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The hallmarks of the adaptive immune response are specificity and memory. The cellular response is mediated
by T cells which express cell surface T cell receptors (TCRs) that recognize peptide antigens in complex with
major histocompatibility complex (MHC) molecules on antigen presenting cells (APCs). However, binding of
cognate TCRs with MHC-peptide complexes alone (signal 1) does not trigger optimal T cell activation. In
addition to signal 1, the binding of positive and negative costimulatory receptors to their ligands modulates T
cell activation. This complex signaling network prevents aberrant activation of T cells. CD28 is the main
positive costimulatory receptor on naı̈ve T cells; upon activation, CTLA4 is induced but reduces T cell
activation. Further studies led to the identification of additional negative costimulatory receptors known as
checkpoints, e.g. PD1. This review chronicles the basic studies in T cell costimulation that led to the discovery
of checkpoint inhibitors, i.e. antibodies to negative costimulatory receptors (e.g. CTLA4 and PD1) which
reduce tumor growth. This discovery has been recognized with the award of the 2018 Nobel prize in Physi-
ology/Medicine. This review highlights the structural and functional roles of costimulatory receptors, the
mechanisms by which checkpoint inhibitors work, the challenges encountered and future prospects.
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Abbreviations: APC, antigen presenting cells; CAR, chimeric antigen receptor; CDRs, complementarity
determining regions; CTLA4, cytotoxic T lymphocyte associated antigen 4; DC, dendritic cells; HIV, Human
immunodeficiency virus; HVEM, herpes virus entry mediator; ICOS, inducible T cell costimulator; ICOSL,
inducible T cell costimulatory ligand; IFNc, interferon gamma; Ig, immunoglobulin; IL, interleukin; IRAEs,
immune-related adverse effects; ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM,
immunoreceptor tyrosine-based switch motif; Lck, lymphocyte-specific protein tyrosine kinase; MHC,
major histocompatibility complex; PD1, programmed death 1; PDL1, programmed death ligand 1; PDL2,
programmed death ligand 2; PI3K, phosphoinositide 3-kinase; PKB, protein kinase B; RA, rheumatoid
arthritis; SLE, systemic lupus erythematosus; SNP, single nucleotide polymorphisms; TCR, T cell receptor;
TGFb, transforming growth factor beta; TNFa, tumor necrosis factor alpha; Tregs, regulatory T cells

1. Introduction

T cells are key players in the adaptive immune
response. They perform a wide range of activities:
secreting cytokines that affect B cell and macrophage

responses, kill infected/tumor cells etc. T cell recognize
peptide antigens that are presented on Major Histo-
compatibility Complex (MHC) encoded molecules on
antigen presenting cells (APC) and regulate immune
responses (figure 1). Hyperactive T cells are observed
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in several autoimmune diseases such as multiple scle-
rosis, insulin dependent diabetes mellitus etc. On the
other hand, reduced T cell function makes individuals
susceptible to pathogens and tumors as observed in
patients suffering from acquired immunodeficiency
syndrome. The multifarious activities of T cells make
them a target for immunotherapy, wherein their func-
tion is modulated to suppress the response during
autoimmunity, hypersensitivity and transplantation
(Buckley 2000).
The development and differentiation of T cells

occurs in the thymus, which is located above the heart.
During this process, thymocytes are selected for their
ability to express a cell surface T cell receptor (TCR)
that recognizes self MHC molecules, termed as positive
selection. Thymocytes that cannot express TCRs or
express TCRs that bind to self MHC molecules with
high affinity are deleted by the process of negative
selection. Consequently, less than 5% of thymocytes
survive this rigorous selection process to enter the
peripheral circulation (Majumdar et al. 2018). Subse-
quently, the initiation of the cellular immune response
occurs in the secondary lymphoid organs. TCRs pre-
sent on T cells interact with antigen-bound MHC on
dendritic cells (DC) to initiate the T cell activation
process (figure 2). The interactions between TCRs and
their cognate antigens, under appropriate conditions,
lead to clonal proliferation and differentiation of naı̈ve
T cells into effector T cells. These effector cells migrate
to different tissues based on their surface homing

receptors, following a chemokine gradient to perform
their functions. A crucial determinant of the differen-
tiation process of naı̈ve T cells is the strength of signal.
The strength of activation signal received by the T cells
following TCR-MHC-peptide complex interaction
depends on the affinity/avidity and duration of this
interaction, the amount of antigen present and the
presence of costimulatory signals (Ahmed and Nandi
2011).

2. Basic principle of T cell costimulation

T cell specificity is via the cognate binding of TCRs to
their MHC ligands; however, this binding alone is
insufficient to activate T cells. In fact, T lymphocytes
require two principal signals for complete activation: a
specific signal through the TCR or signal 1 along with
‘costimulation’ or signal 2 (figure 3). Consequently,
the lack of costimulation after signal 1 activation
results in the development of peripheral immune tol-
erance, an aspect important to prevent aberrant acti-
vation of T cells. The primary positive costimulatory
receptor in naı̈ve T cells is CD28, which is constitu-
tively expressed. The upregulation of costimulatory
ligands, e.g. CD80 and CD86, is important in deliver-
ing the costimulatory signal to T cells activated by the
TCR, i.e. signal 1 (Jenkins et al. 1991; Gross et al.
1992; Harding et al. 1992). Costimulation is crucial for
the regulation of T cell activation to occur under
immunologically relevant conditions. Once T cells are
activated, Cytotoxic T lymphocyte associated antigen 4
(CTLA4 or CD152) is upregulated which binds to
CD80 and CD86 with higher affinity compared to
CD28 and downregulates the activation process (Bru-
net et al. 1987; Walunas et al. 1994; Krummel and
Allison 1995). In fact, T cell activation can be com-
pared to running an automobile. Turning on the igni-
tion (signaling by TCR-CD3 or signal 1) is important
but to get the car to move, one has to step on the
accelerator (positive costimulatory receptor signaling
or signal 2). Once the car has started to move, one may
need to step on the brake (negative costimulatory
receptor) to reduce the speed or stop. This analogy
between running a car and T cell activation is often
referred to as the ignition-accelerator-brake model of T
cell activation (figure 3). Interestingly, CD28 and
CTLA4 are closely linked in the human chromosome 2
on the q33–34 band (Lafage-Pochitaloff et al. 1990).
This basic principle of costimulation is important as it
led to the concept of ‘‘checkpoints’’ for T cells, i.e.
negative costimulatory receptors such as CTLA4 and

Figure 1. Specificity during T cell activation involves the
binding of cognate T cell receptors to peptide-loaded MHC
molecules. Antigen presenting cells like dendritic cells and
macrophages process cellular protein into peptides. MHC
molecules bind and present some of these peptides on the cell
surface. Optimal T cell activation involves the binding of
cognate TCRs toMHCmolecules (signal 1) and the binding of
positive costimulatory receptors, e.g.: CD28 to their ligands
on the Antigen Presenting Cells (e.g.CD80/CD86).
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PD1 (CD279) that regulate T cell activation. In fact, the
development of ‘‘checkpoint inhibitors’’ or antibodies
to negative costimulatory receptors led to therapeu-
tic strategies to generate higher anti-tumor responses by
T cells, the primary focus of this review. There are
several laboratories that contributed to the area of T cell
costimulation, reinforcing that science is a group effort.
Table 1 lists the major events in the field that led to
the development of checkpoint inhibitors and the
award of the 2018 Nobel prize in Physiology and
Medicine.

3. CD28 and CTLA4

As mentioned previously, the regulation of T cell acti-
vation is important to prevent aberrant activation as
seen in autoimmunity. CD28 is a 44 kDa glycoprotein,
which is homodimeric in Nature It is expressed on
almost all T cells in rodents, most human CD4? T cells
and half of circulating human CD8? T cells (Beyersdorf
et al. 2015). CD28 encodes a leader sequence, an
extracellular domain consisting of three complemen-
tarity determining regions (CDRs), a transmembrane

Figure 2. The life history of T cells. Pluripotent stem cells from the bone marrow reach the thymus via the circulatory
system. T cell differentiation and maturation occurs in the thymus. Naı̈ve T cells egress out of the thymus and reach
secondary lymphoid organs, such as lymph nodes where they interact with Antigen Presenting cells, e.g. dendritic cells. The
binding of cognate TCRs to their antigens leads to activation and proliferation of T cells. Once the antigen is cleared, the
majority of T cells undergo cell death; however, a subset remains as memory T cells.
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region and an intracellular domain. CD28 interacts with
CD80/CD86 present on APCs. CD86 is constitutively
expressed on APCs but CD80 is almost absent on
resting cells and is upregulated during inflammation.
The interaction between CD28 and its ligands promotes
production of high levels of interleukin (IL)-2 and
survival factors, leading to initiation of T cell responses
(Thompson et al. 1989; Boise et al. 1995; Michel et al.
2001; Boomer and Green 2010). Antibodies to some
cell surface proteins, e.g. CD2, CD5, CD9, CD44, or
cytokines, e.g. IL1 plus IL6, increase the in vitro pro-
liferation of T cells; however, the amounts of IL2

produced by the CD28 pathway is much higher and lead
to greater and sustained proliferation of T cells (Holsti
et al. 1994; Yashiro et al. 1998). Unlike the TCR-CD3
signaling pathway, the CD28 pathway leading to high
amounts of IL2 and greater T cell proliferation cum
survival (Rudd et al. 2009) is resistant to the immuno-
suppressive drug, cyclosporine (June et al. 1987). Not
surprisingly, the proliferation of Cd28-/- T cells is
severely reduced upon activation and the formation of
germinal centers, which are the hallmarks of an active
adaptive immune response, is compromised (Green
et al. 1994; Lucas et al. 1995; Ferguson et al. 1996).

Figure 3. Costimulatory receptors, CD28 and CTLA-4, regulate naı̈ve T cell activation. The initial interaction of naı̈ve T
cells occurs via the binding of cognate TCRs to peptide-loaded MHC molecules (signal 1 or ignition). Robust T cell
activation requires the interaction of CD28 with its ligands CD80/CD86 (signal 2) along with signal 1 (signal 1?2 or
acceleration). Post activation, CTLA-4 is induced which binds with greater avidity to CD80/CD86 and lowers T cell
activation (brake). This model is often referred to as the ignition, accelerator and brake model of T cell activation.
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CTLA4, a 33–45 kDa transmembrane glycoprotein,
is present in intracellular vesicles but expressed on
surface of activated T cells (Walunas et al. 1994;
Walker and Sansom 2011). CTLA4 is a 223 amino acid
protein and the molecule consists of a 126 amino acid
variable (V)-like domain following the cleavage of 35
amino acid long signal peptide, 21 amino acid trans-
membrane domain and a 41 amino acid cytoplasmic
domain. CTLA4 has multiple isoforms: full length, one
lacking the ligand binding domain, the soluble form
without the transmembrane domain which are present
on activated T cells, resting T cells and in autoimmune

individuals respectively (Oaks & Hallett 2000; Rudd
et al. 2009). Consistent with its role as a negative
regulator of T cell activation, Ctla4-/- mice display
hyperactivated CD4? T cells and the mice die within
3–4 weeks of age (Waterhouse et al. 1995; Tivol et al.
1995; Chambers et al. 1997). Blocking or deletion
experiments revealed that the autoimmune phenotype
of Ctla4-/- mice is dependent on interactions of CD28
with CD80/CD86 (Tivol et al. 1997; Mandelbrot et al.
1999; Tai et al. 2007). Expression of full length Ctla4
or Ctla4-Tyr201Val lowers the lymphoproliferative and
autoimmune phenotype of Ctla4-/- mice. However,

Table 1. Chronology of the key events in T cell costimulation leading to anti-tumor therapy

Key contributions Year

The two signal model for lymphocyte activation was proposed for self/non-
self-discrimination by B cells and later extended to CD8? T cell
activation

Bretscher and Cohn (1970), Lafferty and
Cunningham (1975)

Identification of CD28 as a 44 kDa protein that synergizes with
phytoheamagluttination to activate human T cells; subsequently, CD28
was cloned.

