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Despite a rapid turnover of subunits, how cells control the lengths of cytoskeletal filaments (such as micro-
tubules) is a fundamental question in cell biology. Here, we theoretically investigate how microscopic pro-
cesses affect the length distributions of multiple microtubules growing stochastically in a shared subunit pool.
In particular, we consider length-dependent positive feedback on filament growth and the chemical conversion
from GTP-tubulin to GDP-tubulin (hydrolysis) inside a filament. We found different dynamical regimes for a
single filament by simulating a model of microtubule kinetics, where both bimodal and unimodal (bell-shaped)
length distributions emerge in the steady state. More significantly, the length distributions of multiple filaments
were not unimodal, predicting a collective effect for more than one filament. Interestingly, when length
distributions were bimodal, we also observed bistable toggling of individual lengths. Therefore, regulation of
biophysical parameters (e.g., hydrolysis rate and feedback strength) can lead to length diversity in an ensemble
of multiple microtubules.
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1. Introduction

A fascinating fact of cell biology is that subcellular
filamentous structures (such as cytoskeletal filaments)
regulate their size distributions despite a rapid turnover
of their building blocks (Mohapatra et al. 2016). It is
still elusive how cells may achieve such length control.
Experiments found that the size of a mitotic spindle and
its essential constituent, microtubules, scale with
cytoplasmic volume (Winey et al. 1995; Good
et al. 2013; Hazel et al. 2013). This raised the idea that
depletion of a limiting subunit pool can regulate the
lengths of microtubules by balancing their polymer-
ization and depolymerization processes on average
(Goehring and Hyman 2012; Mohapatra et al. 2016).
Experiments with other organelles (e.g., centrosomes,
the nucleolus, Golgi bodies, etc.) also suggest that a
limiting subunit pool can play a central role in regu-

lating the sizes of many subcellular structures (Weber
and Brangwynne 2015; Marshall 2016; Amiri et al.
2020).
On the contrary, a recent theoretical study (Mohap-

atra et al. 2017) predicted that a limiting subunit pool
alone could not control the lengths of multiple fila-
ments since subunits can freely diffuse between fila-
ments, leading to large length fluctuations and power-
law length distributions in general. Nevertheless, this
physical argument holds when filaments undergo
reversible (or equilibrium) assembly and disassembly
dynamics in a shared subunit pool. It is well known
that microtubule-associated proteins and molecular
motors can regulate growth kinetics in a length-
dependent manner, essentially leading to feedback
mechanisms and breaking the reversibility in
dynamics (Varga et al. 2006; Gardner et al. 2011;
Bowne-Anderson et al. 2015; Hibbel et al. 2015).
Moreover, subunits in a microtubule remain in two
distinct chemical states (GTP-tubulins and GDP-tubu-
lins), and nonequilibrium (i.e., almost unidirectional)
conversion from GTP-tubulin to GDP-tubulin happens
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inside a filament, a process known as ‘hydrolysis’
(Desai and Mitchison 1997; Jonathon 2001). Therefore,
a question arises: how do these nonequilibrium pro-
cesses (such as hydrolysis and length-dependent feed-
back) affect the length distributions of microtubules?
The hydrolysis causes interesting length fluctuations

in microtubules due to the difference in GTP- and
GDP-state-dependent kinetic rates. For instance,
microtubules grow by assembling GTP-tubulins, but
GTP converts to GDP (by releasing phosphate) inside
the filament. In addition, the disassembly rate of a
GDP-subunit is much higher than a GTP-subunit
(� 10- to 1000-fold difference) (Desai and Mitchison
1997; Jonathon 2001). Consequently, microtubule
lengths can stochastically switch between phases of
sharp shrinkages (called ‘catastrophe’) and rapid growth
(called ‘rescue’) depending on whether the growing
filament tip is made of unstable GDP-subunits or rela-
tively stable GTP-subunits, respectively (Mitchison and
Kirschner 1984; Drechsel and Kirschner 1994). This
phenomenon is known as ‘dynamic instability’, which
serves biological functions such as ‘search and capture’
of kinetochores and spindle positioning during
chromosome segregation (Gopalakrishnan and
Govindan 2011; Banigan et al. 2015; Chatterjee et al.
2021). Moreover, theoretical studies have shown that
the collective force generated by growing microtubules
pushing against a barrier becomes non-additive due to
hydrolysis (Das et al. 2014a, b).
In vivo, the hydrolysis and length-dependent feed-

