) used another rule-
based approach to deduce the design principles for
adaptation in the presence of stochastic variations. In
the scenario of low numbers of reactant molecules, it
becomes infeasible to treat the reaction systems in the
continuous-time deterministic framework. Further,
considering the parameters as random variables results
in a stochastic dynamical system. Although use of the
Fokker—Planck equations (Kolmogorov’s forward
equation) seems a tempting option here, the
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nonlinearity (non-Gaussianity of the evolving joint
PDF of the states) of the chemical reactions can result
in an infinite dimensional deterministic dynamical
system in terms of the statistical moments — this is
known as the moment closure problem in nonlinear
stochastic dynamical systems. To circumvent this
problem, instead of the distribution, Briat et al. (2016)
focused on the chemical reactants directly and designed
the control strategy so that the population average of
the output species remains unaltered in the presence of
stochastic variations. To this effect, a set of reference,
sensor, and control reactions was proposed, and using
certain important results on Markov processes, they
showed that the negative feedback integral control
strategy provides robust tracking of the desired set
point in the presence of noise. One of the major
shortcomings of this design is the increased variance of
the output state. Subsequently, Briat ef al. (2018) pre-
scribed an additional negative feedback loop in order to
reduce the variance of the output state. The general
expression of variance has been obtained through
solving a Lyapunov-like equation stemming from the
linearized dynamics. Subsequently, it has been shown
that negative feedback along with the existing anti-
thetic integral control can serve the purpose.

From the design perspective, rule-based methodolo-
gies can serve as a great starting point because of their
prominent lineages with well-tested engineering sys-
tems. Further, as beautifully summed up by Oberortner
et al. (2015), the design rules can be classified into five
distinct categories, namely, counting, pairing, posi-
tioning, orientation, and interactions. Counting rules
refer to the maximum (minimum) number of genetic
species that can be used for a given design. For
instance, according to well-known engineering princi-
ples, any delay-free dynamical system needs to be of at
least second-order so as to produce oscillatory
response. This translates to the requirement of a two-
gene oscillator system as shown by Tyson (1975). The
pairing rules denote the number of appearances of a
particular pair of genetic elements, thereby referring to
the process of choosing appropriate biochemical spe-
cies for a particular phenotype. In genetic design,
ordering involves identifying the ideal chronology of
the DNA sequence via spatial separation to timing a
particular interaction with reference to the design pro-
cess. This enables realizing the functional delay in the
system. It has been shown by Mackey and Glass (1997)
and Borsch and Schaber (2016) that introduction of
delay can significantly reduce the minimum require-
ments on the order of the dynamical systems to exhibit
a given behavior. The design specification of
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orientation requires knowledge of the orientation pat-
tern of a particular genetic substance in order to meet
the desired specifications. Finally, the design rule of
interaction captures all the desired and observed
interactions possible with the chosen genetic sub-
stances of the given order and orientation.

The aforementioned rules particularly aid in the
synthetic design of the biological networks. Design
principles obtained from the wisdom pertaining to the
domain of engineering remain starved of the actual
biological context. Therefore, selecting the appropriate
biochemical species and engineering the appropriate
promoters are instrumental in implementing engineer-
ing designs to biological networks.

4. Systems-theoretic approaches

Apart from the two formalisms mentioned above,
systems-theoretic approaches have been at the forefront
in unraveling the design principles for important bio-
logical functionalities. Mathematical systems theory
can be applied to any phenomena that can be cast into
the formalism of ‘input — system/model — output’. In
this sense, the confluence of systems theory and
systems biology refers to the application of systems-
theoretic principles in analysing the behavior of com-
plex biological networks. Therefore, the task of iden-
tifying design principles given the desired response and
the input disturbance pertains to a problem of qualita-
tive systems identification. To this purpose, similar to
the brute force approach, several hyper-parameters are
introduced to characterize the reference response.
These parameters are mapped as some conditions in
terms of certain well-defined qualities such as stability,
controllability, gain, etc., of systems theory. These
conditions, along with the application of combinatorial
matrix theory, can provide the generic design principles
for a given biological functionality (figure 7).

