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Breast cancer is the second leading cause of cancer-related death among females, worldwide. The cytokines are
proteins that have a significant role in the development of tumor growth. Leukemia inhibitory factor (LIF) of
the interleukin-6 cytokines superfamily plays a significant role, by the modulation of many signaling pathways.
This study summarizes some current works in breast cancer, in which LIF intervention is being discussed. LIF
promotes tumorigenesis, invasion, migration of breast cancer cells in vitro, metastasis of breast cancer in vivo,
epithelial-mesenchymal transition, and mediates pro-invasive activation of stromal fibroblast. LIF contributes
to inducing growth, tumorigenesis, and metastasis of breast cancer and is a significant biomarker for breast
tumors and can be a therapeutic target for clinical intervention.
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1. Introduction

Breast cancer as a global health problem is one of the
most common malignant tumors and the second leading
cause of death from cancer, after lung cancer in the
United States. However, with progress in prevention,
surgical resection and auxiliary therapies, the breast
cancer death rate has been declining, although about
268,600 new cases and 41,760 deaths in the United
States are reported in 2019 (DeSantis et al. 2019).
Eighty-one percent of breast cancers are diagnosed,
among women who have more than 50 years old, and
eighty-nine percent of deaths happen in this age group.
Metastasis to vital organs like lung, bone and brain is the
main cause of mortality in breast cancer (Nguyen et al.
2009). Despite the fact that surgery, chemotherapy and
radiation therapy can control many localized cancers,

metastasis is still a dilemma (Kozłowski et al. 2015;
Samandari et al. 2018; Wan et al. 2013).
There are many risk factors associated with breast

cancer development, including sex, obesity, older age,
genetics, lack of physical exercise, lack of maternity,
alcohol consumption, higher levels of estrogens, radia-
tion exposure, diabetes, positive family history, tobacco
smoking and early age at menarche (Anothaisintawee
et al. 2013; Gøtzsche and Jørgensen 2013; Johnson et al.
2011; I-Lee et al. 2012). A genetic mutation may play a
main role in developing breast tumor, such as mutations
in BRCA1 and BRCA2, P53 (Li–Fraumeni syndrome),
STK11 (Peutz–Jeghers syndrome) and PTEN (Cowden
syndrome) (Gage et al. 2012; Nandikolla et al. 2017;
Tsang et al. 2013). The RAS/MEK/ERK and phospho-
inositide 3-kinase (PI3K/AKT) pathways maintain nor-
mal cells from self-destruction. Mutation in the genes
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encoding these protective pathways results in cell sur-
vival, once no longer are needed, leading to the pro-
gression of cancer (Cavalieri et al. 2006).
Alterations in the growth factor signaling develop

malignant cell growth. Leptinin overexpression
increases cell proliferation, leading to breast cancer
(Jardé et al. 2011). Alteration in the expression of a
signaling molecule has a significant role in the activa-
tion of PI3K/AKT pathway, inactivation of mitogen-
activated protein kinases (MAPK) pathway, and
developing breast cancer (Guille et al. 2013). One of
these signaling molecules is leukemia inhibitory factor
(LIF) that mediates critical signaling pathway, includ-
ing the Janus tyrosine kinase/signal transducer, acti-
vator of transcription 3 (JAK/STAT3), PI3K signaling
pathways and p44/42 mitogen-activated protein kinase
(ERK1/2) (Burdon et al. 2002). The objective of the
present article is to review the intervention of the LIF
in breast cancer as a possible therapeutic target.

2. Leukemia inhibitory factor (LIF)

LIF with a molecular weight of 38 to 67 kDa is the
glycoprotein cytokine, belonging to the interleukin-6
cytokine superfamily, which includes IL-6, oncostatin
M, IL-11, cardiotrophin-1, ciliary neurotrophic factor,
and cardiotrophin-like cytokine (Boulton et al. 1994).
LIF with 180-amino-acid, as a multi-functional pro-
tein, acts in various tissues and cells, through the
activation of various signaling pathways (Gearing
1993).
Overexpression of human LIF has been shown in