back may act together for robust regulation of filament
lengths. For example, experiments have shown that
kinesin-Kip2 motors promote growth via length-
dependent positive feedback and also inhibit hydroly-
sis-induced catastrophes in length (Hibbel et al. 2015).
These motors walk along the microtubule lattice pro-
gressively and enhance the subunit assembly as they
reach the growing tip; thus, more motors bind to longer
filaments, effectively leading to positive feedback. On
the other hand, previous theoretical studies on filament
length regulation via feedback often did not explicitly
include hydrolysis as a microscopic kinetic process
(Govindan et al. 2008; Hough et al. 2009; Johann
et al. 2012; Melbinger et al. 2012; Mohapatra et al.
2016; Rank et al. 2018).
In this study, we asked how the presence of length-

dependent positive feedback along with hydrolysis
affects length distributions in a limiting subunit pool.We
simulated a detailed model involving kinetic processes
of GTP/GDP-state-dependent polymerization, depoly-
merization, and hydrolysis at the subunit level. In addi-
tion, we incorporated length-dependent positive

feedback on the polymerization rate. However, we did
not explicitly consider any motor or regulatory protein-
based interactions; instead, we implemented the feed-
back in a coarse-grained manner to extract general pre-
dictions of length distributions. First, for a single
filament, variation of feedback strength and hydrolysis
rate led to various dynamical regimes in the steady state.
We found a ‘no growth’ state with exponential length
distributions and states with unimodal (bell-shaped) and
bimodal distributions. More interestingly, we observed
no unimodal distribution for more than one filament.
Thus, although the single-filament length distribution
was unimodal in a broad parameter regime, multi-fila-
ment distributions became distinctively bimodal, signi-
fying an emerging collective property. Accordingly, we
observed that filaments stochastically toggled between
high and low length states, leading to length diversity.
Moreover, our simulations predict testable shapes of the
length distributions when using experimentally mea-
sured parameter values suitable for microtubules.

2. Model

We generalized a published model of microtubule
kinetics (Brun et al. 2009; Ranjith et al. 2009;
Sumedha and Chakraborty 2011; Padinhateeri et al.
2012; Bowne-Anderson et al. 2013; Das et al. 2014a;
Aparna et al. 2017) by including length-dependent
feedback and a finite subunit pool. This model imple-
mented hydrolysis as a random process happening at
any subunit inside a filament, as found in experiments
(Christian et al. 2016). The subunits can be in GTP or
GDP bound states associated with different rate
parameters (figure 1). Inside a filament, a GTP-subunit
converts into a GDP-subunit at a rate h (hydrolysis
rate), while the reverse process (GDP ! GTP) takes
place via nucleotide exchange at a rate kne in the pool.
The filaments grow from F number of nucleating
centers by assembling GTP-subunits. Following Ban-
erjee and Banerjee (2020), we incorporated length-de-
pendent positive feedback on the assembly rate. The
assembly rate of the i-th filament is
riT ¼ rT0ðN � l1 � l2 � � � � lFÞð1þ liÞa when the fila-
ment tip has a GTP subunit. Here N is the total number
of subunits, að� 0Þ is the feedback strength, and fila-
ment lengths are denoted by l1; l2; . . .; lF, respectively,
in units of monomers. Similarly, the assembly rate of
the i-th filament is given by riD ¼ rD0ðN � l1 � l2 �
� � � lFÞð1þ liÞa when the terminal subunit is GDP-
tubulin. As in Aparna et al. (2017), we assumed
rD0 ¼ rT0=100, since experiments suggest that a
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microtubule is much less likely to polymerize if its
terminal subunit is GDP-tubulin due to the structural
differences between GTP- and GDP-tubulins