As noted by several authors (Angeli ef al. 2004; Sontag
2007; Ma’ayan et al. 2008), the system matrix of the
dynamical system linearized around an operating point
can serve as a variant of the digraph matrix for almost
every biochemical network. This observation has been
crucial for the systems-theoretic methodologies since this
renders the systems-theoretic approaches agnostic to the
particularities of rate kinetics. The analysis of the digraph
matrix has enabled one to use the wealth of combinatorial
matrix theory to unravel the necessary structural
requirements for any given functionality.

Let us consider a biochemical network containing N
interacting biochemical species (say, proteins, for
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Figure 7. A schematic for systems-theoretic approaches to deduce the complete set of design principles against a specific
functionality. First, the performance parameters are analysed and mapped to certain entities of systems theory. These
conditions are then applied on the underlying dynamical system which is constructed with a qualitative knowledge of
(specification of the I/O nodes), the network, in order to obtain precise mathematical conditions on the digraph matrix of the
network. Subsequently, the complete set of admissible topologies is obtained through the application of combinatorial matrix

theory.

instance) [xy,xp,---xy| with the associated rate con-
stants [p;, p,, - - - pg|- Further, assume that none of these
N proteins entertains any linear/nonlinear conservation
law. The resultant dynamical system can be expressed
as

X =f(x,p),y(1) = h(x,p) (10)

where x € RY and p € R” are the states (concentra-
tions) and the parameters (rate constants) of the
dynamical system. It can be seen that the presence of
any linear algebraic constraint stemming from certain
conservation principles results in the reduction of the
order of the dynamical system.

It is to be noted here that equation 10 is a symbolic
representation of the dynamical system that lies
beneath any biochemical reaction. The systems-theo-
retic approach works on this symbolic representation of
the dynamics without assuming any particular rate law
(f(x)) barring the central assumption that the elements
of the matrix %]i ; do not change signs in the entire
state space.

Intuitively, any switch-like device requires toggling
between at least two steady states. Therefore, given a
network, finding design principles for biological
switches requires deriving structural conditions for
multistable dynamics.

As established by Sontag (2007), most of the bio-
chemical networks maintain a set of properties that, in
most of the cases, make a systems-theoretic interven-
tion in drawing insights on the network structures from

the underlying dynamics fruitful. These properties are
described as follows:

1. The system of differential equations in equation 10
constitutes a well-posed dynamical system. This
ensures the existence and uniqueness of the
concentration trajectories.

2. The (i, j)’h element in the Jacobian (A) of f(x,p)
with respect to x refers to the edge from the j*
node to the i node. Further, the sign of A;;
dictates the type of interaction. In the case of
repression, A; ; is negative in the manifold, whereas
the opposite is true for activation.

4.1 Positive feedback: Essential motif for
bioswitches of any size

Previously, Thomas (1981) conjectured that the exis-
tence of an odd number of inhibitory interactions in a
loop (negative feedback) and an even number of inhi-
bitory interactions (positive feedback) could potentially
serve as the necessary condition for sustained oscilla-
tions and biological switches. The paper adopted both,
two- and three-gene networks. A gene network can be
constructed by considering the respective genes as
nodes and the interactions as the edges. In the case of a
Boolean network, each gene can possess only two
states, ON (1) and OFF (0). The status of a particular
gene A is determined by the generation process asso-
ciated with A. Further, this generation process for A is
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obtained by considering the cumulative or multiplica-
tive effects exerted on A by its neighboring genes.
Therefore, the present state of the process for gene A
depends on the past values A and its neighboring genes.
If the process is at the ON state, then the associated
gene becomes activated after a certain amount of delay.

Using the above framework of Boolean networks,
Thomas (1981) showed that a three-gene network
requires at least one loop consisting of an even number
of inhibitory regulations for any network structure to
provide multiple steady states. In the case of oscilla-
tion, the network structures having at least one loop
with an odd number of inhibitory interactions serve as
the necessary condition for oscillation. This result
played the central role behind the conjecture made by
Thomas (1981) that the presence of positive feedback
for any network irrespective of the number of nodes
and edges is essential for switch-like behavior. Simi-
larly, for oscillation, the existence of at least a negative
feedback loop can be the potential necessary condition.