the circulatory system or body fluids (Mashayekhi and
Salehi 2011) and various tissues, including the thy-
mus, lung (Fukada et al. 1997), hypophysis (Ches-
nokova and Melmed 2000), cardiac muscle (Ancey
et al. 2002), kidney (Morel et al. 2000), skin (Bonifati
et al. 1998), uterine gland cells (Song et al. 2000;
Vogiagis and Salamonsen 1999), neuronal tissue
(Guang Ren et al. 1998; Ren et al. 1999; My Thum
et al. 2006), and tumor tissues such as breast cancer
(Garcı́a-Tuñón et al. 2008; Kuphal et al. 2013),
nasopharyngeal carcinogenesis (Liu and Chang 2014),
oral squamous cell carcinoma (Ohata et al. 2018),
ovarian cancer (K McLean et al. 2019), pancreatic
cancer (Bressy et al. 2018), colorectal cancer (Liu
et al. 2015) and malignant melanoma (Kuphal et al.
2013). Elevated levels of the LIF have been found in
cases of inflammation (Gadient and Patterson 1999),
blastocyst implantation (Paiva et al. 2009), autoim-
mune diseases and cell proliferation (Kellokumpu-

Lehtinen et al. 1996). LIF can be produced by
immune cells, melanomas (Mattei et al. 1994), stim-
ulated T-lymphocytes, stimulated monocytes, carci-
noma cell lines (Kamohara et al. 1994), stromal cells
and cancer-associated fibroblasts (Ohata et al. 2018).
LIF production can be induced at mRNA level by
different elements, such as inflammatory factors in
different cells (Auernhammer and Melmed 2000;
Knight et al. 1999; Palmqvist et al. 2008; Sherwin
et al. 2004; Umemiya-Okada et al. 1992; Wetzler
et al. 1991). The LIF expression is also regulated by
estrogen and p53 in uterine tissues at the implantation
stage (Sherwin et al. 2004). In this stage, the estrogen
levels were elevated and caused the overexpression of
the LIF mRNA in the uterine tissues that is vital for
the implantation. In addition, the LIF expression at
the implantation stage requires P53. There are a
consensus P53-binding element on the LIF, control-
ling the LIF expression in uterine tissues (Yue et al.
2015).
Biological actions of the LIF are mediated by binding

to the LIF receptor complex that is made up of glyco-
protein gp130 and LIF receptor (LIF-R) subunit
(Gearing et al. 1993). This binding activates distinct
signaling pathways, including JAK/STAT3, MAPK,
PI3K/AKT, ERK1/2 and mTOR pathways (Arthan et al.
2010; Heinrich et al. 1998; Slaets et al. 2008). The first
known ability of LIF is murine M1 myeloid leukemia
differentiation and macrophage maturation that prevent
leukemia proliferation (Gearing et al. 1987a, b). LIF
may be a hematopoietic regulator (Metcalf 2003) and
potentially have a specific suppressive activity on some
myeloid leukemia (Gearing et al. 1987a, b; Hilton et al.
1988). It has been confirmed that LIF animates the
multiplication of factor-dependent hematopoietic and
murine leukemic cell lines (Laâbi et al. 2000; Moreau
et al. 1988). Further, LIF injected into mice led to an
increase in the number of megakaryocyte and platelet
cells after 7–10 days (Metcalf et al. 1990). LIF also
increased calcium to albumin ratios and raised ery-
throcyte sedimentation rate in the serum (Mayer et al.
1993). LIF as a crucial regulator of human embryonic
development plays a critical role in the implantation of
the developing embryo, such as the receptive condition
of endometrial, endometrial and embryo interaction,
blastocyst invasion and the penetration of uterine
leukocyte (Arici et al. 1995). It has been shown that
LIF-/- females were not able to become pregnant (Escary
et al. 1993; Stewart et al. 1992). Probably the reason for
this defect is the vital lack of estrogen-induced LIF
synthesis in the uterine wall when implanting blasto-
cysts (Chen et al. 2000; Croy et al. 1991). Implantation
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of LIF-/- blastocyst in a LIF?/? uterus forms a normal
embryo and LIF-/- mice can become pregnant by LIF
injection (Chen et al. 2000).
On the other hand, this is an important factor in the