(Mandelkow et al. 1991; Brouhard and Rice 2014).
Finally, a GTP-tubulin and a GDP-tubulin can disas-
semble from a filament at constant rates, cT and cD,
respectively. Note that cD[[ cT for microtubules
(table 1), leading to length catastrophes (Desai and
Mitchison 1997; Jonathon 2001).
The model described above includes the microscopic

hydrolysis process, and it is more detailed than heavily
coarse-grained two-state models of microtubules (Hill and
Chen 1984; Dogterom and Leibler 1993; Zelinski and
Kierfeld 2013). This explicit modeling of hydrolysis (that
produces kinetic heterogeneity) can lead to emerging
properties in length distributions for multiple filaments, as
we discuss next. On the other hand, although a single
microtubule comprises 13 protofilaments, our model visu-
alizes one microtubule as a single filament, as done in
previous studies (Sumedha and Chakraborty 2011;
Padinhateeri et al. 2012; Bowne-Anderson et al. 2013;Das
et al. 2014a; Aparna et al. 2017). Nevertheless, more
detailed models exist with explicit multi-protofilament
nature (VanBuren et al. 2002; Molodtsov et al. 2005;
Margolin et al. 2012; Jemseena andGopalakrishnan 2013),
which are computationally expensive. But our level of
coarse-grainingallowedus to simulatemultiplefilaments in
a computationally efficient way with a minimal set of
parameters.Moreover, our ‘randomhydrolysis’ model was
shown to capture experimentally observed features of
‘length versus time’ data, including catastrophes (Aparna
et al. 2017).

Figure 1. A schematic of our model showing two micro-
tubules growing from two nucleation centers (blue boxes) in
a shared subunit pool. Arrows show different kinetic
processes (as described in section 2). Note that a GTP-
tubulin (green) coverts into a GDP-tubulin (orange) irre-
versibly and randomly inside a filament (at a hydrolysis rate,
h), while the reverse conversion (GDP-tubulin ! GTP-
tubulin) happens in the pool (rate, kne). The subunit assembly
and disassembly rates depend on the GTP/GDP states of the
terminal subunits (rT , rD, cT and cD, respectively). Also, the
assembly rates (rT and rD) are assumed to depend on the
respective filament lengths (li), as shown in the box; but
disassembly rates are constants (cT and cD). Here, N denotes
the total subunit number, and að� 0Þ represents the feedback
strength. Thus, the term ðN � l1 � l2Þ represents a compet-
itive effect due to a finite subunit pool, while the term ð1þ
liÞa represents a coarse-grained nonlinear increase of the
assembly rate with the respective lengths.

Table 1. Parameter values for microtubule kinetics found from literature (Carlier and Pantaloni 1981; Brylawski and Caplow
1983; Mitchison 1992; Desai and Mitchison 1997; Jonathon 2001) (see the discussion on parameter choice in the appendix)

Symbols Values (s-1) Comments

rT0 0.003 This parameter represents the first-order rate constant (in s-1), which can be
estimated from the second-order assembly rate (k0 in lM-1 s-1). As in Mohapatra
et al. (2017), we divided k0 by the volume available per filament (V � 1:66 lm3)
reported in experiments (Rank et al. 2018) to normalize by the pool size; while it
was reported that k0 � 3:2 lM-1 s-1 (Jonathon 2001; Desai and Mitchison 1997)
(also see the appendix)

rD0 rT0=100 We assumed rD0 to be 100 times smaller than rT0, as in Aparna et al. (2017)

cT 10 This value was found to have a 500-fold variation (0.1/s–45/s) (Desai and
Mitchison 1997; Jonathon 2001), and we used roughly the middle-value

cD 600 We took this value from the reported range: 290/s–700/s (Mitchison 1992)

h 0.004 (Carlier and
Pantaloni 1981),
0.3 (Jonathon 2001)

This rate constant has discrepancies. The rate was not measured directly from
experiments; rather it was estimated in vitro by fitting a model of chemical kinetics
(Carlier and Pantaloni 1981). We thus varied h over orders of magnitudes in
simulations

kne 0.9 The lower limit of this rate is roughy 0.15/s (Brylawski and Caplow 1983).
We used a value higher than the lower limit, since the nucleotide exchange process
could be rapid in a cell (Brylawski and Caplow 1983)
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3. Results

We simulated the model using the Gillespie algorithm
with realistic parameter values estimated from in vitro
experiments on microtubules (table 1 and Appendix A
and B for detailed discussions on the simulation
method). We first obtained stochastic trajectories
(length versus time) for individual filaments and then
calculated the steady-state distributions of individual
lengths after sampling over many such trajectories. In
simulations, we started with zero lengths of the fila-
ments and ran the simulations until the system reached
a steady state. We assumed that the steady state was
reached when both the mean and variance of individual
lengths stabilized over time, and we took data for
lengths after this condition was met.