Later, Plahte et al. (1995) and Snoussi (1998) proved
Thomas’s conjecture for biological switches. The work
adopted a continuous-time system with time-invariant
parameters as described in equation 10. The concen-
tration dynamics was assumed of the form

X=f(xp)—x (11)

Where the second term in equation 11 refers to the
degradation process of each protein. It can be inferred
from equation 11 that the corresponding Jacobian
matrix of f(x) with respect to x can act as the variant of
the digraph matrix provided condition 2 is satisfied by
f(x).

Snoussi (1998) first showed that if the dynamical
system in equation 11 has two stable steady states x]
and x; such that xj <x3, i.e. x| <x3 Vi = 1(i)N, then
the corresponding digraph generated by the Jacobian
(A) of f(x) with respect to x contains at least one
positive feedback loop involving all activation
interactions.

A more general case where there exists no particular
relationship between x] and x; was resolved by first
transforming the system in equation 11 by multiplica-
tion with a suitable diagonal matrix P € R¥*V con-
structed by the following process:

1
Pii—{_l

It can be verified that P exhibits projection matrix-like
properties such as P> = I. Further, the transformed state
space where x' = Px has steady states Px| and Pxj.

* *
otherwise
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On applying the previous result on the transformed
system, it can be concluded that the transformed system
matrix must contain at least one positive feedback with
all positive regulation in the network. This proves the
fact that A should also consist of at least one positive
feedback loop.

As has been argued before, due to sensitivity to
initial conditions and parameter variations, a linear
treatment to finding design principles for oscillation
can be ruled out. Further, as we know that a first-order,
nonlinear dynamical system without any delay always
produces a monotone/quasi-monotone response, the
chances of the same producing an oscillatory response
can be eliminated. Therefore, we turn to nonlinear
systems with orders more than unity. The existence of
oscillatory behavior in any dynamical system can be
traced from a stable limit circle in the phase space. A
stable limit circle is called locally stable if the neigh-
borhood trajectories converge to the limit circle. This
implies that the vector field inside a stable limit circle is
locally outwards and points towards the limit circle
outside of it.

4.2 Negative feedback loops: are they necessary
for oscillation?

Similar to biological switches, Snoussi (1998) provided
the necessary condition for sustained oscillation in the
same work. Given a network with the underlying
dynamics mentioned in equation 10, Snoussi (1998)
argued that if the Jacobian of f(x) with respect to x
represents a complete graph, i.e., each node is reach-
able from every other node in the network and the field
f(x) satisfies condition 2 (repression—negative, acti-
vation—positive), then the network requires at least
one negative feedback involving more than one node to
provide sustained oscillation. This was proved by
contradiction, i.e., it was supposed that a complete
graph with no negative feedback could provide oscil-
lation. It then follows that in the case of a complete
graph with all the loops being positive, all the paths
from the i” to the j* node are of the same sign, which
is constructed by multiplication of individual signs (—1
for activation and +1 for repression) of every edge
involved in a given path. As the next step, a transfor-
mation similar to P defined for the case of multista-
bility was carried out in the following manner:

¥ =g(¥) (12)
where the Jacobian matrix (A) associated with f(x) and
the same (A") for g(x) are related as
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A =P 'AP (13)

Snoussi (1998) proved that if the network structure
induced by A does not contain any negative feedback
and all the paths are (activating) positive, then the off-
diagonal elements of matrix A" are positive — this sat-
isfies Kamke’s theorem on monotone systems. There-
fore, the associated flow of the dynamical system can
be expressed as a monotonically increasing vector-
valued function of the initial condition. Subsequently,
Snoussi  (1998) showed that systems satisfying
Kamke’s theorem could not contain a stable limit cycle,
thereby eliminating the possibility of a complete net-
work with no negative feedback loop to provide
oscillation.

Although the above result on the design principles
for the oscillatory network is revealing, it is to be
remembered that these results on oscillation are only
applicable to a complete network containing an arbi-
trary number of nodes. Apart from the relaxation of the
completeness condition, future scopes include deduc-
ing the conditions for oscillation in a dynamical system
of arbitrary order.