mouse embryonic stem cell growth (Dimitriadis et al.
2010) and maintain the pluripotentiality of murine
embryonic stem cells (Smith et al. 1988; Thomson
et al. 1998; Williams et al. 1988). The best-known
ability of LIF is the inhibition of the differentiation of
embryonic stem cells in mice through activation of
the STAT3 pathway, causing self-renewal of stem cell,
stimulation of proliferation of mouse primordial germ
cells and induction of proliferation of myoblast
(Cheng et al. 1994; Niwa 2001). Additionally, LIF
affects the endocrine, reproductive, inflammatory and
immune systems (Taga and Kishimoto 1997), and
leads to the development of malignancies such as
rhabdomyosarcoma, choriocarcinoma and melanoma
(Fitzgerald et al. 2005; Maruta et al. 2009;
Wysoczynski et al. 2007). The LIF overexpression
enhances calcium resorption from bone and raises
osteoclast numbers (Dazai et al. 2000; Reid et al.
1990). By binding LIF to the surface of osteoblast
cells, it stimulates bone formation and results in bone
density. It has been shown that LIF increases the
maintenance of sensory and motor neurons (Murphy
et al. 1991) and affects the formation and the prolif-
eration rate of sensory neurons from neural crest cells
(Carpenter et al. 1999). In addition, LIF averts
oligodendrocyte death in multiple sclerosis animal
models (Butzkueven et al. 2002) and elevates the
migration of inflammatory macrophages in damaged
neuronal tissue (Sugiura et al. 2000). In early cellular
response to neural damage, LIF is an essential pro-
inflammatory factor and this may be attributed to a
direct chemotactic effect on inflammatory cells.

3. LIF and LIFR levels in breast cancer

The LIF overexpression has been shown at the
mRNA and protein levels in human breast cancer
(Dhingra et al. 1998; Kellokumpu-Lehtinen et al.
1996). The LIF level can be regulated by progestins
and antiprogestin (Bamberger et al. 1998), and influ-
ences the proliferation of fresh breast carcinoma cells
and some estrogen-dependent (MCF-7 and T47D),
and estrogen-independent (SK-BR3 and BT20) breast
cancer cell lines (Estrov et al. 1995). The hypoxia
condition in solid tumors induces the stabilization of
hypoxia-inducible factors (HIFs), and causes hypoxia
responses in the cells (Keith and Simon 2007). HIFs

bind to DNA, harboring a hypoxia-responsive element
(HRE; 50-G/ACGTG-30) and can control the tran-
scription of the associated target genes (Wu et al.
2015). The level of LIFR, gpl30 and LIF mRNA has
been shown controversial results in different labora-
tories. This may be due to the genetic and biological
differences between the various subtypes of the MCF-
7 cell. In a study, it was found that MCF-7 cells
expressed the LIFR and gpl30 only. The PCR and
ELISA results showed that LIF is not expressed in the
cell lysates or in the media, suggesting that LIF does
not increase growth through the autocrine pathway for
MCF-7 cells (Estrov et al. 1995). The other group of
researchers observed a high expression of LIFR
mRNA, LIF mRNA and LIF protein in primary breast
tumors. Interestingly, these researchers observed that
the LIF inhibits the MCF7 cell growth, compared to
MDA- MB-231, BT-549 and T-47D cells (Douglas
et al. 1997).
Dhingra et al. evaluated the LIF and LIFR

expression in 50 human breast cancer specimens. For
in situ detection of LIF/LIFR, they developed
immunohistochemical techniques and the expression
was observed about 78% and 80% in tumors,
respectively. These results indicate that LIF and LIFR
are greatly expressed in breast tumors, compared to
the normal specimen and their expression correlates
with desirable biological characteristics of breast
tumors (Dhingra et al. 1998). The LIF mRNA levels
have been evaluated in several human breast cancer
cell lines, such as T47D, MCF7, SK-Br-3, HS578T,
MDA-MB-232, BT474, and MDA-MB-468 cells (Li
et al. 2014). The LIF expression level fluctuates
among these cell lines, correlating with cell line
metastatic ability. In HS578T and MDA-MB-231
cells that exhibit higher metastatic abilities (Zaj-
chowski et al. 2001), the LIF expression level is
much higher than other cell lines with less metastatic
ability. Chen et al. assessed the expression level of
LIFR protein in human breast cancer cell lines. The
expression of LIFR was higher in non-metastatic
tumor cell lines MCF7, SUM159, SUM149, SUM229
and T47D, but was lower in the metastatic cell lines
(SUM1315 and MDA-MB-231). They also examined
the miR-9 expression in these cell lines and found
that miR-9 promoted metastasis by affecting the
metastasis suppressor E-cadherin (Ma et al. 2010),
and showed that downregulation of LIFR is corre-
lated to the miR-9 expression, and metastatic ability
and loss of LIFR promote the metastasis effects of
miR-9 in E-cadherin-negative breast cancer cells
(Chen et al. 2012).
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4. Functional role of LIF in breast cancer