Hansen et al. (1980), Gmünder and Lesslauer
(1984), Aruffo and Seed (1987)

Establishment of the in vitro clonal anergy cell culture model. Jenkins and Schwartz (1987)
Identification of Ctla4 which is induced in T cells upon activation. Brunet et al. (1987)
CD28 stimulation, together with the first signal, enhances T cell activation
and reduces T cell anergy.

Jenkins et al. (1991), Gross et al. (1992),
Harding et al. (1992)

Both CD28 and CTLA4 bind to CD80 and CD86. Linsley et al. (1991a, b)
CTLA4-Ig binds to CD80/CD86 molecules and suppresses immune
response.

Linsley et al. (1992b)

Identification of Pd1 which is induced in cells undergoing apoptosis. Ishida et al. (1992)
CD80 expression in tumors lowers in vivo tumor growth. Townsend and Allison (1993)
The proliferation of Cd28-/- T cells is lower upon T cell activation. Green et al. (1994)
Anti-CTLA4 modulates in vitro T cell activation. Walunas et al. (1994), Krummel and Allison

(1995)
Ctla4-/- mice display hyper CD4? T cell activation and die within 3–4
weeks of age.

Waterhouse et al. (1995), Tivol et al. (1995),
Chambers et al. (1997)

Injection of anti-CTLA4 lowers tumor growth in mice. Leach et al. (1996)
The company Medarex buys the anti-CTLA4 patent from UC Berkeley in
the 1999. They begin studies to generate anti-CTLA4 to treat patients,
using transgenic mice expressing human immunoglobulins. Bristol-Myers
Squibb buys Medarax in 2009. The efficacy of anti-CTLA4 is *24%
with melanoma patients and this drug (Yervoy, also known as
Ipilimumab) is approved by the FDA in 2011.

Lonberg (2005)
Wolchok et al. (2013)

PD1 binding to PDL1 and PDL2 lowers T cell activation Dong et al. (1999), Freeman et al. (2000),
Latchman et al. (2001)

Crystal structures of CTLA4-CD80 and CTLA4- CD86 complexes are
resolved

Schwartz et al. (2001), Stamper et al. (2001)

Tumor growth is reduced upon injection of anti-PD1 and in Pd1-/- mice Iwai et al. (2002)
Crystal structures of PD1 and its ligands are resolved Zhang et al. (2004), Zak et al. (2017)
Medarex (Bristol-Myers Squibb) licences the PD1 technology from Ono
pharmaceutical and clinical trials show efficacy of anti-PD1 (Opdivo) in
treatment of metastatic melanoma. Meanwhile, Merck develops its own
anti-PD1 drug (Keytruda). Both Opdivo and Keytruda are approved in
2014 by the FDA for treatment of melanoma. Subsequently, anti-PD1 has
been approved for treatment of several other cancers.

2014

James P Allison and Tasuku Honjo are awarded the Nobel prize in
physiology/medicine on 10 December 2018

2018
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Ctla4 lacking the cytoplasmic tail is unable to fully
rescue the phenotype of Ctla4-/- mice. These mice are
long lived but display lymphoadenopathy and a Th2
bias, demonstrating the importance of the tail for full
function of Ctla4 (Masteller et al. 2000). Although
Ctla4?/- mice show no phenotype, CTLA4?/- in
humans display adverse phenotypic effects: dysregu-
lation of Foxp3? regulatory T (Treg) cells with
hyperactivation of effector T cells followed by infil-
tration of lymphocytes in various organs. In addition,
there is a loss of circulating B cells and progressive
increase in autoreactive CD21lo B cells. Mutations in
CTLA4 also lead to impaired suppressive functions of
Treg cells which suppress autoimmunity (Kuehn et al.
2014; Schubert et al. 2014).

3.1 Additional costimulatory receptors

The identification and roles of CD28 and CTLA4 led to
a search for other costimulatory receptors (table 2).
Besides CD28, there are other positive costimulatory
receptors like Inducible T cell Costimulator (ICOS or
CD278), OX40, 4–1BB, CD40L etc (figure 4). The
ICOS molecule is a homodimeric protein and expres-
sed on activated CD4? and CD8? T cells. It binds to
ICOS ligand expressed on B cells, macrophages, DC
and some non-lymphoid cells, resulting in production
of effector cytokines such as IL4, IL10 and Interferon c
(IFNc). Compared to CD28, the IL2 production
induced by ICOS-ICOSL binding is lower suggesting a
distinct pathway of costimulation (Arimura et al. 2002;
Wikenheiser and Stumhofer 2016). ICOS is located on
human chromosome 2 along with CTLA4 and CD28.

Interestingly, multiple sequence alignment (figure 5)
and dendrogram (figure 6) studies demonstrate that
ICOS and CD28 are more closely related to each other
compared to CTLA4.
There are a large number of costimulatory molecules

that are members of the tumor necrosis factor (TNF) a -
TNF receptor superfamily. OX40 belongs to the TNF
receptor superfamily. Its interaction with OX40 ligand
leads to proliferation of T cells, increase in IL-2 and IL-
2Ra production (Lathrop et al. 2004; Redmond et al.
2009). CD137 (4–1BB) is a costimulatory glycoprotein
and its crosslinking by its ligand 4–1BBL aids in
activation of CD8? T cells. In addition, it can regulate
activities of CD4? T cells, Natural Killer cells and
APCs. It is important for generating sustained T cell
responses and immunological memory, brought about
by upregulation of anti-apoptotic factors like Bcl-XL

and Bfl-1 (Lee et al. 2002, Bartkowiak and Curran
2015). CD40, a TNF superfamily receptor, is expressed
on APCs and interacts with its ligand CD40L, which is
induced on activated T cells. This interaction results in
upregulation of costimulatory cytokines for T cell
activation and plays important roles during anti-tumor
immunity (Laman et al. 2017). The Herpes virus entry
mediator (HVEM) is another member of the TNF
receptor superfamily, which is constitutively expressed
on naı̈ve T cells. Its expression decreases with activa-
tion of T cells but is restored on memory and effector T
cells. The interaction between HVEM and its receptor
LIGHT (CD258) sends positive costimulatory signals
to T cells; however, binding of HVEM to another
ligand, i.e. BTLA (CD272), sends an inhibitor signal to
T cells (Cai and Freeman 2009). Among the multitude
of costimulatory receptors known now, the roles of
CD28, CTLA4 and Programmed Death receptor 1
(PD1 or PDCD1 or CD279) are discussed in greater
detail in this review.

3.2 Structural and signaling aspects of CD28

The crystal structure of CD28 with the Fab fragment of
a mitogenic antibody has revealed several structural
details (Evans et al. 2005). The extracellular domain of
CD28 is made up of a single anti-parallel b-barrel
consisting of two layered b sheet structure whose
topology resembles that of the variable domains of
antigen receptors. CD28 interacts with its cognate
ligands, CD80 and CD86, through the MYPPPY motif
(figure 6) which is present in Complementarity Deter-
mining Region (CDR) 3. The loop structure is mainly
stabilized by a water molecule that forms hydrogen

Table 2. The B7 family of ligands and receptors. Adapted
from Collins et al. (2005) and updated

Ligands (Alternative names) Receptors

B7–1 (CD80) CD28, CTLA-4
B7–2 (CD86) CD28, CTLA-4
B7-H1 (PDL1, CD274) PD1
B7-DC (PDL2, PDCD1LG2,
CD273)

PD1

B7-H2 (ICOSL, B7RP1,
CD275, GL50, LICOS)

ICOS

B7-H3 (B7RP2, CD276) Unknown
B7-H4 (VTCN1, B7x, B7S1) Unknown
B7-H5 (VISTA, Platelet receptor Gi24,
SISP1)

CD28H

B7-H6 (NCR3LG1) NKp30
B7-H7 (HHLA2) CD28H
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bonds with the carbonyl oxygen of Pro-101 and Pro-
103 residues (Evans et al. 2005). CD28 is monovalent
in terms of binding with CD80 and CD86 because the
dimeric structure of CD28 is more compact and bind-
ing of one CD80 or CD86 ligand creates steric hin-
drance for binding of the other ligand (Chattopadhyay
et al. 2009). CD28 possesses a unique G-strand pocket
in close proximity of its ligand binding site. This
pocket may be useful for investigation of small
potentially therapeutic compounds against organ graft
rejection and autoimmune diseases (Esensten et al.
2016).
CD28 sustains T cell activation by consolidating

immunological synapse formation with co-stimulatory
signaling. CD28 bears a highly conserved short cyto-
plasmic tail with no intrinsic enzymatic activity. The
tyrosine residues in the cytoplasmic tail are phospho-
rylated by Lymphocyte-specific protein tyrosine kinase
(Lck) and Fyn tyrosine kinases and act as docking sites
of Src homology 2 (SH2) domain containing proteins.
Upon phosphorylation, the YMNM motif binds to the
p85 subunit of phosphatidyl-inositol 3-kinase (PI3K).