3.1 Different dynamical regimes emerge
for a single filament with distinct length
distributions

We first calculated the length distribution of a single
filament for a wide range of hydrolysis rate (h) and
feedback strength (a). We found that qualitatively
distinct dynamical regimes can emerge, as shown in
the ‘phase diagram’ of figure 2. When the hydrolysis
rate is very high, and the feedback strength is low
(large h and small a), the filament could not essentially
grow since the dominance of hydrolysis makes the
filaments mostly of GDP-tubulins with a very high
disassembly rate (table 1). As a result, the distribution
became exponential in this ‘no growth’ phase (fig-
ure 2i, ii). On the other hand, at high a and low h, the
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Figure 2. Different dynamical regimes with distinct length distributions for a single filament: The ‘phase diagram’ in the
parameter space of hydrolysis rate (h) and feedback strength (a) is shown in the middle. With increasing a, length
distributions transition from an exponential (green triangles) to a bimodal shape (blue dots) and finally to a unimodal Poisson-
like shape (brown diamonds). Transitory shapes of long-tailed distributions (magenta upside-down triangles) were also
observed. Specific examples of distinct distributions with corresponding length trajectories are shown (i–ix). In particular, the
regime with bimodal distribution exhibited length toggling (see the zoomed-in trajectory in vi). We used a pool
size N ¼ 1000, and other parameters were taken from table 1.
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filament length quickly reached a high steady value
due to the dominance of the positive feedback over
hydrolysis. In this case, the filament length became
close to the maximum limit set by the pool size with
small fluctuations around the mean, and consequently,
the distribution was Poisson-like, i.e., sharply peaked
with a small width (figure 2iii, iv). In between these
regimes, we found bimodal length distributions, and
the length toggled between a higher value (close to
the pool size) and a lower value (close to zero)
(figure 2v–vii). Here, the hydrolysis-induced sharp
catastrophes in length were countered by the positive
feedback-mediated rapid rescues of length. Finally,
between the ‘bimodal’ and ‘exponential’ regimes, we
noticed transitory shapes characterized by long-tailed
distributions (figure 2viii). Here, the length trajectory
mostly stayed near zero but exhibited occasional

rescue events producing probability weights towards
higher lengths (figure 2ix).

3.2 Emergence of bimodal length distributions
for two filaments

We next focused on the individual length distribution
of a filament in a two-filament system. Similar to the
single-filament case, we found that length distributions
showed a transition from exponential to bimodal shape
with increasing feedback strength, and between these
regimes, transitory long-tailed distributions also
appeared (figure 3A). However, an interesting point to
note here is that we did not find any unimodal distri-
butions like the single-filament case (compare figures 2
and 3A), signifying a collective property. In certain
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Figure 3. Emergence of bimodal length distribution and length toggling in a two-filament system: (A) Different regimes in
the parameter space of hydrolysis rate (h) and feedback strength (a), showing the exponential (green triangles), bimodal (blue
dots), and long-tailed distributions (magenta upside-down triangles) of individual lengths in a two-filament system. Note that
no regime exhibits unimodal distributions like the single-filament case (compared with figure 2). (B, C) Individual length
distributions in two-filament (B) and single-filament (C) systems are shown as examples for a specific point (h ¼ 0:0001=s,
a ¼ 0:45) in the (h; a) parameter space. In panel B, note the concentrated but significantly high probability weight near the
zero length. Correspondingly, the length trajectories in the two-filament system exhibit a win–loss behavior, i.e., one of the
filament lengths always stays near the pool size (N ¼ 1000), while the other one is close to zero (inset, B). However, the
single-filament length reaches the steady maximum value (inset, C). (D–F) Individual length trajectories (shown in red and
blue) in a two-filament system are plotted for increasing feedback strength (at a fixed h). At low a, the lengths stochastically
toggle (D, E); while at high a, a win–loss scenario emerges (F). Nevertheless, all length distributions corresponding to panels
D–F are bimodal (see figure 5). The pool size was N ¼ 1000, and other parameters were taken from table 1.
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parameter regimes (high a and low h), a unimodal
distribution for a single filament can become a bimodal
distribution when filament number is increased—see
figure 3B, C, where a specific point in the parameter-
space of h and a is shown as an example. Corre-
sponding length trajectories of the two filaments
showed a ‘win–loss’ scenario, where a randomly
selected filament stays long for a considerable amount
of time (figure 3B, inset), ensuring a bimodal distri-
bution of individual lengths when sampled over an
ensemble. In contrast, the single-filament trajectory
reached a high steady value (figure 3C, inset).
We further found individual length toggling in the