4.1 LIF enhances breast cancer tumor growth

In an investigation, MCF7 cells interacted with radio-
labeled LIF; binding of LIF to its receptor was specific
and depended on period, amount and temperature
(Estrov et al. 1995). Incubation of cells with LIF after
72 hours promoted the total number of viable adherent
and non-adherent MCF7 cells three times, and the LIF
effect was less on the normal breast epithelial cell. In
addition, there are morphological differences between
LIF-incubated and unincubated cells. In the absence of
LIF, cells were mainly adherent; however, in the
presence of LIF, there was an elevation in the viable
non-adherent population (Estrov et al. 1995). The role
of exogenous LIF on the primary tumor cell growth in
methylcellulose cultures was studied, showing colony
growth was increasing 12–52% at a concentration of 40
ng/mL LIF (Dhingra et al. 1998). It has been proposed
that this growth could be the result of DNA synthesis
stimulation by LIF. In the other investigation,
immunohistochemistry results showed, in situ carci-
noma expressed the highest level of LIF, OSM and
OSMRb, compared to infiltrating tumors and benign
breast lesions. They found that the expression of LIF,
OSM, gp130, LIFRb and OSMRb increased by the
progression of breast tumor, and this correlated to the
malignancy. The LIF and OSM expression can develop
tumor epithelial cell growth and act as a growth factor
in breast cancer through a paracrine or autocrine
pathway (Garcı́a-Tuñón et al. 2008). Previous research
has shown that both OSM and LIF effect on breast
cancer biology due to that LIFRb and OSMRb are able
to activate STAT3, and activation of STAT3 is associ-
ated with the malignant phenotype (Turkson and Jove
2000). These effects lead to cell proliferation and
suppressing of the apoptosis through Bcl-Xl upregula-
tion (Catlett-Falcone et al. 1999).
Li and his colleagues assessed the ectopic and the

endogenous LIF expression in breast cancer, they
found that ectopic LIF expression enhanced the MDA-
MB-231, T47D, and MCF-7 cell proliferation, through
activation of the AKT-mTOR signaling pathway
(Fig.1). The LIF knockdown, using an AKT inhibitor,
wortmannin, decreases the MDA-MB-231 cell growth,
and inhibits the activation of AKT that leads to dis-
ruption of mTOR activation, and blocks the tumori-
genesis effect of LIF (Li et al. 2014). Kellokumpu-
Lehtinen investigated the role of LIF on proliferation of
MCF-7 and T-47D breast cancer cell lines. LIF
increased MCF-7 cell colony growth significantly at 40

ng/mL and 80 ng/mL concentration, and T-47D pro-
liferation at 20 ng/mL. Anti-LIF-neutralizing antibod-
ies decreased MCF-7 and T47-D cell proliferation. This
change was observed in media without serum and
estrogen. This shows that LIF is not dependent on the
presence of estrogen or any growth factor and cytokine
(Kellokumpu-Lehtinen et al. 1996). On the other hand,
LIF did not induce the proliferation of MDA MB-231
breast cancer cells (Kellokumpu-Lehtinen et al. 1996).

4.2 LIF inhibits normal breast epithelial cell
proliferation

The proliferation of non-malignant human breast
epithelial cells (HBECs) was inhibited after LIF (10 ng/d)
and OSM (10 ng/ml) therapy, separately. Interestingly,
the presence of a culture medium, containing mitogen
and epidermal growth factor (EGF) is necessary for
in vitro culture of HBECs. In spite of the presence of
breast cell mitogens, the inhibitory role of OSM and
LIF was observed in normal breast epithelial cells
(Grant et al. 2001). It has been observed that cells
decreased in the S-phase of the cell cycle and accu-
mulated in the G0/G1 cell cycle and thereby suppressed
cell proliferation.