Surface expression of CD28 is regulated by endocy-
tosis brought about by binding of PI3K to the YMNM
motif, leading to clathrin-dependent receptor internal-
ization (Céfaı̈ et al. 1998). The two PxxP motifs in the
cytoplasmic tail are sites for binding with Src homol-
ogy 3 (SH3) domain containing proteins (Rudd et al.
2009; Boomer and Green 2010). The proximal PxxP
motif of CD28, located adjacent to the YMNM motif,
binds to the IL2 inducible T cell kinase known as Itk
whereas the distal proline rich motif (PYAP) binds to
Lck (Boomer and Green 2010; Ogawa et al. 2013).
Adaptor proteins like Grb2 bind to the proximal
YMNM motif through SH2 domain and distal PYAP
motif through its SH3 domain, interact with Vav to
activate PKCO� and MAPK pathways, respectively.
Some of these proteins have been found to interact with
human CD28 (figure 7) using string analysis (Szklar-
czyk et al. 2019). The PI3K pathway leads to pro-
duction of phosphatidylinositol (3,4)-bisphosphate and
phosphatidylinositol (3,4,5)-trisphosphate, recruitment
of pleckstrin homology domain containing protein
PDK1 which activates the Protein Kinase B (PKB)/

Figure 4. T cells express a galaxy of stimulatory and inhibitory receptors that regulate the extent of activation. The
discovery of CD28 and CTLA4 led to the identification of additional receptors and their respective ligands that can either
stimulate or inhibit T cell activation. The expression of these molecules depends on the kinetics post activation (e.g.: naı̈ve,
activated, etc.), various types of differentiated T cells (T helper, CTL, etc.), specificity of ligand-receptor interactions (HVEM
binding to LIGHT is positive whereas HVEM binding to BTLA is negative), etc. Studies are in progress to identify the basic
mechanisms and clinical efficacy of several of these proteins in eliciting anti-tumor responses.
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Akt. Activated PKB phosphorylates mTOR, glycogen
synthase kinase 3, Bcl-XL, Bcl-2 antagonist of cell
death, and inhibitor of nuclear factor-jB, activating
NFjB and NFAT. This pathway regulates cellular
metabolism, apoptosis and IL2 production (Boomer
and Green 2010). The generation of knock in mice with
mutations in CD28, i.e. Y170F, AYAA and the double
mutant, has delineated the roles of distinct motifs in
CD28 signaling (Dodson et al. 2009; Boomer et al.
2014). The distal PYAP motif plays a dominant role but
the YMNM motif is also involved in regulating CD28

mediated proliferation and Bcl-XL induction. However,
CD28-mediated cytokine responses and germinal cen-
ter formation is mediated primarily via the distal PYAP
motif (Boomer et al. 2014). Interestingly, the distal
PYAP is essential for generation of the autoimmune
phenotype in Ctla4-/-mice (Tai et al. 2007). PKB is
important in mediating the effector functions of CD28:
overexpression of PKB suppresses the Fas-mediated
cell death of Cd28-/- T cells (Jones et al. 2002). Also,
PKB is important in regulating CD28 mediated
increase in glycolysis, increased glucose uptake and

Figure 5. Multiple sequence alignment comparing the different secondary structures in protein sequences of T cell
costimulatory receptors. Multiple sequence alignment was performed using ClustalW for the different costimulatory receptors
in humans. Information on the secondary structures of PDCD1 (Acc No: Q9NZQ7), CD28 (AccNo: P10747) and CTLA4
(Acc No: P16410) was obtained using the UniProt secondary structure prediction tool (The UniProt Consortium 2019). For
ICOS (Acc No: Q9Y6W8), secondary structure was predicted using the Chou Fasman algorithm (Chou and Fasman 1974). b
sheets and a helices are highlighted in green and red respectively.
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higher proliferation (Frauwirth et al. 2002). Finally,
minor differences in the amino acid sequences of
human and mouse CD28 may be responsible for

differential signaling effects: cytokine induction versus
association with cytoskeletal proteins (Porciello et al.
2018).

Figure 6. Multiple sequence alignment depicting the key motifs that are important for the function of the costimulatory
receptors of T cell activation. (a) Multiple sequence alignment was performed using ClustalW for the different human
costimulatory receptors. Seven motifs have been highlighted in the MSA. The MYPPPY motif is present in both CD28
(AccNo: P10747) and CTLA-4 (Acc No: P16410) is responsible for binding to CD80/CD86.The YMNM motif present in
CD28 is phosphorylated at the tyrosine residues by the p85 subunit of Phosphatidyl-inositol 3-kinase. Out of the two PXXP
motifs, the proximal one is present in both CD28 and CTLA4. The PRRP motif in CD28 binds to Itk tyrosine kinase. The
distal PYAP is present only in CD28 and is required for binding to Lck, another tyrosine kinase. The YVKM motif present in
CTLA4 is important in endocytosis. In PD1 (Acc No: Q9NZQ7), the VDYGEL and TEYATI encode the ITIM and ITSM
motifs that regulate PD1 function. (b) The phylogenetic tree was constructed using the maximum likelihood statistical
method based on the Jones-Taylor-Thornton (JTT) model (Tamura et al. 2011). High sequence similarity exists between
CD28 and ICOS (Acc No: Q9Y6W8) (distance = 6.93) followed by CTLA4 (distance = *10). The least degree of similarity
was found between PDCD1 and the other three molecules (distance = *35).
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3.3 CTLA4: Structural perspectives

Structural analysis of CTLA4 shows similarity between
human and mouse soluble CTLA4 monomers, but the
homodimeric organization differs. The interchain
disulfide bond is formed more readily in human
CTLA4 compared to mouse CTLA4. CTLA4 com-
prises a single V-set domain which contacts the paired
V-set domain of CD80. Three interacting surfaces are
involved in the binding of CTLA4 and CD80: the
surface mediating CD80 homodimerization, the
CTLA4 homodimer interface and the receptor-ligand
binding interface driving the association without any

significant conformational rearrangements of the
monomers (Stamper et al. 2001). The CTLA4 and
CD86 monomers are both two-layer b-sandwiches that
display the chain topology characteristic of the
immunoglobulin (Ig) variable domains, found in TCR
b-chains and antibody VL and VH domains. The
dimerization of CTLA4 and CD86 is considered to be
unusual, where the ligand binding site stays distal to
the dimer interface (Schwartz et al. 2001). CTLA4
shares primary amino acid sequence features with
CD28 where the striking features include the presence
of three consecutive proline residues in the MYPPPY
sequence and a unique cysteine residue at the stalk

Figure 7. T cell costimulatory receptors possess distinct interacting partners. The STRING software was used to identify the
different interacting protein molecules with respect to CD28, CTLA4, PD1 in humans with a minimum required interaction
score of 0.4 (medium confidence). The maximum number of interacting partners shown is 10. STRING obtains information
from experimentally-derived protein-protein interactions identified using literature curation. All the three costimulatory
receptors have distinct and different interacting partners, suggesting that the regulation of T cell activation occurs through
different signaling pathways.
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region for the formation of biologically functional
disulfide-linked homodimers which is important for
their molecular organization and function (Chattopad-
hyay et al. 2009). The three proline residues in the
MYPPPY sequence adopt a high-energy cis-trans-cis
main chain configuration that provides geometric
complementarity for specific recognition of the con-
cave surface on the front sheet of CD80/CD86 ligands
(Ostrov et al. 2000; Evans et al. 2005). In terms of
evolution, the MYPPPY ligand binding domain of
CD28/CTLA4 is conserved from fish to humans.
Fishes and amphibians possess a single CD80/CD86-
like molecule whereas birds and mammals have both
the paralogues. The cytoplasmic domain with the
YVKM motif in CTLA4 which helps in endocytosis is
present in birds and mammals (figure 6). It is possible
that CTLA4 evolved from a cell surface molecule to
one that can undergo rapid endocytosis (Bernard et al.
2006, Hansen et al. 2009, Walker and Sansom 2011).

3.4 Mechanisms involved during immune
suppression by CTLA4

There are multiple mechanisms by which CTLA4
lowers T cell activation (figure 8): First, CTLA4 binds
with greater affinity to CD80 and CD86 compared to
CD28. The values of the monovalent dissociation
constant have been reported to be as high as 20 lM
with respect to CD86-CD28 interactions and as low as
0.2 lM with respect to CD80-CTLA4 interaction
(Collins et al. 2002). CTLA4 dimers can establish
bivalent biophysical interactions with CD80/CD86
ligands where the interaction with CD80 dimer imparts
overall higher avidity than monomeric CD86. Signal-
ing through CTLA4 and CD80/CD86 interactions are
predicted to take place through the assembly of CTLA4
dimers or an extended network of multiple CTLA4
with CD80 dimers or CD86 monomers (Schwartz et al.
2001; Walker and Sansom 2011). The stoichiometry of
interaction and binding affinity between CD28/CTLA4
with CD80/CD86 were determined using equilibrium
binding analyses by surface plasmon resonance tech-
nique. This analysis led to the conclusion that the
CD28 homodimer is functionally monovalent whereas
the CTLA4 homodimer is bivalent. Simultaneous
binding of the ligand molecules on the ‘U’ shaped
structure, made up of Ig domains of CD28, is prevented
due to physical clash of the C-set domains. However,
this does not occur in case of the ‘V’ shaped structure
made by Ig domains of CTLA4 because each arm
becomes accessible to bind to separate ligand

molecules (Dennehy et al. 2006). Second, CTLA4 is
present predominantly in intracellular vesicles in acti-
vated T cells, Treg cells and promotes a dominant
negative signaling, resulting in T cell tolerance and
anergy (Rowshanravan et al. 2018). In the absence of
activation, CTLA4 is present mainly in intracellular
vesicles and is endocytosed rapidly following interac-
tion between its YVKM motif present on cytoplasmic
domain and adaptor proteins of clathrin. The binding of
the YVKM motif to adaptor protein-1 results in
CTLA4 being trafficked to lysosomes for degradation
(Linsley et al. 1996; Shiratori et al. 1997). Other pro-
teins can also modulate the expression of CTLA4.
Patients with lipopolysaccharide-responsive and beige-
like anchor protein deficiency display autoimmunity.
This protein is important increasing CTLA4 expression
in activated T cells and Tregs ((Lo et al. 2015; Burnett
et al. 2017). Upon T cell activation, the phosphoryla-
tion of tyrosine residue in YVKM motif leads to release
of adaptor protein-2 upon T cell activation leading to
higher cell surface amounts of CTLA4 (Shiratori et al.
1997; Zhang and Allison 1997; Chuang et al. 1999;
Rowshanravan et al. 2018). Third, several phos-
phatases are thought to be associated with CTLA4.
Protein phosphatase 2A associates with CTLA4 upon
activation and has important role in CTLA4 mediated
suppression of T cell activation as it can target Akt
phosphorylation (Parry et al. 2005). SHP-2 is another
phosphatase which can dephosphorylate CD3f fol-
lowing recruitment of CTLA4 and inhibiting the
leukocyte-specific protein tyrosine kinase or Lck (Lee
et al. 1998). Fourth, the strength of signal together with
CTLA4-CD80/CD86 interactions is important in
modulating T cell activation. The amount of cell sur-
face CTLA4 directly correlates with the strength of
signal (Egen and Allison 2002). Blocking CTLA4
using Fab fragments of a monoclonal antibody gener-
ated against CTLA4 can augment or inhibit clonal
expansion of different T cell clones when challenged
with the same antigen. This response depends on the
activation state of T cells as well as the strength of
signal. Blockade of CTLA4 in stimulated CD4 T cells
hamper Th1 cytokines production but increases Th2
cytokines amounts. CTLA4 blockade in presence of T
cells with low TCR signaling leads to enhanced levels
of Th1 and Th2 cytokines, whereas blocking CTLA4
during T cell priming with high TCR signal strength
causes an expansion of Th1 cells (Anderson et al.
2000). Also, in vitro CD4? T cell activation is either
increased or decreased depending on the strength of the
activating signal and blockade of CTLA4-CD80/CD86
interactions (Mukherjee et al. 2002; Ahmed et al.
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2009). Fifth, the lymphoproliferation phenotype dis-
play by Ctla4-/- mice is not T cell autonomous as
shown by reconstitution experiments containing a
mixture of wild type and Ctla4-/- cells (Bachmann et al.
1999). These experiments clearly demonstrated the
involvement of extrinsic factors in the function of
CTLA4 and two distinct processes may be involved.
CTLA4 can remove the ligands CD80/CD86 directly
from APCs by the process of transendocytosis which
are then degraded inside CTLA4 expressing cells
(Qureshi et al. 2011; Walker and Sansom 2011). Also,
maximal cell surface expression of CTLA4 is found
constitutively on Treg cells which are important for
immune tolerance and prevention of auto immunity
deletion of CTLA4 in Treg cells causes spontaneous
development of systemic lymphoproliferation and
lethal T cell mediated autoimmune disease while
increasing tumor immunity (Wing et al. 2008). CTLA4
is required for the accumulation of Tregs in the intes-
tine but not in the thymus, spleen and lymph node
(Barnes et al. 2013). CTLA4-dependent suppression is
shown by wild type Treg but Treg cells deficient in
CTLA4 are also suppressive due to the production of

high amounts of Transforming growth factor beta
(TGFb) and IL10 as a compensatory mechanism (Tang
et al. 2004). CTLA4 has been shown to associate with
protein kinase isoform C-g (PKC-g) in Treg cells
which is important for enhancing their suppressive
activity (Kong et al. 2014). Despite years of research, it
is clear that further studies are required to better
understand the intrinsic as well as extrinsic factors
involved in immune suppression by CTLA4.