two-filament system (see the trajectories in figure 3D).
When the GTP-cap is stochastically lost in one of the
filaments, it shrinks sharply, but the other one grows
rapidly due to the positive feedback. When the longer
filament reaches the maximum length, it may again
stochastically go to the ‘catastrophic’ phase, giving the
other one a chance to grow. Interestingly, the residence
time in the high (or low) length state increased on
average with increasing feedback strength, ultimately
giving rise to a win–loss scenario (figure 3D–F). When
a is very high, the residence time can be so large that
the longer filament stays long for a sufficiently large
time and does not come close to zero on realistic
timescales (in comparison to the division timescale of
about an hour in budding yeast cells). A similar situ-
ation (i.e., a changeover from size oscillation to a win–
loss scenario) can arise when the pool size (N) is
increased systematically (at a fixed h and a), as shown
in Banerjee and Banerjee (2020).

3.3 Bimodal length distributions in multi-filament
systems

Since multiple microtubules are commonly present
inside a cell, the question remains if the bimodal

distributions of individual lengths can be observed in
multi-filament systems for realistic parameter choices.
Although we kept a small pool size (N ¼ 1000) so far,
a suitable pool size could be at least an order of mag-
nitude higher. It was estimated in a recent in vitro
experiment on microtubules (Rank et al. 2018) that
around 26000 tubulin subunits are available per fila-
ment (also see the discussion in the appendix). We,
therefore, used N ¼ 25000 and h ¼ 0:3=s (as in
table 1) for our simulations to check if realistic choices
of parameters can lead to the emergence of bimodality
for multiple filaments.
As shown in figure 4, the bimodal length distribu-

tions indeed emerged for more than one filament,
although the single-filament length distribution was
unimodal. Interestingly, all distributions for more than
one filament were, in fact, trimodal—two modes were
mildly present near the maximum length. Nevertheless,
the significantly higher probability weight remained
near zero and the maximum length (close to the net
pool size), effectively leading to bimodal shapes. This
point can be further clarified if we compare the length
trajectories (corresponding to the distributions shown
in figure 4), where win–loss scenarios were consis-
tently observed for multiple filaments (figure 6). We
further checked up to ten filaments that the bimodality
carried forward (data not shown).
However, the question remains if the inclusion of

hydrolysis and feedback changes the nature of the
length distributions fundamentally. To investigate this
explicitly, we compared the length distributions in
different scenarios: (1) in the absence of both hydrol-
ysis and feedback and (2) when either hydrolysis or
feedback was ‘switched off’ in the model (figure 7).
First, without hydrolysis and feedback (i.e.,
h ¼ a ¼ 0), the distributions were uniform for two
filaments and power-law for three or more filaments
(figure 7A–C). This is consistent with a recent theo-
retical study (Mohapatra et al. 2017), which predicted
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filaments. Note the mild appearance of two modes near the maximum length for more than one filament. Here we used
N ¼ 25000; h ¼ 0:3=s, and a ¼ 0:1, while we took other parameters from table 1.
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that the limiting subunit pool cannot control the lengths
of a set of ‘equilibrium’ filaments undergoing rever-
sible processes of assembly and disassembly. Inclusion
of either hydrolysis or feedback breaks the
reversibility. When only feedback was introduced
(i.e., h ¼ 0, but a is nonzero), it was sufficient to
induce bistability for multiple filaments. However, both
modes of the bimodal distributions were extremely
narrowly concentrated in the ‘high’ and ‘zero’ length
states, signifying win–loss scenarios (figure 7D–F). On
the other hand, when only hydrolysis was present (i.e.,
h is nonzero and a ¼ 0), the length distributions for
more than one filament became ‘long-tailed’, suggest-
ing large length fluctuations (figure 7G–I). Finally, in
the presence of both hydrolysis and feedback (i.e., h
and a both are nonzero), the multi-filament length
distributions are prominently bimodal with significant
probability weights around each mode (figure 4).
Interestingly, the single filament distribution was uni-
modal in all the above cases (figures 4 and 7A,D,G).
This analysis highlights how collective effects of
hydrolysis and feedback can give rise to length diver-
sity in an ensemble of filaments.