4.3 LIF promotes breast cancer metastasis

LIF enhances breast cancer cell invasion and metasta-
sis, through AKT-mTOR signaling pathway activation
(figure 1). The regulatory effect of LIF on breast cancer
metastasis has been determined, using in vivo lung
metastatic assays and in vitro trans-well assays. T47D
and MDA-MB-231 cells treated by LIF were injected
into mice and in result enhanced lung metastasis and
induced distant metastasis to the neck, back, and
muscle. The role of LIF on breast cancer metastasis is
independent of estrogen receptor status; LIF has a
similar effect not only on ER-positive breast cancer
cells, including MCF7 and T47D but also on ER-
negative breast cancer cells like MDA-MB-231 (Li
et al. 2014). The mechanism by which the LIF has
promoted metastasis of breast cancer is the activation
of the mTOR signaling pathway through AKT. The
mTOR activation has suppressed by inhibiting AKT
and in result has inhibited metastasis of breast cancer.
Previous studies have reported that LIF production

was induced by TGF- b in cancer-associated fibroblasts
leads to pro-invasive activation of fibroblasts and raises
carcinoma cell invasion (Albrengues et al. 2014). In
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vivo study showed long noncoding RNA-CTD-
2108O9.1 could target LIFR and suppress metastasis of
breast cancer through a LIFR-dependent pathway.
LncRNACTD- 2108O9.1 has low expression in breast
cancer tissues and cell lines, and high expression in
normal breast epithelial cells. Lower expression of
lncRNA-CTD-2108O9.1 was correlated with high
metastasis to lymph node and in vitro studies showed
overexpression of lncRNA-CTD-2108O9.1 prevents
breast cancer cell migration and invasion (figure 1)
(Wang et al. 2018).
Metastasis of highly malignant tumor cells sup-

presses by restoring the LIFR expression in these cells.
LIFR alters the localization of Scribble (an upstream
regulator of Hippo signaling and is an assembled
adaptor of a protein complex) and activates Hippo
signaling, a tumor suppressor cascade, leading to
phosphorylation-dependent dysregulation of the tran-
scriptional co-activator YES-associated protein (YAP)
(Fig.1). In contrast, migration and invasion of non-
metastatic breast cancer cells, induced by loss of LIFR
through activation of YAP. Therefore, LIFR is a

metastasis suppressor of breast cancer (Chen et al.
2012). Patients with LIFR-negative breast tumors,
showed high distant metastasis with poor prognosis
(Piccolo 2012). Upregulation of miR-9, an upstream
regulator of LIFR and E-cadherin, results in inhibition
of membrane localization of Scribble and Hippo kina-
ses in E-cadherin-negative/LIFR-negative tumor cells.
This leads to YAP nuclear repletion and induces
metastasis (Ma et al. 2010). It has been proposed that
LIFR suppresses the metastasis by opposing the YAP
activity (Piccolo 2012).

4.4 LIF promotes Epithelial-mesenchymal
transition

The LIF overexpression promotes the development of
mesenchymal features in tumor cells; leads to epithe-
lial-mesenchymal transition (EMT) in breast tumor
cells; reduces epithelial marker E-cadherin expression
at mRNA and protein level, and enhances mesenchy-
mal markers such as vimentin and N-cadherin (Yue

Figure 1. Functional role of LIF in breast cancer. LIF increased the breast cancer cells proliferation, invasion and metastasis
through AKT-mTOR signaling pathway activation. LncRNA-CTD-2108O9.1 inhibits migration and invasion of breast cancer
cells through a LIFR-dependent pathway. LIFR alters localization of Scribble and induces activation of Hippo signaling
results in phosphorylation-dependent inactivation of the YAP and LIFR suppress metastasis of breast cancer. LIF promotes
expression of miR-21 through the STAT3 activation and miR-21 induces EMT.
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et al. 2016). EMT has a significant function in tumor
metastasis. Endogenous LIF knockdown, using two
different shRNA vectors, reverses EMT in breast can-
cer cells. Overexpression of miR-21through the acti-
vation of STAT3 at the down-stream of the LIF/LIFR
pathway induces EMT by decreasing E-cadherin and
increasing Vimentin and N-cadherin expression
(Fig. 1). Additionally, miR-21 affects several genes
(e.g. PTEN, TIAM1, PDCD4 and maspin) that are
inhibitors of migration, invasion and metastasis
(Asangani et al. 2008; Cottonham et al. 2010). The
above findings indicate that LIF promotes cancer
metastasis through EMT of tumor cells. Interestingly,
blocking of miR-21 suppresses the LIF effect on
morphological variations of cells from epithelial to
mesenchymal and consequently suppresses breast
cancer cell migration (Yue et al. 2016).