3.5 The ligands, CD80 and CD86

The ligand molecules, CD80 and CD86 share almost
25% sequence identity at the level of amino acid
residues and also bind to CD28 and CTLA4 receptors
with different affinities as mentioned above. CD80
and CD86 consist of two extracellular domains, which
are membrane distal IgV-like domain and membrane
proximal IgC-like domain; along with one trans-
membrane part and an intracellular domain (Bajorath
et al. 1994, Stamper et al. 2001). Both the ligand
molecules form a shallow concave surface for the

Figure 8. CTLA4 lowers T cell responses using multiple pathways. T cell activation induces expression of CTLA4 which
has a greater binding ability to CD80/CD86 which outcompetes CD28 and lowers T cell activation (intrinsic pathway). In
addition, CTLA4 is highly expressed on Treg cells, which suppresses T cell activation. CTLA4 can also bind to CD80/CD86
and cause their degradation by transendocytosis, thereby lowering the surface expression of the ligands (extrinsic pathways).
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accommodation of the MYPPPY loop of CD28 and
CTLA4 through van der Waals interactions (Peach
et al. 1995). Two b-bulges are present at Leu-38 and
Arg-97 of CD86; and at Met-38 and Arg-94 of CD80
in the membrane distal IgV-type domain (Ikemizu
et al. 2000). The dimeric interface of CD80 and
CD86 bear similar total solvent accessible areas,
which are 1220 and 1405 Å2, respectively (Zhang
et al. 2003).
Despite having a number of structural similarities,

both of these molecules have some striking structural
differences, discrete spatio-temporal distribution with
distinct functional properties. CD80 forms dimers but
not CD86. The CDR1 of CD80 contains two a-helical
turns but CD86 has a single a-helical turn. This addi-
tional turn in CD80 forms a protrusion of several
residues, among which, Val-22 makes multiple contacts
with another CD80 monomer, stabilizing the dimer
(Sansom et al. 2003; Zhang et al. 2003). The dimer
interface in CD80 is made up of eleven hydrophobic
residues out of thirteen contacting residues. Crystallo-
graphic data and flow cytometry based fluorescence
resonance energy transfer also indicate that formation
of a stable dimer between CD86 monomers is an
unlikely event. CD86 has fifteen hydrophilic residues
out of twenty contacting residues between the mono-
mers, including seven charged residues, which results
in chemically distinctive nature of the dimer interface.
These features also explain why heterodimerisation
between CD80 and CD86 does not take place (Zhang
et al. 2003). Functional differences are evident as
crosslinking with monoclonal antibodies against CD86
promotes the phosphorylation of its cytoplasmic tail,
followed by B cell proliferation. On the other hand,
crosslinking of CD80 with monoclonal antibodies
against it blocks B cell proliferation (Suvas et al.
2002). Mice lacking both Cd80 and Cd86 display
lower Ig class switching and germinal center formation,
although this phenotype is not observed in the single
deletion, testifying to the redundancy of CD80 and
CD86 (Borriello et al. 1997). Also, transgenic mice
expressing higher amounts of CD86 possess lower
number of B cells due to their elimination in a CD28-
dependent manner (Fournier et al. 1997).

4. PD1 and its ligands, PDL1 and PDL2

PD1 is a molecule that is expressed on the surface of T
cells post activation and acts as an immune checkpoint.
PD1 was discovered by Tasuku Honjo’s laboratory in
Kyoto University while screening for a number of

genes involved in apoptosis (Ishida et al. 1992). Upon
activation of T cells, high amounts of Ca2? stimulates
the transcription factor, NFAT, which increases PD1
expression (Oestreich et al. 2008). High amounts of
PD1 are also observed on exhausted T cells, which
display low expression of CD122 (IL2 receptor beta
chain), IL15 receptor with lower ability to produce
cytokines and display cytolytic activity. Exhausted T
cells are often observed during chronic viral infections,
resulting in persistence (Wherry 2011; Wykes and
Lewin 2018). PD1 lowers T cell activation; however,
CD28 signaling, but not ICOS, attenuates this effect
(Mizuno et al. 2019). Interestingly, treatment with anti-
PDL1 restores proliferation of hepatitis C virus specific
CD8? T cells (Urbani et al. 2006). During viral
infections, Type I Interferon is produced which induces
IRF9 that binds to the promoter and induces PD1
expression (Terawaki et al. 2011). In addition,
demethylation (Youngblood et al. 2011) and binding of
other transcription factors such as FoxO (Staron et al.
2014) may also increase PD1 expression. IFNc, an
inflammatory cytokine, is known to induce both PDL1
and PDL2 and this may be part of the host response to
tumors (Brown et al. 2003).
PD1 is composed of 268 amino acids and is a Type 1

transmembrane protein consisting of a IgVextracellular
domain, a transmembrane domain and a cytoplasmic
tail (Ishida et al. 1992). PD1 is encoded by PDCD1
present in human chromosome 2 (Shinohara et al.
1994) and mouse chromosome 1. PD1 has two ligands,
Programmed death ligand 1 (PDL1) (Dong et al. 1999;
Freeman et al. 2000) and Programmed death ligand 2
(PDL2) (Latchman et al. 2001; Tseng et al. 2001),
belonging to the B7 family of proteins (table 2). In
general, PDL1 expression is found on lymphoid and
non-lymphoid cells whereas PDL2 expression is
mainly present on lymphoid cells, e.g. DCs (Latchman
et al. 2001). PDL1 expression is upregulated on DCs
and macrophages with GM-CSF and lipopolysaccha-
ride whereas upregulation of PDL1 on T cells and B
cells occur via TCR and B cell receptor signaling
(Yamazaki et al. 2002). PDL1 expression is also
upregulated in most tumors in mice and virally-infected
tissues (Iwai et al. 2002). It is likely that PDL1 and
PDL2 bind to other cell surface molecules, apart from
PD1; however, the functional relevance of these inter-
actions need to be better studied in the future (Wang
et al. 2003).
PD1 and PDL1/PDL2 have canonical Ig-like extra-

cellular domains for the receptor-ligand interaction
interface. The extracellular domain of PD1 folds into b-
strand sandwich structure where several b-strands are
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organized into two disulfide linked sheets, resembling
the fold of the greek key (Zak et al. 2017). PD1 lacks
the nearly invariant extracellular Cys which is present
in the stalk region of both CD28 and CTLA4, making it
incapable of forming covalent dimers and constraining
it to exist as a monomer on the cell surface (Zhang
et al. 2004). Its cytoplasmic domain harbors two tyr-
osine-based signaling motifs: Immunoreceptor tyr-
osine-based inhibitory motif (ITIM) and
Immunoreceptor tyrosine based switch motif (ITSM)
(Lázár-Molnár et al. 2017). PD1 contains the ITIM
(VDYGEL) and ITSM (TEYATI) motifs which get
phosphorylated at the tyrosine residues and is a dock-
ing site for SHP1 and SHP2 phosphatases which attach
to the cytoplasmic tail of PD1 (Blank and Mackensen
2007). This leads to dephosphorylation of ZAP70
(figure 9) which causes upregulation of Cbl-b ubiquitin
E3 ligase and blocks the subsequent cascade of T cell
activation (Karwacz et al. 2011).
PDL1 has two compact Ig-like folds (N-terminal Ig-V

followed by Ig-C) which are connected by a short lin-
ker. Homodimeric PDL1 is organized to expose its
hydrophobic N-terminal PD1 interacting domain. The
C-terminal domain of PDL1 may act as a spacer to
separate the binding site from the cell membrane. The
interaction between PD1 and PDL1 occurs due to
structural reorganization on the PD1 interacting surface.
Although the broad organization of PDL2 is similar to
that observed in PDL1, PDL2 displays a greater affinity
for PD1 compared to PDL1 (Zak et al. 2017).
Stimulation of T cells with anti-CD3 along with

PD1-Ig in vitro, causes a significant reduction in IL2
and IFNc production and cellular proliferation (Free-
man et al. 2000; Carter et al. 2002). Co-culture of DCs
expressing PDL1 along with transgenic PD1 express-
ing total T cells demonstrates that CD8? T cells are
more affected (Barber et al. 2006). Surprisingly, Pd1-/-

mice display distinct splenomegaly compared to
C57BL/6 wild type mice. In vitro studies suggested that
these are due to elevated B cell responses upon IgM
stimulation whereas the T cell responses are the same
upon anti-CD3 stimulation in Pd1-/- mice (Nishimura
et al. 1998). Strain specific effects are observed in mice
lacking Pd1: In the C57BL/6 background, these
mice are predisposed to autoimmune diseases such as
lupus-like glomerulonephritis (Nishimura et al. 1999)
whereas autoimmune disorders such as gastritis and
dilated cardiomyopathy are observed in the BALB/c
background (Okazaki et al.,2005). Pdl1-/- mice display
an autoimmune prone phenotype with accumulation of
large number of CD8?, but not CD4?, T cells in the
liver. There is lower apoptosis in these cells during the

contraction phase during experimental autoimmune
hepatitis (Dong et al. 2004). Higher CD4? and CD8?

T cell responses are observed post in vitro activation as
well as antigen specific in vivo responses in Pdl2-/-

mice, demonstrating its role as a negative costimulator
(Zhang et al. 2006).

5. Modulation of T cell differentiation by CTLA4
and PD1

Costimulatory receptors modulate peripheral T cell
differentiation which plays important roles in deter-
mining the types of cellular immune responses. For
example, Th1 responses are known to cause delayed
type hypersensitivity leading to diseases such as
psoriasis. Th2 responses, on the other hand, cause
excessive production of IgE during allergies. In
general, CTLA4 reduces Th2, whereas PD1 reduces
Th1 differentiation: In vitro polarization of naı̈ve T
cells with a Th1 bias is observed upon activating
with immobilized anti-CTLA4 or CD80 transfectants
in a partly TGFb dependent manner (Kato and
Nariuchi 2000). Ctla4-/- mice produce higher
amounts of IL-4 and IL-5 cytokines and these mice
display a more Th2 profile (Khattri et al. 1999;
Oosterwegel et al. 1999). Also, Ctla4 is important
for lowering activation-induced cell death by reduc-
ing the expression of Fas and FasL (Pandiyan et al.
2004). Anti-PD1 increases Th1 cytokines and impairs
Treg maturation after intratracheal administration of
lipopolysaccharide causing lung injury in C57BL/6
mice (Gibbs et al. 2018). Most likely, PD1 binding
to its corresponding ligands result in a significant
drop in Th1 cytokine profile in a SHP2-dependent
manner (Li and Ferris 2014).
Th17 cells play a major role in the adaptive immune

system by eliminating pathogens (Weaver et al. 2013).
Interactions between CTLA4 and CD80/CD86 regulate
the extent of differentiation of Th17 cells (Ying et al.
2010). One of the ways this happens is through Foxp3?