4. Conclusion and discussion

Although a limiting pool of subunits can control the
sizes of many subcellular structures (Goehring and
Hyman 2012), a recent theoretical study showed that a
limiting subunit pool could not regulate lengths of
biofilaments growing through assembly and disassem-
bly of subunits (Mohapatra et al. 2017). However,
cytoskeletal filaments like microtubules employ length-
sensing mechanisms using microtubule-associated

proteins to achieve robust control on lengths (Varga
et al. 2006; Bowne-Anderson et al. 2015; Hibbel
et al. 2015). Such protein regulators effectively create
length-dependent feedback on the assembly/disassem-
bly rates. Another crucial feature often ignored in
modeling is that microtubules are made of heteroge-
neous subunits (GTP-tubulins and GDP-tubulins), and
a chemical conversion from the GTP-tubulin to GDP-
tubulin (called hydrolysis) takes place randomly inside
a filament (Desai and Mitchison 1997; Jonathon 2001).
The hydrolysis essentially makes a filament unsta-
ble since the disassembly rate of GDP-tubulins is much
greater than the GTP-tubulins. Also, the hydrolysis is
almost irreversible inside a microtubule, implying
nonequilibrium filament dynamics with crucial impli-
cations. How hydrolysis-induced kinetic heterogeneity
and length-dependent feedback mechanisms affect
microtubule length distribution is still poorly under-
stood. Some theoretical models on feedback-mediated
length regulation of biofilaments omitted to explicitly
include hydrolysis as a kinetic process (Govindan et al.
2008; Hough et al. 2009; Johann et al. 2012; Melbinger
et al. 2012; Mohapatra et al. 2016; Rank et al. 2018).
In this study, we investigated how hydrolysis and

length-dependent feedback act together to regulate the
length distributions of microtubules. In particular,
motivated by a recent experiment on kinesin-Kip2-
mediated microtubule growth (Hibbel et al. 2015), we
implemented length-dependent positive feedback on
the filament assembly rate in a coarse-grained way.
Simultaneously, we took account of hydrolysis as a
microscopic random process in our model (figure 1).
Simulations of our model revealed different kinetic
regimes for a single filament upon variation of the
hydrolysis rate and feedback strength (figure 2). The
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distributions became exponential when hydrolysis
dominated over positive feedback (i.e., at a high
hydrolysis rate and low feedback strength). Conversely,
if positive feedback dominated over hydrolysis (at a
low hydrolysis rate and high feedback strength), the
distribution was unimodal and sharply peaked. In
between these regimes, we found bimodal and transi-
tory long-tailed shapes of length distributions.
More importantly, although the kinetic regimes for

two filaments were almost similar to the single-filament
case, there was an important distinction (figure 3A).
We found no parameter regimes showing unimodal
distributions for more than one filament (figures 3A–C
and 4). This collective effect signifies that a shared
subunit pool among many filaments can lead to length
diversity in the presence of hydrolysis and positive
feedback. Moreover, bimodal distributions were
generally characterized by bistable length toggling
(figures 2vi and 3D, E). Interestingly, such size oscilla-
tions gradually gave rise to awin–loss scenario in the two-
filament system as the feedback strength was increased
(figure 3D–F). In this case, the residence time in the
higher- or lower-length state increased with increasing
feedback strength, and consequently, only one filament
stayed longer for a considerable time, and the other one
could not grow. As expected, such a win–loss scenario
also led to bimodal distributions when sampled over an
ensemble (figures 3B and 5). These results also hold for
more than two filaments (see figures 4 and 6).
A few theoretical studies investigated the length

distributions of many microtubules in a confined space
that mimics a cell boundary (Gregoretti et al. 2006;
Cassimeris et al. 2018). In contrast to our predictions,
these studies found exponential length distributions.
However, Cassimeris et al. (2018) used a coarse-
grained two-state model that ignored the detailed
microscopic kinetics of hydrolysis as in our model,
although the two-state nature ensured a dynamic
instability-like feature. These theoretical studies did not
also consider any feedback mechanisms. On the other
hand, a recent in vitro experiment found a long-tailed
length distribution of microtubules, neither an expo-
nential nor a Gaussian (Jeune-Smith and Hess 2010).
However, this experiment used microtubules growing
from both ends, and other processes like shearing and
annealing were also present.
Finally, the question arises whether our prediction of