4.5 LIFR is a breast tumor suppressor

The whole-genome human RNAi library is used to
recognize functional tumor suppressor genes. Based on
this collection, LIFR has been established as a tumor
suppressor that its deregulation may contribute to the
transformation of a large number of human breast
cancers (Iorns et al. 2012). LIFR transcription expres-
sion is greatly reduced in breast carcinoma, hepato-
cellular carcinoma and colon adenocarcinoma
compared to normal samples and is inversely correlated
with tumor grade. The finding provides evidence that
during breast tumorigenesis, loss of LIFR expression
occurs and indicates that LIFR may be a clinically
important breast tumor suppressor. HMLERs cells
transformed the non-tumorigenic cell line, treated with
25 ng/mL of LIF, induced P-STAT signaling pathway
and decreased the invasion and migration. This study
concluded that LIFR suppresses breast cancer cell
invasion and migration (Dempsey et al. 2016).

4.6 LIF stimulates activation of fibroblasts
to promote invasiveness

Growth factors and cytokines secreted by the cancer cells
within the tumormicroenvironment activate the adjacent
fibroblasts (Calvo and Sahai 2011; Phan 2008). In vitro
experiment showed that LIF secretion was high in
invasive breast carcinoma cells and LIF production was
low in noninvasive cancer cells. Mouse tumor cells
produced LIF that contributed to the contractility of
mouse fibroblasts (Albrengues et al. 2014). It has been

reported that thirty days after injection of different type
of breast carcinoma cells, which produce LIF in low and
high levels, into mammary fat pads of syngeneic BALB/
c female mice, high LIF secretion was particularly
reported in the primary tumormass that produced by LIF
high-producer cells and this is associated with activation
of STAT3 in fibroblasts (Albrengues et al. 2014). It has
been shown that conditioned media (CM) of LIF high-
producer cells stimulated mouse dermal fibroblasts and
leads to activation of SMAD2 and expression of alpha-
smooth muscle actin (a-SMA), a hallmark of cancer-
associated fibroblasts.WhereasCMofLIF low-producer
cells failed to stimulate a-SMA expression and activate
SMAD2 and STAT3. They identified that LIF mediates
the pro-invasive activation of stromal fibroblasts inde-
pendent of a-SMA expression (Albrengues et al. 2014).

4.7 LIF-mediated signaling in breast cancer

LIF-LIFR complex activates the LIF signaling pathway,
including JAK/STAT3, PI3K/AKT, MAPK, and/or
ERK1/2 in different tissues and cell types (Gearing et al.
1992; Gearing et al. 1991). Li et al. demonstrated that
mTOR signaling was activated by LIF in breast cancer
(Li et al. 2014). The mTOR pathway activation in breast
cancer is a significant contributor to tumor development
andmetastasis (Seeliger et al. 2007;Wander et al. 2013).
Inhibition of the mTOR pathway revoked the metastasis
effect of LIF in breast cancer, therefore, mTOR pathway
activation intervenes with the enhancing tumorigenesis
and metastasis effect of LIF in breast cancer (Li et al.
2014). The other study showed that AKT interferes with
LIF activated mTOR pathway (Ohbayashi et al. 2007;
Slaets et al. 2008). AKT inhibition, using wortmannin
greatly abolishes the mTOR activation and abrogates
enhancing the effect of LIF on breast cancer tumorige-
nesis and metastasis. Hence, LIF through the AKT-
mTOR signaling pathway enhances tumorigenesis and
metastasis (Li et al. 2014).
The high level of LIF expression and activated

STAT3 have been identified in mouse breast tumors
and their primary cultures (Quaglino et al. 2007). This
observation suggests the impact of LIF on the STAT3
activation in mouse mammary tumors, leading to an
increase in tumor cell viability. After LIF-blocking,
using an antibody, STAT3 phosphorylation was sup-
pressed (Quaglino et al. 2007). MiRNA-125a affects
the LIF receptor and results in the homeostasis of not
only the nonmalignant but also malignant breast
epithelial stem cells via the Hippo signaling pathway.
Activation and suppression of LIFR are associated with
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the suppression and high expression of miR-125a,
respectively (Nandy et al. 2015). Activation of the
Hippo signaling pathway inactivates YAP protein and
results in the inhibition of migration and invasion.