Treg cells which inhibit the differentiation of Th17
cells (Lee 2018). Pd1-deficient mice are also very
prone to infections by M. tuberculosis with high
amounts of Th1 and Th17 responses. The excessive
production of pro-inflammatory cytokines results in
excessive tissue damage and lower survival of infected
Pd1-/- mice (Lázár-Molnár et al. 2010).
Follicular T cells are extremely important in the

generation of germinal center-dependent antigen-
specific B cell responses. Ctla4-/- mice display higher
number of follicular helper T cells and development of
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germinal centers; also injection of anti-CTLA4 in wild
type elicits these cells (Wang et al. 2015). Follicular T
cells express high amounts of PD1 and the interaction
with its ligands lowers the generation and recruitment
of these cells to follicles (Shi et al. 2018). Conse-
quently, anti-PD1 treatment increases the numbers of
follicular T cells by downregulating the KLF2 tran-
scription factor and upregulating IL4 and IL21
(Mizuno et al. 2019). Overall, it appears that negative
costimulation by CTLA4 and PD1 regulates peripheral
T cell differentiation by controlling TCR based sig-
naling along with production of various cytokines that
may result in immunopathology (Wei et al. 2017; Wei
et al. 2019a, b).

6. Crosstalk and regulation by costimulatory
receptors

The activation of T cells is regulated by various cell
surface molecules during an antigenic response (fig-
ure 4). Although these cell surface molecules impart

their function through diverse mechanisms, there is a
crosstalk between these molecules. CTLA4 can be
thought of as the gatekeeper to T cell activation and
regulates ICOS function. Ligation of CTLA4 blocks
ICOS mediated production of IL-4, IL-10 and IL-13 in
mouse CD4? T cells, which can be overcome by the
addition of exogenous IL-2 (Riley et al. 2001). Also,
blocking the ICOS ligand (ICOSL) interaction using
ICOS-Ig results in formation of CD4hi Tregs with
decreased exocytosis and higher expression of CTLA4
(Zheng et al. 2013). Anti-CTLA4-elicited anti-tumor
responses are lower in the absence of ICOS (Fu et al.
2011). PD1 and ICOS also have an interesting rela-
tionship with respect to Follicular T helper cells. It is
well known that ICOS-ICOS-L signalling increases
contacts between T cells & B cells, resulting in the
generation of high affinity B cells (Liu et al. 2015a). In
general, the expression of PD1 lowers the recruitment
of T cells to the follicles; however, those T cells which
express high amounts of ICOS can overwhelm this,
resulting in the recruitment of high ICOS bearing cells
to germinal centers (Shi et al. 2018). In Type 1 diabetes

Figure 9. The binding of PD1 to its ligands, PDL1 and PDL2, lowers T cell responses. The interaction of PD1 with its
ligands PDL1 and PDL2 causes the recruitment of phosphatases, SHP1/SHP2, which causes dephosphorylation of ZAP70,
lowering T cell activation and, eventually, leading to T cell exhaustion.
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there is an increase in the number of CXCR5?PD1?-

ICOS? follicular T cells that promotes selection of
autoreactive B cells, resulting in higher titers of
autoantibodies (Viisanen et al. 2017).
CTLA4 and PD1 also modulate immune responses

during viral infections. Higher expression of CTLA4,
PD1 and CD28 is observed on CD4? T cells with
higher Human Immunodeficiency Virus (HIV) load.
Treatment with retroviral drugs leads to a downregu-
lation of these markers on CD4? T cells. In vitro
blockade of PD1 and simultaneous stimulation via
CD28 caused HIV-specific CD4? T cell proliferation
(Kassu et al. 2010). Although the temporal expression
of different costimulatory receptors and their ligands is
cell type dependent, they appear to cross talk with each
other in regulating T cell function.

7. How do checkpoint inhibitors mediate anti-
tumor effects?

The common strategies to treat tumor growth are well
known: surgery, radiation (especially for bone marrow
derived tumors), hormone therapy (for hormone-depen-
dent tumors) and chemotherapy. Among these, the latter
is widely used for a wide variety of tumors. Chemother-
apy extends the life of patients; unfortunately, resistant
tumor cells often arise, resulting in treatment regimeswith
alternate drugs which may be toxic. Immunotherapy is
also an option as it is known that the activation of the host
immune system lowers tumor burden (Rakshit et al.
2012; Podder et al. 2016); however, there are issues with
respect to efficacy, ethical issues etc.
Although T cells capable of recognizing peptide anti-

gens on tumors cells are present, they are unable to
unleash their responses due to the immunosuppressive
environment: expression of negative costimulatory
molecules on tumors cells, altered macrophages present
in tumors, higher number of Treg cells, etc. Studies are in
progress to understand the conversion of ‘‘cold tumors’’
(without infiltrating T cells) to ‘‘hot tumors’’ (with infil-
tration of T cells). The tumor immunosuppressive envi-
ronment consists of different types of molecules, e.g.
PDL1, TGFb, IL10, indoleamine 2,3-dioxygenase, and
cells, e.g. Tregs and myeloid-derived suppressor cells,
that lower immune responses etc (Balkwill et al. 2012;
Kalathil et al. 2013; Wang et al. 2016; Syn et al. 2017).
The assumption is that T cells capable of recognizing
tumor antigens are present; however, their activation is
sub-optimal due to the presence of immunosuppressive
molecules, including negative costimulatory receptors
and their ligands, e.g. CTLA4, PD1, PDL1, etc.

(figure 10). These are induced as a host driven response
to restrict inflammation and immunopathology; how-
ever, in the tumor environment, these responses further
facilitate the growth of tumors. Therefore, by blocking
the negative costimulators (checkpoints or brakes), the
equilibrium is shifted to enhance anti-tumor T cell
responses (figure 11). Blocking these receptors is
achieved using checkpoint inhibitors or antibodies
against CTLA4 (e.g. Ipilimumab) or PD1 (e.g. Nivolu-
mab or Pembrolizumab) or PDL1 (Avelumab or Dur-
valumab) which enhances T cell responses against
tumors (figure 11). Anti-CTLA4 was first approved by
the FDA in 2011 for the treatment of late stage mela-
noma. Although checkpoint therapy works in a subset of
patients, it is important to appreciate that some patients
are ‘‘cured’’ due to the activation of the host immune
system. Treatment of patients with stage III melanoma
with anti-CTLA4 (Ipilimumab) demonstrated higher
survival and less recurrence of cancers compared to
placebo treated controls (Eggermont et al. 2016). Anti-
PD1was first approved for the treatment of melanoma in
2014; subsequently, anti-PD1 and anti-PDL1 have been
widely used for the treatment of several types of tumors,
including head and neck cancers in 2019. Readers are
encouraged to find out the detailed listing of checkpoint
inhibitors and other therapies targeting different tumors
by visiting the following web site: https://www.
cancerresearch.org/scientists/clinical-accelerator/land
scape-of-immuno-oncology-drug-development
The commercially available monoclonal antibody

Ipilimumab binds CTLA4 at the MYPPPY site and
blocks its interaction with CD80/CD86. Although
CD28 and CTLA4 are structurally similar, Ipilimumab
discriminates between these by recognizing Leu-39 and
Ile-93 of CTLA4, which are replaced in CD28 by His
and Phe residues respectively (Ramagopal et al. 2017).
Treatment with anti-CTLA4 increases the numbers of
anti-tumor effector T cells and lowers the numbes of
intra-tumoral Tregs (Kavanagh et al. 2008; Tang et al.
2008). Interestingly, the binding of anti-CTLA4
(IgG2a) to Fc-gamma receptors in mice is essential for
its ability to elicit anti-tumor responses, most likely by
reducing the number of Tregs and increasing the
number of anti-tumor effector T cells (Selby et al.
2013; Ingram et al. 2018). Ipilimumab which binds to
human CTLA4 is IgG1 and binds well to Fc-gamma
receptors also reduces the number of Tregs in bladder
cancer (Liakou et al. 2008). On the other hand,
Tremelimumab another antibody (IgG2) that recog-
nizes CTLA4, does not bind to Fc-gamma receptors but
mediates anti-tumor responses by increasing the tumor
infiltrating CD8? T cells (Ribas et al. 2009).
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Figure 10. Both costimulatory ligands and their receptors are expressed across several cancer types. The data was obtained
from the human protein atlas (Uhlén et al. 2015) and the transcripts levels of the different ligands and receptors are
represented as median values of fragments per kilobase of transcript per million mapped reads (FPKM). The Human protein
atlas comprises six parts and its pathology atlas was used to generate the above data. The pathology atlas consists of mRNA
and protein expression data from 17 types of human cancers. The transcriptomics data represented above has been obtained
from the cancer genome atlas.
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ICOS has a definite role in anti-tumor effects as
studies show that anti-CTLA4 leads to upregulation of
T cells expressing higher amounts of ICOS and are
specific towards tumor antigens. In addition, this
therapy leads to an increase in effector to Treg cell
ratio (Liakou et al. 2008). In fact, Icos-/- mice are also
unable to combat tumors after anti-CTLA4 therapy,
demonstrating an important role for ICOS-ICOSL
interactions (Fu et al. 2011). It is also interesting that
concomitant ICOS activation followed by CTLA4
blockade is more efficient with respect to tumor
therapy. Thus, Icos-/- or Icosl-/- mice have impaired T
cell response against tumor with anti-CTLA4 treat-
ment. (Fan et al. 2014). Not surprisingly, a patent
(US8709417B2) has been awarded for the co-treat-
ment of ICOS stimulation with anti-CTLA4 blockade
in enhancing anti-tumor therapy.
Therapeutic monoclonal antibodies to PD1 such as

Nivolumab target the interaction site between PD1/PDL1
(Zak et al. 2017). PD1 blockade reduces the levels of
SHP-2 causing higher Th1 responses in tumor infiltrating
lymphocytes, thereby reversing the immunosuppression
in the tumor microenvironment (Li and Ferris 2014).
Treatment with anti-PD1 led to lowering of tumors in
patients with several types of tumors, e.g. melanoma,

non–small-cell lung cancer and renal cell cancer, and the
efficacy ranged from 18– 28% (Topalian et al. 2012). In
addition, anti-PD1 is less toxic than other chemothera-
peutic drugs (Brahmeret al.2015).Nivolumab (anti-PD1)
belongs to the IgG4 isotype which lowers complement
activation and antibody dependent cell cytotoxicity
(Wang et al. 2014).
The ligands of PD1 are expressed on non-he-

matopoeitic cells and tissues (Keir et al. 2008), leading
to the notion that CTLA4 is required early during T cell
activation whereas PD1 inhibition works at a later
stage, i.e at the tissue level. It is important to under-
stand that CTLA4 and PD1 act in different ways:
CTLA4 inhibits AKT via the phospohatase PP2A; on
the other hand, PD1 inhibits the CD28-mediated acti-
vation of AKT (Parry et al. 2005). The E3 ubiquitin
ligase, Cbl-b, is known to lower T cell responses. CD28
activation lowers Cbl-b amounts whereas CTLA4 is
important for its expression (Li et al. 2004). Interest-
ingly, anti-tumor responses in Cbl-b-/- mice are more
responsive to CTLA4, but not PD1, blockade (Peer
et al. 2017). In addition, checkpoint inhibtors lead to
the upregulation of different classes of T cells against
tumors, i.e. the peripheral T cell differentiation process
is altered. Anti-CTLA4 therapy leads to the