4.3 Biological adaptation: all possible network
topologies

Unlike oscillation, there has been a flurry of
approaches dedicated to discovering the design
principles for adaptation. To begin with, Sontag
argued that adaptation, in essence, is a disturbance
rejection problem. Therefore, an internal model
principle (IMP) should be the operating mechanism
behind the networks capable of adaptation. The IMP
states that in order to reject a disturbance D(s), either
the plant or the control must contain a copy of U(s)
within. According to IMP, adaptation to a step-type
disturbance requires the presence of a step-type
component (f) in the network structure. Subsequent
works provided the necessary mathematical condi-
tion for adaptation for a linear time-invariant
dynamical system (Drengstig et al. 2008, 2011;
Waldherr et al. 2012; Bhattacharya et al. 2018).
Given the dynamics underlying a biochemical net-
work in equation 10 with N nodes, the linearized
system can be written as

ox = Adx + Bdu

dy = Cox + Ddu

P Bhattacharya et al.

where dx € RY is the deviation variables computed by
taking the difference between x(¢) and the steady state
x*, and A € RNV and B € RV are the Jacobian
matrices of f(x) in equation 10 evaluated at x*, u*, with
respect to x and u , respectively. Similarly, C and D are
obtained by evaluating the Jacobian of A(x) at x*,u*
with respect to the states and the inputs respectively.

Waldherr ef al. (2012) showed that for the system in
equations 14-15 to provide adaptation, the Schur
complement of A corresponding to the matrix H =
[ABCD] has to be zero. Evidently, this can be evaluated
from the internal model principle argument. Further,
Bhattacharya et al. (2018) used a similar approach to
deduce the conditions for perfect adaptation for a three-
protein network to the requirement of zero-gain
dynamical system — this condition when mapped back
to the realm of network structures refers to the
requirement of a negative feedback with a buffer node
or incoherent feed-forward structure.

Subsequently, Araujo and Lance (2018) and Wang
et al. (2021) extended these results in to networks of
arbitrary size. Both the works used the conditions for
adaptation as a requirement of zero final gain along
with a weak form of the stability condition
sgn(det(A)) = —1" to deduce that there exist only two
kinds of network structures that can provide adaptation
— the balancer and the opposer modules. The balancer
module contains at least one feedback loop that facil-
itates an integral control action to the output node.
Araujo and Lance (2018) conjectured that for stability
purpose, it is necessary for the balancer module to
contain at least one negative feedback loop. On the
other hand, the opposer module achieves perfect
adaptation through multiple forward paths from the
input-receiving to the output node with mutually
opposite effects (signs). Recently, Bhattacharya et al.
(2022) proved the Araujo conjecture for networks of
any size to establish the necessity of negative feedback
in balancer modules for perfect adaptation (figure 8).

Although the structure plays a determining role,
attainment of perfect adaptation is only ensured by the
right choice of the parameter sets.

For both opposer and balancer modules, it requires
the associated rate constants to satisfy specific equality
constraints to produce the desired response for adap-
tation. Therefore, the actual nonlinear system with
parameter uncertainty often leads to a condition where
the response contains a high but finite precision value.
This phenomenon is also known as imperfect adapta-
tion. Bhattacharya et al. (2021) showed that for a two-
and three-node network, an adaptation-like response
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Figure 8. Example of adaptive behavior. (a) The staircase-like input. The step changes occurred at t = 0, 15, and 30 min.
(b) The response of a three-node network involving two mutually opposing forward path from the input node A to the output
node C. It is noteworthy that the response of an IFFLP is always non-oscillatory for the hyperbolic nature of the system
matrix A. (¢) The response of another three-protein network with negative feedback between nodes A and B. The associated
rate equations along with the rate constants both for (a) and (b) have been provided in the Appendix.

could be obtained if and only if the zero of the
underlying dynamical system is placed before the pole
of the same with respect to the origin. The structural
networks can be seen to remain unaltered for at least
smaller (two- and three-node) networks.

The systems-theoretic approach, despite its limited
success in the context of oscillations, has been the most
suitable methodology to understand the governing
network structure behind the emergence of a property.
Due to the absence of both the computational burden
and the need to find sufficient structural conditions, this
method can be used for deducing all possible structural
conditions behind a particular response. Further, certain
assumptions, as stressed by Sontag (2007), empower
the user to adopt principles for understanding larger
networks and make reliable predictions on the mapping
between structure and functionality (Sontag 2007).