4.8 Therapeutic approaches involving LIF-LIFR
signaling

It has been reported that LIFR-JAK1-STAT3 signaling
limits the efficacy of histone deacetylase (HDAC) inhi-
bitor, an epigenetic-based cancer therapy, on breast
cancer (Zeng et al. 2016). HDACi upregulates LIFR and
results in activation of JAK1-STAT3 signaling and
reduces drug response in breast cancer.HDACi enhances
histone acetylation at the LIFR gene promoter and
upregulates LIFR expression through recruiting bro-
modomain protein BRD4 and consequently regulates
JAK1-STAT3 signaling and restricts the reaction to
HDAC inhibition. It has been shown that simultaneous
inhibition of BRD4or JAK increases the effect ofHDAC
inhibitors in triple-negative breast cancers. These results
represent that inhibition of LIFR-JAK1-STAT3 signal-
ing by BRD4 and JAK inhibitors could be a potential
therapy for breast cancer (Zeng et al. 2016). In contrast,
evaluation of ruxolitinib, a selective JAK1/2 inhibitor in
the LIF-JAK-STAT3 signaling pathway, has shown that
anti-tumor efficacy was inhibited in metastatic triple-
negative breast cancer patients despite evidence of on-
target activity (Stover et al. 2018). It has been suggested
that this could be because of incomplete inhibition of
JAK-STAT by ruxolitinib or a cytostatic rather than a
cytotoxic effect. Furthermore, intratumoral heterogene-
ity may interfere with resistance (Stover et al. 2018).
The LIF/LIFR pathway is involved in breast cancer

metastasis through activation of the mTOR pathway. Li
et al. demonstrated that rapamycin, a specific inhibitor
of mTOR, is suppressed the effect of LIF in the inva-
sion and migration of MCF- 7, T47D and MDA-MB-
231 cells (Li et al. 2014). Taken together, these results
suggest that targeting LIF/LIFR signaling might be a
potent therapeutic strategy for breast cancer and the
prevention of tumor recurrence.

5. Conclusion

The results presented here indicate that the LIF and
LIFR expression were observed in 80% of breast
tumors. LIF expressed in several human breast cancer
cell lines, such as T47D, MCF7, SK-Br-3, HS578T,
MDA-MB-232, BT474, and MDA-MB-468 cells,

malignant, nonmalignant and one normal breast cell
line. The LIF expression level correlated with cell line
metastatic ability and was higher in cells with high
metastatic ability. LIF significantly contributes to the
development of growth, tumorigenesis, invasion and
metastasis of breast cancer. However, the effect of LIF
on normal breast epithelial lines was less significant,
leading to inhibition of the proliferation. The effect of
LIF on breast cancer is regulated by JAK/STAT3,
PI3K/AKT and AKT-mTOR pathways. The LIF
expression enhanced the proliferation through activa-
tion of the AKT-mTOR signaling pathway in breast
cancer cells. The knockdown of endogenous LIF
decreased breast cancer cell growth and inhibited the
mTOR signaling and tumorigenesis. In addition, LIF
increased invasion and metastasis of breast cancer
cells through AKT-mTOR signaling pathway activa-
tion. Metastasis of malignant tumor cells suppressed
by the LIFR expression in these cells. LIFR regulates
Scribble and leads to activation of Hippo signaling
through YES-associated protein. LIF has a direct
potential to develop EMT in breast tumor cells and
decrease the expression of epithelial markers and
increase mesenchymal markers. LIF developed the
expression of miR-21 through the STAT3 activation
and this miR-21 induces EMT. LIF activates STAT3
in mouse mammary tumors and enhances tumor cell
viability. Taken together, this study strongly suggests
that LIF is an important prognostic biomarker for
breast cancer and can be a therapeutic target for
clinical intervention.

6. Future perspective

Further investigations of the effects of LIF as a thera-
peutic target for breast cancer and the means of inter-
rupting its stimulatory pathways are warranted.
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