Figure 11. Checkpoint inhibitors greatly stimulate anti-tumor responses. During tumor growth, the immunosuppressive
environment prevents effective anti-tumor T cell responses. The blockade of the negative regulators of T cell activation
(checkpoints), using specific antibodies (checkpoint inhibitors) e.g. anti-CTLA4 or anti-PD1, greatly enhances anti-tumor T
cell responses. This strategy may reduce tumor growth and lead to anti-tumor immunity
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upregulation of both ICOS? Th1 like CD4? effector T
cells and exhausted CD8? T cells whereas anti-PD1
therapy leads to the upregulation of only the latter (Wei
et al. 2017). A recent study has shown that Ctla4-/-

mice form Th2 skewed CD4? T cells, T follicular
helper cells, T follicular helper regulatory cells and
Tregs. On the other hand Pd1-/- mice show expansion
of PDL1?Sca1?IRF4?CD8? cells (Wei et al.
2019a, b). To increase the efficacy of the drugs,
combinatorial therapy was considered. A combination
of anti-PD1 (Nivolumab) and anti-CTLA4 (Ipili-
mumab) was approved by the FDA in 2015 for
treating melanoma patients. In 2018, the combination
of anti-CTLA4 plus anti-PD1 was approved for the
treatment of renal cell carcinoma. It is likely that the
combination of anti-CTLA4 and anti-PD1 uniquely
affects tumor infiltrating T cell populations, e.g. ter-
minally differentiated effector CD8? T cells and Th1-
like effector CD4? T cells, as opposed to monother-
apy (Wei et al. 2019a, b).

8. Factors affecting the efficacy of checkpoint
inhibitors

Although checkpoint inhibitor therapy has saved
thousands of lives of patients afflicted with cancer,
there are some challenges that need to be addressed as
only 20–25% of patients respond to this form of ther-
apy (Syn et al. 2017). Therefore, understanding the
factors that affect the outcome of therapy is extremely
important (Yan et al. 2018). One of the primary factors
that play major roles are the patient’s age and sex.
Ageing generally is associated with a less effective
immune system. It has been observed that high
expression of PD1 on the surface of T cells in mice
suggests a dampened immune response against tumors
(Mirza et al. 2010). It is also possible that patients who
are unresponsive to the checkpoint inhibitors may lack
sufficient numbers of anti-tumor T cells. Sex dependent
effects of checkpoint therapy have also been reported
with males benefitting more compared to females
(Conforti et al. 2018). Also, anti-CTLA4 therapy,
compared to anti-PD1 therapy, is more sex dependent
benefitting male patients more than females (Wu et al.
2018).
It appears that a higher immunosuppressive envi-

ronment in the tumors is inversely correlated with the
lack of efficacy of checkpoint inhibitor therapy. The
number of Tregs and myeloid derived suppressor cells
(MDSCs) contribute to the immunosuppressive envi-
ronment near the tumor making it difficult for the

checkpoint therapy to work (Kalathil et al. 2013). The
presence of high amounts of T cell cytokines is a good
indication that they are effective in reducing tumor
growth (Peng et al. 2012). In addition, it has been
observed that the presence of CD8? T cells near the
tumor determines whether therapies such as anti-PD1
therapy work (Daud et al. 2016). The amount of
mutational burden in a tumor has been found to cor-
relate with efficacy of checkpoint therapy. The loss of
function of DNA repair genes causes reduction in DNA
repair followed by microsatellite instability. Conse-
quently, greater the microsatellite instability the higher
is the probability that the checkpoint therapy is work-
ing (Le et al. 2015). Patients who do not respond to
anti-CTLA4 (Ipilimumab) have been found to contain
tumors with genomic defects in the IFNc signaling
pathway (Gao et al. 2016). Patients likely to respond to
anti-CTLA4 display higher ICOS? T cells and lower
neutrophil-to-lymphocyte ratio (Di Giacomo et al.
2013). Recent studies have shown important roles for T
cell factor 1, a transcription factor, during checkpoint
inhibitor therapy (Kurtulus et al. 2019; Siddiqui et al.
2019).
Finally, diet profiles, body mass index and gut

microbiota may also be important in determining the
efficacy of checkpoint therapy. There is a direct cor-
relation of obesity to improved efficiency of anti-PD1
therapy compared to individuals having normal body
mass index with respect to metastatic melanoma
(McQuade et al. 2018). Our gut microbiota is of
paramount importance in maintaining our health by
helping in absorbing important nutrients, protecting
against potential pathogens etc. The checkpoint inhi-
bitor therapy has been found to be ineffective in mice
reared in germ free environments or undergoing
antibiotic therapy which will deplete the gut microflora
(Vétizou et al. 2015; Routy et al. 2018). Particular
bacterial species have been identified that play roles in
enhancing checkpoint blockade therapy. For example,
the amounts of Bifidobacterium (Sivan et al. 2015) or
Akkermansia muciniphila (Routy et al. 2018) deter-
mines the efficacy of the anti-PDL1 therapy. On the
other hand, treatment of melanoma with anti-CTLA4 is
dependent on two specific Bacteroides species: B.
fragile and B. thetaiotaomicron (Vétizou et al. 2015).
Overall, it is clear that further studies are required to
comprehend the roles of high fiber diet, probiotics and
additional factors associated with checkpoint therapy.
There is no doubt that this is an area of active inves-
tigation and is likely to unearth molecular players that
may lead to potential therapies to boost the efficacy of
checkpoint therapy.
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9. Challenges faced with the use of checkpoint
inhibitors

The two main concerns with this form of therapy are
cost and immune-related adverse effects (IRAEs). The
affordability of immune checkpoint therapy is a major
concern, given its estimated cost to be *$100,000 to
$250,000 per patient, depending on factors such as the
type of therapy, duration of treatment and route of
administration. Combined therapies may cost even
more; for example joint treatment with Nivolumab and
Ipilimumab can cost up to $300,000 per patient, thus
reducing their affordability (Andrews 2015). Given
such high costs, it is imperative to consider cost
effectiveness with respect to selection of patients who
are likely to benefit with this form of therapy (Verma
et al. 2018).
The other main problem with immune checkpoint

therapy is the augmentation of autoimmune diseases
known as immune related adverse effects (IRAEs),
which leads to serious health complications, associated
with excessive inflammatory responses. This is not
surprising as once the brakes on T cells are curtailed,
anti-tumor as well as autoimmune T cells are likely to
be unleashed. As mentioned earlier, negative costimu-
latory molecules (checkpoints) are crucial for self-tol-
erance and their blockade can predispose patients to
autoimmune conditions, resulting in IRAEs. The col-
lateral damage of IRAEs extends to normal tissues and
organs including gut, skin, hepatic, pulmonary and
endocrine systems. Around 90% of patients treated
with anti-CTLA4 and 70% of those treated with anti-
PD1/PDL1 experience some form of IRAEs. IRAEs
usually occur within a period of 3–6 months once the
anti-CTLA4 or anti-PD1 treatment begins (Michot
et al. 2016). The most common IRAEs affecting
endocrine system for anti-PD1 are thyroid dysfunctions
like hypothyroidism and thyrotoxicosis and
hypophysitis for anti CTLA4 antibodies (Ferrari et al.
2019). Ipilimumab, the first cancer immunotherapy
drug to get an FDA approval for treatment of mela-
noma can cause dermatitis, enterocolitis and hepatitis.
Hypophysitis induced by anti-CTLA4 (Ipilimumab)
mostly causes adenohypophysis hormone deficiency,
predominantly ACTH and TSH (Min 2016). In case of
anti-CTLA4 treatment, incidents of autoimmune coli-
tis, and organ damage (mainly dermal and gastroin-
testinal) have been reported (Bertrand et al. 2015).
Anti-CTLA4 increases Th17 cells in peripheral blood
of patients with metastatic melanoma and this study
may provide insights into the pathogenesis of anti-
CTLA4-induced toxicities (von Euw et al. 2009).

Therefore, efforts are directed towards identifying
altered version of anti-CTLA4 that display high anti-
tumor potential but low IRAEs (Pai et al. 2019). PD1
targeting Nivolumab has been reported to be linked
with autoimmune thyroid dysfunction (Byun et al.
2017). It has been observed that curtailing Type 1
interferon responses reduces autoimmunity without
affecting anti-tumor responses (Walsh et al. 2019).
Another recent issue that has come to light is ‘‘hy-

perprogression’’ or increase in tumor progression upon
treatment with anti-PD1 or anti-PDL1. However the
mechanisms behind this condition are currently under
investigation. One group has discovered that 6 out of
155 cancer patients receiving anti-PD1/PDL1 therapy
who became progressors had MDM2/MDM4 amplifi-
cation. On the other hand, 2 out of 10 patients har-
boring EGFR alterations showed similar behavior
(Kato et al. 2017). On the other hand, another group
studying patients with non-small cell lung carcinoma
found 39 out of 187 patients undergoing anti-PD1
treatment showed hyperprogression, and discovered
that their tumor tissues were enriched with tumor
associated macrophages (Russo et al. 2019). About
10% of advanced gastric cancer patients treated with
anti-PD1 display hyperprogression. Interestingly, this
correlates with the development of highly proliferative
FoxP3? Treg cells which may suppress the tumor
reactive PD1? effector T cells (Kamada et al. 2019).
Clearly, this is a matter of concern and further studies
are required to fully uncover the reasons for this
behavior in a small number of patients.
Studies in the area of T cell costimulation therapy

can be tricky and a cautionary tale that is worth
recounting is the phase 1 clinical trial of the CD28
superagonist TGN1412 possessing a humanized IgG4
isotype. Upon injection of this potential drug, healthy
human volunteers suffered from life-threatening
excessive inflammatory conditions (Attarwala 2010).
Further investigations to uncover the differences
between pre-clinical and clinical trials revealed that,
unlike humans, macaque effector and memory T cells
(TEM) undergo loss of CD28 expression upon maturity
(Eastwood et al. 2010). This is one the reason as to
why TGN1412 did not stimulate high amounts of
cytokines in monkeys during the pre-clinical studies
but did so in humans during the trial. Due to the failure
of the trails, the company TeGenero had to file for
bankruptcy. Investigations revealed that the volunteers
were dosed with high amounts of the drug. Perhaps,
sequential dosing would be a better idea. Subsequent
studies have shown lower doses of TGN1412 increases
IL10 probably due to activation of Tregs and the
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cytokine burst is not observed (Brown 2018). There-
fore, a better understanding of the mechanisms by
which antibodies to costimulatory molecules function
is important.