5. Discussion and future scope
The three methods discussed in light of the three

functionalities, namely, toggle switches, oscillation,
and adaptation, have been very useful in unraveling the

network structures. In spite of this, they have a number
of necessary yet limiting assumptions. First, modeling,
the stepping stone for any real-world system analysis,
requires assumptions that are not always satisfied in
reality. For instance, it is well known that the
Michaelis—Menten kinetics, which have been used as
the model rate kinetics for most of the computational
approaches, assume that the binding reaction occurs at
a rate faster than the synthesis reaction of the product.
Therefore, the scope of any particular approach can be
assessed through the assumptions made beforehand.

Second, most of the models aimed at predicting the
concentration profile of different species are limited by
an inherent assumption that the reactants are in close
proximity with each other and there is no spatial gra-
dient at play. This reduces the complex partial differ-
ential equations to a set of nonlinear ordinary
differential equations, thereby increasing the possibility
of a well-defined and bounded solution of the con-
centrations of each node species of the network.

It is to be noted that the very problem of discovering
network structure associated with a particular func-
tionality has an inherent assumption that the particular
topology is exclusively tuned for performing that
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particular functionality. On the contrary, the network
structure, in reality, is only a part of an extensive bio-
logical network. Therefore, considering a network
structure in isolation can result in unreliable prediction
despite being a necessary and useful abstraction. A
specific problem of this kind has been addressed by
studying retroactivity and context-dependence, where
Del Vecchio (2013) showed that a two-protein network
with negative feedback changes from oscillation to an
exponentially stable response when connected with the
downstream system.

In summary, it is necessary to consider all of the
above limitations in order to design biological net-
works. Since all of the afore-explained methodologies
rely on certain important aspects of the modeling, the
inherent assumptions also seep into the entire process.
This merits a comparative evaluation of the three
methodologies based on scalability, generalizability,
and exclusivity as we set out to gauge a particular
methodology’s suitability for a given situation.

Given the reaction kinetics, scalability investigates
how efficiently a particular methodology performs with
increasing network size. As mentioned earlier, com-
putational screening scans through the entire network
topology space to find the network structures that sat-
isfy a pre-defined performance criterion. Typically, for
an N-node protein network, the number of simulations
(Ny) required to be performed in the computational
screening method can be expressed as

N, =3V xN,

where N, is the number of samples drawn from the
parameter space in order to draw an assessment of the
robustness of a particular network structure. Clearly, it
becomes extremely burdensome to scale up the method
for networks of large size.

On the other hand, the rule-based method starts with
a preconceived design idea for the associated func-
tionality. The challenge for rule-based methods when
operated on networks of large size lies in demonstrat-
ing how the large network structures imbibe the pre-
defined design strategy for the given functionality
instead of answering the question of what are the
possible network structures that can produce the
desired response. This is why a scaling up of the net-
work size does not become a worrisome issue for this
methodology, given the design strategy is already in
place for the functionality in question.

The systems-theoretic methodologies employ a
search-oriented approach wherein the performance
parameters that characterize the given functionality are

P Bhattacharya et al.

first evaluated in the ideal scenario. Followed by this,
essentially, these parameters are translated to some
system requirements. Subsequently, the structural
conditions behind the given functionality are deduced
for networks of large size. It is important to note that
the assumption that the dynamical systems underlying
biochemical networks are quasi-monotonous plays an
instrumental role in the last step of this methodology.
Therefore, as long as the mapping between the per-
formance parameters and the properties of the
dynamical system is well-established, a search-oriented
approach can yield reliable results for networks of any
size.

The quality of generalizability assesses whether the
design principles predicted through a particular
methodology work well for different rate kinetics.
According to the famous hypothesis on conservation of
design principles, the network structure plays a gov-
erning role in the nature of the system response irre-
spective of the organisms and the different levels of the
central dogma (Ma et al. 2009). Therefore, predictions
on admissible network structures produced by a par-
ticular methodology should not depend on the partic-
ularity of the rate kinetics. This leads us to examine the
above three methodologies in light of generalizability.