bimodal length distributions can be tested at least
in vitro. For example, to assess the role of hydrolysis,
one can compare length distributions of microtubules
made from the almost non-hydrolyzable analog of
GTP-tubulins (GMPCPP tubulins) with normal

microtubules. Distributions can also be tested in the
presence and absence of molecular motors that create
positive feedback (as in Hibbel et al. 2015), main-
taining a limiting pool condition. In this context, we
note that a recent in vitro experiment found bimodal
length distributions of microtubules in a limiting pool
of Kip3 motors and tubulin subunits (Rank et al. 2018).
In this case, Kip3 motors walk towards the growing tip
of a microtubule and help in the disassembly of tubulins.
However, longer filaments have a lower concentration of
Kip3 near the growing end, thereby reducing the Kip3-
dependent disassembly process and effectively leading
to positive feedback. In this experiment, however,
microtubules were grown from the non-hydrolyzable
GMPCPP subunits, suggesting that the positive feed-
back was sufficient to observe bimodality (consistent
with our observation in figure 7D–F).
It is to be noted that we have incorporated the pos-

itive feedback in a coarse-grained manner (similar to
Banerjee and Banerjee 2020), which can correspond to
different molecular processes at the microscopic level.
For instance, kinesin-Kip2 motors are known to pro-
mote the microtubule assembly rate as the motors reach
the growing plus end of the microtubule walking along
the microtubule lattice (Hibbel et al. 2015). On the
other hand, the Kip3 motors promote the disassembly
of tubulins from the growing tip. However, in this case,
the disassembly rate can decrease nonlinearly with the
length since longer filaments have a lower concentra-
tion of Kip3 motors on them (Rank et al. 2018). This
again gives rise to effective positive feedback. Keeping
these examples in mind, we used simple coarse-grained
models, ignoring the detailed interactions between
motors and microtubules.
Nevertheless, a general feedback mechanism can

affect other processes, not only the subunit assembly.
As described above, the Kip3 motors can effectively
reduce the disassembly rates in a length-dependent
manner. We, therefore, investigated a similar model
with length-dependent positive feedback on the disas-
sembly rates, where the disassembly rates decrease
nonlinearly with increasing filament lengths (appendix
C). In this case, we again found bimodal length dis-
tributions for more than one filament as an emerging
collective effect of the hydrolysis and the feedback
(figure 8). Thus, our qualitative conclusions remain the
same.
Together, our study establishes that both hydrolysis

rate and feedback strength act as ‘biophysical knobs’
that can be tuned to obtain length diversity in an
ensemble of multiple microtubules. Moreover, the
insights gained from our study can be relevant for other
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Figure 6. Length versus time trajectories corresponding to the distributions in figure 4. Individual lengths were shown in
different colors for multi-filament systems. The parameters were N ¼ 25000, h ¼ 0:3=s, a ¼ 0:1, and others were from
table 1.
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types of biofilaments such as actin filaments and their
prokaryotic homolog ParM filaments, which also
undergo ATP hydrolysis and are controlled by protein-
mediated feedback mechanisms (Fujiwara et al. 2002;
Garner et al. 2004; Antkowiak et al. 2019).
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Appendix A: Parameter choices for microtubules

As summarized in table 1, the rate constants were taken
from in vitro experiments on microtubules. In particu-
lar, the polymerization rate is generally reported in
experiments as a second-order rate constant (k0)
expressed in units of lM-1 s-1. This rate refers to
filament assembly at a constant tubulin concentration
(i.e., unlimited subunit pool). Following Mohapatra
et al. (2017), we normalized this rate by the pool size
to obtain a first-order rate constant (in units of s-1) as
rT0 ¼ k0C=N ¼ k0=ðNAVÞ. Here, C is the molar con-
centration of subunits (i.e., C ¼ N=ðNAVÞ), N is the
total number of subunits, V is the volume available per
filament, and NA is the Avogadro number.
From the literature, we found the value of the sec-

ond-order rate constant as k0 � 3:2 lM-1 s-1 (Desai
and Mitchison 1997 ; Jonathon 2001). A recent in vitro
experiment (Rank et al. 2018) also estimated that the

volume available per filament in a typical experimental
condition was roughly V � 1:66 lM3. Therefore, we
estimated: rT0 ¼ ð3:2� 106Þ=ð6:023� 1023 � 1:66�
10�15Þ � 0:003 s-1.
Realistic estimate of the pool size: In a recent in vitro

experiment (Rank et al. 2018), by comparing the
concentrations of free tubulins and the assembled
tubulins in the microtubules, the authors estimated that
roughly 2000 tubulin dimers are available per
protofilament at 2 lM tubulin concentration. Therefore,
in a typical in vitro experiment, the total number of
tubulins available per filament is around 26000
ð2000� 13Þ, as one microtubule is generally made of
13 protofilaments. We thus used the pool
size N ¼ 25000 in figure 4 to observe bimodal length
distributions of microtubules.