10. Effects of polymorphisms in costimulatory
receptors

Polymorphisms in CD28, CTLA4 and PD1 could
hinder T cell regulation leading to higher incidences
of autoimmune disorders, tumors etc. Single nucleo-
tide polymorphisms (SNPs) associated with CD28 are
associated with breast cancer (Yan and Zhang 2017).
It has been found that a group of four polymorphisms
in ICOS is responsible for B cell chronic lymphocytic
leukemia in Polish populations (Karabon et al. 2011).
The close relationship between CD28 and ICOS may
explain the reasons for the same disease due to
polymorphisms in these two costimulatory receptors.
As CD80 and CD86 are the main interacting partners
of CD28 and CTLA4, it is obvious that polymor-
phisms in these may also be associated with diseases.
Two polymorphisms i.e. rs6641T[G (CD80) and
rs17281995G[C (CD86) are involved with MS along
with CD28 (Wagner et al. 2015). In addition, it is
observed that CD86 ?1054G/A polymorphisms
increase the risk in colorectal cancer (Pan et al.
2010).
Polymorphisms in CTLA4 are known to affect the

responsiveness of T cells to stimulation (Maier et al.
2007) and a large number of variants are found in the
MYPPPY motif (Siggs et al. 2019). One of the first
autoimmune diseases that was found to be associated
with CTLA4 polymorphism is Grave’s disease, an
autoimmune disorder leading to hyperthyroidism, in
which affected individuals display excessive amounts
of thyroid hormone. A microsatellite marker is found to
be responsible for these phenomena with a single allele
of an (AT)n repeat sequence which has a higher fre-
quency in 3’-UTR region of the gene, which may affect
RNA stability (Gough et al. 2005). Interestingly, this
microsatellite is not present in mouse Ctla4. Another
C-T SNP in intron 1 at ?1822 position is also
responsible for Grave’s disease. It is possible that A-G
SNP in exon-1 is a cause for Type1 diabetes in a
number of family data sets as well as individual cases
(Ihara et al. 2001). This same SNP is prevalent in other
autoimmune diseases such as Addison’s disease, sys-
temic lupus erythematosus (SLE), celiac disease etc.
Interestingly, a splice variant of Ctla4 associated with
Type 1 diabetes lacks the binding motif MYPPPY and

inhibits T cell activation by dephosphylating the TCR-
zeta chain (Vijayakrishnan et al. 2004).
Multiple polymorphisms in the PD1 are associated

with a number of autoimmune diseases such as SLE,
Rheumatoid Arthritis (RA), etc. A link between the
roles of PD1 to RA is shown in the Caucasian popu-
lation where the (PD1.3G/A) was significantly associ-
ated with the disease (Zou et al. 2017). With respect to
cancer such as esophagogastric junction adenocarci-
noma, three different polymorphisms in PD1 are
associated with this disease (Tang et al. 2017). PDL1
and PD1 polymorphisms are also associated with dis-
eases such as non-small cell cancer (Nomizo et al.
2017). In another study PDL1 rs4143615 C[G and
PD1 rs2227982 C[T were associated with ovarian
cancer (Tan et al. 2018).

11. Efficacy of CTLA4-Ig in the treatment
of autoimmune diseases

In general, checkpoint inhibitors exacerbate autoim-
mune symptoms due to the aforementioned reasons. In
an experimental model of autoimmune
encephalomyelitis, anti-CTLA4 as well as its F(ab)2
fragments increases production of proinflammatory
cytokines and T cell proliferation, resulting in accel-
erated disease (Karandikar et al. 1996). However,
CTLA4-Ig, a soluble fusion protein consisting of the
extracellular domain of human CTLA4 linked to Fc
portion of modified human IgG1 is very useful in
lowering immune responses especially during autoim-
mune diseases (Linsley et al. 1992a). Due to its higher
affinity for CD80 and CD86, CTLA4-Ig inhibits the
early phase of T cell activation, differentiation and
survival (Salomon and Bluestone 2001). Mice
expressing CTLA4-Ig display lower T cell-dependent
B cell responses with impaired class switching and
absence of germinal center formation in spleen and
lymph nodes (Lane et al. 1994). Hyper-activation of T
lymphocytes contributes to the pathogenesis of
autoimmune diseases through the production of
inflammatory cytokines and autoantibodies. Fully
humanized CTLA4-Ig is commercially named as
Abatacept (under commercial trade name Orencia) and
is being used as a therapeutic molecule in autoimmu-
nity and transplantation (Najafian and Sayegh 2000).
Listed below are some diseases where studies with
CTLA4-Ig have been performed and some examples
are as follows:
RA is a common autoimmune disease which is

characterized by the hyper-activated immune system
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attacking healthy body tissue. Clinical trials have
demonstrated CTLA4-Ig to be efficacious in patients
with RA, especially in those patients who are refractory
to TNFa inhibitors or methotrexate treatment (Gen-
ovese et al. 2008). Evaluation of biomarkers in
CTLA4-Ig treated RA patients confirmed an effective
reduction in rheumatoid factor, TNF-a, IL-6, soluble
IL-2 receptor, soluble intracellular adhesion,etc.
(Weisman et al. 2006).
Psoriasis is an autoimmune disease and lesions are

characterized by inflammatory infiltrates, consisting
largely of T cells and APCs. In phase I clinical study,
46% of total admitted patients achieved [50% sus-
tained improvement in clinical disease severity upon
treatment with CTLA4-Ig. The improvement was
associated with a quantitative reduction in the skin-
infiltrating T cells and epidermal hyperplasia (Abrams
et al. 1999).
Multiple sclerosis is a chronic demyelinating

inflammatory disease that affects the central nervous
system. In a phase I dose escalation study, in patients
with relapsing & remitting multiple sclerosis received a
single intravenous CTLA4-Ig and immunological
assessments showed a decreased IFNc production and
reduction in myelin basic protein proliferation within
two months of treatment (Viglietta et al. 2008).
SLE: In a phase II clinical trial, CTLA4-Ig treatment

has shown amelioration of disease severity, improve-
ment in health parameters and enhanced quality of life
in CTLA4-Ig treated subjects (Merrill et al. 2010).
Similar results were observed in lupus-prone mice
treated with CTLA4-Ig in combination with anti-CD40
ligand (Wang et al. 2002).
Graft versus host rejection. Blockade with CTLA4-

Ig is useful for acute graft versus host disease pre-
vention, which may occur during unrelated-donor
hematopoietic cell transplantation. Patients receiving
CTLA4-Ig plus cyclosporine/methotrexate demon-
strated significant inhibition of early CD4? T cell
proliferation and activation compared to the cyclos-
porine/methotrexate cohort group. The CTLA4-Ig
cohort patients demonstrated a low rate of acute
GVHD, despite robust immune reconstitution (Koura
et al. 2013).
CTLA4-Ig has transitioned from being a basic

immunological investigation tool to a therapeutic
molecule. It is approved for treatment of RA (in adult
patients) and polyarticular juvenile idiopathic arthritis
(in pediatric patients) (Blair and Deeks 2017). A patient
with polymorphisms in the MYPPP motif of CTLA4
demonstrating autoimmunity responded well to treat-
ment with CTLA4-Ig (Siggs et al. 2019). Despite

improving disability and enhancing the quality of
patient’s life, low percentage of successful cure, reac-
tivations of latent infection and adverse effects are still
a concern. In addition, several important aspects of
CTLA4-mediated immune-suppression still require
further study. CTLA4-Ig is shown to be less effective at
inhibiting memory T cells and CD8? T cells than naı̈ve
CD4? T cells (Salomon and Bluestone 2001; Blair and
Deeks 2017). Predominantly T cell-mediated autoim-
mune diseases such as RA respond to CTLA4-Ig alone.
However, other diseases such as transplantation and
SLE which are regulated by both T and B cells respond
partially to CTLA4-Ig therapy alone (Wang et al. 2002;
Genovese et al. 2008). Prolonged CTLA4-Ig therapy
may lead to the complete suppression of immune
responses which is a major concern (Reddy et al.
2001). Further studies are required to optimize the
treatment of various autoimmune disease and/or in
disease and phase-specific manner.

12. Checkpoint inhibitors and other diseases

The recent success of immune checkpoint blockade in
tumor immunotherapy suggests that targeting these
checkpoints could also be effective for curing a range
of infectious diseases. Currently, checkpoint blockade
is being evaluated for reversing T cell exhaustion
which occurs during chronic infections and cancer.
Recent studies have shown that microbial infections
up-regulate PD1 and CTLA4 on host immune cells
which leads to the reversible immune dysfunction
(Bhadra et al. 2011; Butler et al. 2012; Palmer et al.
2013; Habib et al. 2018). Therefore, targeting immune
checkpoint may be a prudent approach for the treat-
ment of infectious diseases.
Viral diseases: Checkpoint inhibitor pathways limit

the functioning of pathogen-specific T cell responses
during chronic infection. Upregulation of checkpoint
inhibitors CTLA4 and PD1 by HIV-specific CD4? T
cells correlate with disease progression. Blockade of
CTLA4 and PDL1 lowers HIV viral loads, enhances
HIV-specific CD8? T cell function and killing of
infected target cells (Kaufmann and Walker 2009;
Palmer et al. 2013). Similar results are observed in
simian immunodeficiency virus-infected rhesus maca-
ques upon administration of anti-PD1 antibody (Velu
et al. 2009).
Bacterial disease: CTLA4 and PD1 expression are

associated with bacterial load and progressive dys-
function of pathogen-specific T cell responses (Rowe
et al. 2009; Day et al. 2018). Blockade of CTLA4
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increases the pathogen-specific CD4? and CD8? T
cells and confers protection against Listeria monocy-
togenes in an experimental murine infection model
(Rowe et al. 2009). In a mouse model of burn injury,
anti-PDL1 treatment improves the bacterial clearance
and survival following Pseudomonas aeruginosa or
Staphylococcus aureus infection (Patil et al. 2018). In a
Mycobacterium tuberculosis infection model, CTLA4
blockade enhances the immune response but fails to
augment the clearance of the infection (Kirman et al.
1999); however, Pd1-/- mice are highly sensitive to
infection by Mycobacterium tuberculosis and display
immunopathology (Lázár-Molnár et al. 2010). Inter-
estingly, one of the side effects of anti-PD1 therapy is
the reactivation of M. tuberculosis in latently infected
patients (Fujita et al. 2016). Consequently, some
patients undergoing anti-PD1 therapy for cancer may
lead to reactivation of tuberculosis (Barber et al. 2019).
Parasite diseases: The exhaustion of T cells is one of

the hallmarks of chronic parasite infections. There is
strong evidence that CD8? T cell exhaustion plays a
pivotal role in the reactivation of chronic Toxoplas-
mosis. The blockade of PD1 during chronic Toxo-
plasmosis controls the recrudescence disease by
rescuing dysfunctional CD8? T cells (Bhadra et al.
2011). T cell exhaustion in Leishmania infection is
associated with an increase in the expression of PD1
expression on immune T cells. Blocking PDL1 sig-
naling in vivo restores protective type 1 responses with
a significant decrease in the parasite burden (Esch et al.
2013, Habib et al. 2018). Similarly CTLA4 blockade
during Trypanosoma cruzi infection in mice reduces
the mortality by about 50% (Graefe et al. 2004).
CTLA4 expression reduces immune associated

pathology during infection with malaria (Jacobs et al.
2002). In a mouse model of malaria infection, PD1
enhances the protective response by regulating CD8? T
cells (Horne-Debets et al. 2016). In vivo blockade of
the PD1 ligand in combination with LAG-3 or OX40
signaling restores CD4? T cell function, increases the
number of follicular helper T cells and T cell mediated
B cell activation and plasmablasts. It also enhances
protective antibodies and rapid clearance of blood-
stage malaria parasites in mice (Butler et al. 2012,
Zander et al. 2015). Patients infected with Plasmodium
display an unique population of PD1?CTLA4?CD4?