As discussed earlier, the computational screening
methods involve simulating the topology parameter
space, which requires explicit knowledge of the rate
dynamics to generate the response. In the case of the
methods that rely on mixed-integer nonlinear pro-
gramming, the objective function, in reality, is a
function of the rate dynamics. This makes the com-
putational methods dependent on the particularities of
the rate dynamics. On the other hand, due to the
knowledge of the rate dynamics up front, it becomes
very easy to evaluate the robustness to parameter
changes in these methods (figure 9). In fact, the
Q-measure provided by Ma ef al. (2009) in the context
of adaptation is the widely used, standard measure of
robustness for any particular functionality.

Since the rule-based methods aim at a network that can
provide the desired functionality with the pre-conceived
design strategies, it does not depend on the particularities
of the rate kinetics. For instance, the design strategy of
negative feedback with delay and nonlinearity that
inspired a number of novel works on designing networks
for biological oscillation is applicable to almost all time-
invariant nonlinear systems. Conversely, this also makes
the calculation of robustness of a given network structure
with respect to parameter uncertainty difficult to compute.

The systems-theoretic approaches hitherto used for
biochemical networks suppose that the Jacobian matrix
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Figure 9. An illustration of three methodologies at work. The functionality considered here is adaptation. The illustration
for computational screening approach is inspired from Ma et al. (2009), wherein the entire topology—parameter space was
searched exhaustively with the dynamics being Michaelis—Menten in order to obtain the all possible network structures —
negative feedback (NF) and incoherent feed-forward structure (IFFLP) for three-node network. The schematic shown for
rule-based methodology is inspired from the work by Briat ef al. (2016), which designed a negative feedback induced integral
control strategy to achieve perfect regulation in a stochastic environment. Finally, the illustration on systems-theoretic
approaches demonstrates the work by Bhattacharya ez al. (2018), which discovered the necessary structural conditions for a
network of any size to provide perfect adaptation. The topology ‘NF’ refers to negative feedback.

of the actual nonlinear vector field acts as the digraph
matrix of the underlying network structure. This
assumption has been shown to be satisfied for most
biochemical networks. Therefore, the need for explicit
knowledge of the rate dynamics can be circumvented,
and the resultant network structures are truly general-
izable in terms of different rate kinetics (figure 9). The
network structures for adaptation produced by Bhat-
tacharya et al. (2018) using an LTI systems approach
stands true both in the case of Hill or Michaelis—
Menten kinetics.

Last but not the least, exhaustivity determines whe-
ther a particular methodology can detect the entire set
of structural conditions admissible to the functionality
of interest. For the purpose of designing, obtaining an
efficient design principle that can deliver the

requirements is sufficient, but in order to understand
how the biology works and also the evolution of a
particular network pattern, it is important to find all the
possible network structures admissible for the desired
functionality.

Given the reaction kinetics of the network, the com-
putational screening examines the entire possibility space
of the topology. Similarly, in the case of the optimization-
based approach, the set of all possible structural possi-
bilities are captured through different combinations of the
N-bit number. This ipso facto encompasses the entire
possibility space through evaluating the objective func-
tion at all possible combinations of the N-bit binary
sequence. Therefore, in principle, computational screen-
ing provides a reliable prediction in terms of the exhaus-
tivity of the network structures.
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Table 1. A consolidated representation of three different methods in discussion

maximum number of
nodes used is four.

Methodology Scalability Generalizability Exhaustivity
X X
Highest size till date: four nodes Requires specific knowledge of Network size and the specific
Computational the kinetics. underlying rate kinetics
screening should be known
> Generates exhaustive
predictions.
X
» Ideally, can be used for The dynamical system abides by > For a given network,
networks of any size. certain broad assumptions (cite) the structural
i i » This method can be icti
Rule based » Insynthetic design, the predictions proposed

applied to any dynamical by rule based

system . methods are often

non-exhaustive.

There exists a well-defined
mathematical relation between
the performance parameters and
.| the properties of the dynamical
Systems theoretic
system.
» Itis always possible to
scale up this method for

networks of any size.

The Jacobian of the dynamical
system wrt the states serve as the
digraph matrix of the actual
network.