Appendix B: Simulation method

We used the Gillespie algorithm to simulate the
stochastic processes occurring in the system. Each fil-
ament has three possible reactions: assembly, disas-
sembly, and hydrolysis. One more reaction is the
conversion of GDP-tubulin to GTP-tubulin via
nucleotide exchange, which can randomly happen in
the pool. Therefore, in a system of F-number of fila-
ments, the total number of possible reactions is
Rtot ¼ 3F þ 1. The kinetic processes can be summa-
rized by the following set of reactions:

R1: li�!
rT

i

li þ 1 (if tip-subunit is GTP-bound)

�!rD
i

li þ 1 (if tip-subunit is GDP-bound)
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Figure 8. Length distributions for multiple filaments when disassembly rates decrease with filament lengths (see appendix C
for the detailed model). The steady-state distributions of individual lengths are shown up to three filaments. Similar to
figure 4, multi-filament distributions are bimodal. The parameters were N ¼ 25000, h ¼ 0:3=s, b ¼ �0:1, and others were
from table 1.
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R2 : li�!
cT

li � 1 (if tip-subunit is GTP-bound)

�!cD li � 1 (if tip-subunit is GDP-bound)

R3 : GTP-subunit �!Kh
GDP-subunit

R4 : GDP-subunit �!Kne
GTP-subunit.

Here, li denote the length of the i-th filament in units
of monomers. The assembly rate is a function of
lengths and is also dependent on the chemical states:

riT ¼ rT0ðN �
PF

i¼1 liÞð1þ liÞa and riD ¼ rD0ðN�PF
i¼1 liÞð1þ liÞa, respectively (figures 5 and 6).
Note that the state-switching reactions R3 and R4 are

of first order. Hence, the propensity of the hydrolysis is
Kh ¼ h nGTP

iðtÞ , where nGTP
i is the instantaneous

number of GTP-subunits inside the i-th filament.
Similarly, the propensity of the nucleotide exchange
process happening in the pool is Kne=kne nGDPpoolðtÞ,
where nGDP

pool is the instantaneous number of GDP-
subunits in the pool. Finally, cT and cD are constant
disassembly rates.
The Gillespie algorithm uses two random numbers r1

and r2 to determine which reaction will occur and at
what time. According to the Gillespie algorithm, the
instantaneous state of the system (at a time t) deter-
mines the time for the next reaction at a time t þ s,
where the time-increment is given by s ¼ 1

A0
ln ð1=r1Þ.

Here, A0 ¼
PRtot

i¼1 Ai is the sum of all propensities.
Moreover, the m-th reaction will be chosen to occur at a

time t þ s if
Pm�1

i¼1 Ai� r2A0\
Pm

i¼1 Ai. Iterating the
above steps, the stochastic dynamics of the filaments
were simulated.

Appendix C: A modified model with length-
dependent disassembly rates

In our main model (figure 1), we have considered
length-dependent positive feedback on the subunit
assembly rate, while the disassembly rates were
constants. In contrast, we here investigate how length-
dependent feedback on the disassembly rates can affect
the filament length distributions. As before, the
assembly rates of i-th filament are given by
riT ¼ rT0ðN � l1 � l2 � � � � lFÞ and riD ¼ rD0
ðN � l1 � l2 � � � � lFÞ, corresponding to the presence of
GTP- or GDP-tubulin at the filament-tip, respectively.
These rates merely represent a competitive effect due to
a finite subunit pool. Additionally, the disassembly

rates are given by cT ¼ cT0li
b and cD ¼ cD0li

b for the

disassembly of GTP- and GDP-tubulins respectively.
Here, b is a negative parameter, representing the pos-
itive feedback strength, as the disassembly rate
decreases nonlinearly with length. Simulating this
model, we again found bimodal length distributions for
more than one filament (figure 8). Therefore, our
qualitative conclusions remain the same as inferred
from the main model (figures 7 and 8).
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