T cells that produces IFNc and IL10 that suppress the
activation of other T cells (Mackroth et al. 2016). Also,
PD1 deficiency or blockade enhances the humoral
immune response to malaria antigens and this obser-
vation may be important in developing vaccine strate-
gies (Liu et al. 2015b).

Checkpoint inhibition therapy for infectious diseases
is in its infancy and all the studies till date are restricted
to the animal models of infections. In some models,
checkpoint blockade results in rapid pathogen clear-
ance, whereas in other models pathogen clearance is
outweighed by the collateral tissue injuries due to the
hyper-activation of immune cells. Nevertheless, these
studies are encouraging and the possible use of
checkpoint inhibitors in clinical studies, with respect to
viral latency, etc., in the near future needs to be
explored.

13. The two Nobel laureates involved
in the discovery of checkpoint inhibitors

It is perhaps useful to better understand the background
of the two scientists whose work on checkpoint inhi-
bitors was awarded with the 2018 Nobel prize in
physiology/medicine. Prof. James P. Allison’s foray
into T cell immunology began as an Assistant Professor
in the basic sciences research campus in Smithsville,
University of Texas. He was the first one to identify
and biochemically characterize the ab TCR by gener-
ating a monoclonal antibody, 124–40, to a T cell
lymphoma, C6XL (Allison et al. 1982). Subsequently,
other groups identified the ab TCR using serological
and molecular approaches (Mak 2007). Following this
discovery, he moved as Director of the Cancer
Research Laboratory and Professor to the University of
California, Berkeley where he spent the next twenty
years (1984–2004). During this period, his laboratory
contributed to better understanding in diverse areas of
T cell biology: the cd T cell receptor (Allison et al.
1991), thymic maturation (Havran and Allison 1988)
and costimulation. Initially, it was thought that CTLA4
performed positive costimulatory roles similar to CD28
(Linsley et al. 1992b). Subsequent studies by Prof.
Allison’s group showed that antibodies to CTLA4,
under soluble conditions, increased T cell activation
whereas it had to the opposite effect upon crosslinked
conditions (Krummel and Allison 1995). The genera-
tion of Ctla4-/- mice which died within 3–4 weeks due
to hyper-proliferation of CD4? T cells confirmed the
negative role of Ctla4 during T cell activation (Water-
house et al. 1995; Tivol et al. 1995; Chambers et al.
1997). It was in Berkeley that his laboratory discovered
that antibodies to mouse CTLA4 reduce the growth of
tumors (Leach et al. 1996). Subsequently, companies
were involved in generating antibodies to human
CTLA4 and performing clinical trials that demon-
strated its efficacy in lowering tumor growth in patients
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(table 1). Notably, this is a good example of basic
research in mice that led to translation benefits in
humans. It is possible that Prof. Allison moved his
laboratory to Memorial Sloan Kettering hospital in
New York (2004–2012) to monitor the clinical trials
with anti-CTLA4. Prof. Allison’s somewhat icono-
clastic and irreverent traits are best reflected in the
following statements: In college, I studied biochem-
istry, which was a good way to start because it teaches
you precision, quantitation, and the fundamentals. But
I got fascinated by the immune system, where there
wasn’t much precision. The professor that taught me
immunology in undergrad wasn’t even sure that there
was such a thing as T cells…………….In science, you
don’t have to be right. You have a hypothesis, and you
test it, and you only have to be right some of the time. I
thought that being wrong a lot was more fun (Neill
2016). The state of Texas has played a huge role in
shaping Prof. Allison’s life: he was born there and did
all his education including graduate schooling in Texas.
He started his laboratory as an Assistant Professor in
Texas and he is now back in the M D Anderson hos-
pital, Texas as head of the Immunology program. In
keeping with the theme ‘‘work hard and play hard’’,
Prof. Allison is a big fan of the country singer, Willie
Nelson, and plays the harmonica as a member of the
band, Checkpoints!
Prof. Tasuku Honjo from the Kyoto University,

Japan, has made some stellar contributions in
Immunology: First, his group identified S regions
which are responsible for class switch recombination
in Ig genes (Shimizu et al. 1982; Honjo 2008). Class
switch recombination ensures that the heavy chain is
changed during B cell differentiation, e.g. from l to
c, without changing the antigenic specificity of Igs.
In other words, the variable part of the Igs is unal-
tered whereas the constant region of the Igs is
changed. Double strand breaks are generated at
switch regions which are upstream to the heavy chain
constant region genes and the intervening sequences
are deleted (Kataoka et al. 1981). Second, one of the
enzymes that is involved in CSR and somatic hyper
mutation is Activation Induced Deaminase, a part of
the RNA editing deaminase family, which was dis-
covered by Honjo’s group (Muramatsu et al. 1999;
Honjo 2008). In fact, deficiency in Activation
Induced Deaminase leads to absence of class
switching, resulting in hyper IgM. On the other hand,
over expression leads to higher class switching from
IgM to IgA (Muramatsu et al. 2000). Third, Honjo’s
group was also responsible for the characterization of
the 75 kDa subunit of the IL2 receptor which

combines with another 55 kDa protein (Tac antigen)
to form the high affinity IL2 receptor which is
important for the autocrine proliferation of T cells
(Kondo et al. 1987). Fourth, his laboratory has
studied the roles of the Notch signaling pathways in
the immune system with an emphasis on RBP-J, a
transcription factor involved in Notch signaling, and
Kyo-T which interacts with RBP-J and regulates its
function (Taniguchi et al. 1998). Also, the roles of
Mint, an endogenous inhibitor of the Notch signaling
pathway, during T cell development was shown
(Tsuji et al. 2007). During the course of his multi-
faceted studies, his laboratory identified Pd1 to be
upregulated during apoptosis (Ishida et al. 1992).
Further studies on PD1 led the identification of its
ligands (Freeman et al. 2000; Latchman et al. 2001)
and roles in anti-tumor responses (Iwai et al. 2002).
Currently, anti-PD1 has a large market share and is
effective against a wide range of tumors (Topalian
et al. 2012; Andrews 2015).

14. Future goals

Some of the issues listed above have led to the
search for alternate and or combinatorial strategies
that may lead to higher efficacies with lower toxic
side effects. Precise scheduling of different
immunotherapy regimens and dosing based upon
circulating tumor DNA, neutrophil-lymphocyte ratio,
cytokine release, etc. are taken into consideration for
achieving proper efficacy. In case of a mammary
tumor model, delaying the treatment with anti-PD1 is
more effective at reducing tumor growth during
combination therapy with anti-OX40 (Messenheimer
et al. 2017). In fact, a more prudent approach to
determine the order in which antibodies will be
administered may be decided upon understanding the
natural rhythms of anti-tumor immune responses
(Rothschilds and Wittrup 2019).
The identification of antibodies against CTLA4 and

PD1 as checkpoint inhibitors led to the search for other
molecules that can also play similar roles. Activating
monoclonal antibodies targeting different TNF super-
family members e.g. OX40, 4–1BB, CD40, GITR are
known to sustain the proliferation and survival of
activated T cells. Utomilumab (anti-4–1BB antibody)
has been applied for clinical trials in patients with solid
tumors and Merkel cell carcinoma where partial and
complete responses had been reported. However, sev-
eral of the treated patients demonstrated signs of fati-
gue, pyrexia, rashes and decreased appetite (Segal et al.
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2018). In addition, clinical trials with anti-OX40 (BMS
986178), in combination with the TLR9 agonist SD-
101 and radiation therapy, are underway (https://
clinicaltrials.gov/ct2/show/record/NCT03410901?view=
record). Also, antagonistic monoclonal antibodies
against Lymphocyte activation gene-3 (LAG-3), V-do-
main Ig suppressor of T cells activation (VISTA), T cell
Ig and mucin domain-3 (TIM-3) etc are also in clinical
trials (Dempke et al. 2017). In the coming years, the
efficacy of these additional costimulatory receptors in
anti-tumor and other immune responses will be
unearthed.
It is likely that existing and emerging technologies

may combine with checkpoint inhibitor therapy to
greatly reduce cancer progression and some are men-
tioned below. In particular, the combination of newer
technologies with immune checkpoint inhibition is
likely to result in long-term clinical benefits (Sharma
and Allison 2015). Genomic profiling of tumor cells in
cancer patients greatly influences the selection of par-
ticular anti-cancer chemotherapeutic drugs and this
mode of genomic targeted selection of drugs is a useful
tool. For example, the combination of anti-PD1 with a
tyrosine kinase inhibitor shows greater reduction in
tumor load compared to monotherapy in mice models
(Tu et al. 2019). Lately, there has been an interest in
identifying small molecular inhibitors that can act
similar to checkpoint inhibitors. These will have the
advantage of enhanced lipophilicity to infiltrate tumor
microenvironment and may be less toxic with lower
production costs (Sasikumar and Ramachandra 2018).
However, further studies are required to evaluate their
clinical efficacy.
Another form of therapy known as the Chimeric

Antigen Receptor (CAR) T cell therapy involves
genetic modification of autologous T cells, isolated
through leukapheresis (a procedure to separate white
blood cells from blood). The extracellular domain of
CAR T cells contains binding moieties towards target
antigen, so that immune response is mounted against
the tumor expressing the antigen of interest (Gross
et al. 1989). Therapeutic strategy using CAR T cells
targeted to bind CD19 has been approved by the FDA
in adults with diffuse large B cell lymphoma and
children and young adults with B cell acute lym-
phoblastic leukemia. This approach too comes with a
number of clinical complications such as cytokine
release syndrome, neurotoxicity and inflammatory
reactions (Grupp et al. 2016). Studies are in progress to
broaden and improve the efficacy of CAR therapy
(Crowther et al. 2020) and lower the toxicity in large
number of tumors.

15. Summary

T cell costimulation is important for the maintenance of
peripheral tolerance. Aberrant activation of T cells in
the absence of proper context can lead to hyper-in-
flammation, including autoimmunity. Therefore,
understanding the molecular players in this area is an
active and important area of investigation. This review
gives an overview of the field of T cell costimulation,
which led to the development of anti-tumor therapy. In
fact, it underscores the importance of basic research
that may reap translational benefits. In addition, the
development of CTLA4-Ig, which aids in dampening
the immune response, is approved for the treatment
against RA. We now know that there are multiple
players orchestrating the immune response. The iden-
tification of the two important checkpoint players,
CTLA4 and PD1, and their success has led to a new
area of immunotherapy. Although, we have come a
long way in our fight against cancer, there are issues
and challenges with this form of therapy. Better
understanding of additional players together with
clinical trials is likely to lead to strategies, either singly
or in combination, to increase the efficacy of anti-tumor
therapy in a vast majority of patients with lower toxi-
city and cost. In fact, the success of checkpoint
immunotherapy has led to the hope that the fight to win
against cancer is not too distant in the future.
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