»  This method does not

A well-defined mapping
between the performance
parameters and the
mathematical properties of
the system exists.

This method yields
all-encompassing set

possess any explicit >
dependence on the
particularities of the of admissible

reaction kinetics.

topologies.

The ticks symbolizes the ability of a methodology to satisfy a particular property, whereas the crosses represent the inability of the
same. In all the cases, the underlying rate kinetics has been assumed to constitute a well-posed dynamical system.

The rule-based method, on the other hand, relies on a
particular design strategy, thereby focusing on the
efficient design principle rather than the entire possi-
bility set. For instance, early rule-based initiatives on
adaptation included only the network structures with
negative feedback that facilitate integral control.
Therefore, it is unlikely that a rule-based design strat-
egy can unravel all possible admissible structural
conditions for any given functionality.

The system-theoretic efforts start with the basic char-
acterization of the functionality at hand and then build a
bottoms-up approach for obtaining the full set of design
principles. This becomes possible if a finite number of
mappings exist between the performance parameters and
the properties of the underlying dynamical system.
Therefore, if all these conditions are satisfied, it is pos-
sible to arrive at an exhaustive set of design principles
using this approach. Unlike the brute force methods,
first, the admissible networks are obtained from the
possibility space. Therefore, the optimization problem is

solely focused on the parameters (rate constants), not the
structure, thereby reducing the curse of dimensionality to
a great extent (figure 9).

Although it might seem, from table 1, that the systems-
theoretic approaches are the most sophisticated and
effective among all the three methodologies, they contain
a number of limiting assumptions. The first among these
stems from the assumption of well-posedness of the rate
kinetics, which, in reality, may not hold true for every
biological network. Second, there exist no necessity the-
orems till now that guarantee a mapping between the
performance and the systems-theoretic parameters.
Therefore, the set of functionalities for which this method
yields reliable structural predictions is still small in size
compared to the computational approaches. On the other
hand, computational screening is simple and extremely
effective for small-scale networks. As mentioned earlier,
the rule-based methods are best suited for synthetic
design. Therefore, clearly no best methods exist. In fact, it
can be observed that our knowledge of the design
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principles of these important functions has always pro-
gressed by facilitating a cross-talk between these three
methodologies. Typically, after the experimental confir-
mations of the occurrence, the similarity between the
response in the engineering system and these function-
alities are evaluated. This inspires a bit of rule-based
efforts to design the network structure synthetically with
the assistance of the engineering principle. Subsequently,
the limitations discovered in the course of rule-based
design and further experimental probings sometimes fetch
an entirely different class of admissible network structures
for a given functionality, thereby necessitating a compu-
tational screening of the entire topology—parameter space
of small-scale networks. The results obtained from the
computational screening and experiments serve as the
Rosetta stone for subsequent works on the lines of sys-
tems theory, which then strive to obtain the necessary
structural conditions for the functionality in a scalable,
generic, and exhaustive manner.

Appendix
Equation for single node oscillator with delay:

p:27 km:17 KdZI)S:lv K]ZI, K, =
1E =1, 1t=10

x =K SKY/(Kf + x(t — 7)) — KoEux/ (K + X);
Equation for four-node oscillator without explicit
delay:

pP = 2, S = 1000/]), del = 10, Kexp = 02, dez =

0.2, & = 1, de4:8/p, deg:o.l, Km:()l,
Kimp == 01,

x'l = del(S/(l +JCZ) — X1 — fopxl

)ég = &* Kexp * X1 — dezxz

X3 = Kga * (X2 — x3) — 6Kipyp * X3

X4 = Kimp * x4 — KaguaXa /(K + X4)
Equation for three-node IFFLP:

1 — X1
=1 -2
00001 + (1—x))
1 —
% = 10x; a2 — 20013

(0.0001 + (1 — x2))
x3 = 0.1x(1 — x3)/(1.001 — x3) — x3
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Equation for three-node NFBLB:

1 —x
(0.0001 + [1 — xy])
X = 350x1 (1 — xp) — 350x2x3

(1 — X3)
(1.001 — x3)

x’l =1 — 2X1

X3 = 2%, —x3/(0.001 + x3)
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