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Subcellular localization prediction of the proteome is one of major goals of large-scale genome or proteome
sequencing projects to define the gene functions that could be possible with the help of computational
modeling techniques. Previously, different methods have been developed for this purpose using multi-label
classification system and achieved a high level of accuracy. However, during the validation of our blind dataset
of plant vacuole proteins, we observed that they have poor performance with accuracy value range from
*1.3% to 48.5%. The results showed that the previously developed methods are not very accurate for the plant
vacuole protein prediction and thus emphasize the need to develop a more accurate and reliable algorithm. In
this study, we have developed various compositions as well as PSSM-based models and achieved a high
accuracy than previously developed methods. We have shown that our best model achieved *63% accuracy
on blind dataset, which is far better than currently available tools. Furthermore, we have implemented our best
models in the form of GUI-based free software called ‘VacPred’ which is compatible with both Linux and
Window platform. This software is freely available for download at www.deepaklab.com/vacpred.
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1. Introduction

Vacuoles represent the cellular component of any living
cell that varies in size and shape (Zhang et al. 2014a).
Plant vacuole is represented by a single large structure
that is involved in diverse functions such as plant growth
and development, maintaining cellular homeostasis,
cellular function to retaining turgor and nutrients, ions
and secondary metabolites accretion (Pereira et al.
2014). Inside the seeds, the vacuole acts as the storage
site of proteins and carbohydrates, various kinds of fla-
vonoids for flower and fruit color, and is also associated
with cellular response to the environment (Grotewold
2006; Marty 1999; Park et al. 2004). Vacuole proteins

function as a transporter to transport diverse class of ions,
sugars, amino acids, and other molecules (Zhang et al.
2015). Lytic vacuole plays significant role in the degra-
dation of cellular waste, defence, and program cell death
(Ibl and Stoger 2014; Shimada et al. 2018).
With the availability of the whole genome or proteome

of any plant, the ultimate goal is their fast and accurate
functional assignment which depends upon the subcellu-
lar location of the proteins. The experimental method of
subcellular localization is a very tedious and time-con-
suming process, therefore the focus is on the development
of automatic and fast computational tool for accurate
prediction. In the past, different multi-class algorithms
have been developed for subcellular localization of pro-
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teins such as BaCelLo (Pierleoni et al. 2006), MultiLoc2
(Blum et al. 2009), Plant-mPLoc (Chou and Shen 2010),
PProwler 1.2 (Hawkins and Bodén 2006), Predotar v1.03
(Boden and Hawkins 2005), TargetP 1.1 (Emanuelsson
et al. 2000), WoLF PSORT (Horton et al. 2007), YLoc
(Briesemeister et al. 2010), pLoc-mPlant (Cheng et al.
2017), and Plant-mSubP (Sahu et al. 2019). However,
none of them is specifically designed for the plant vacuole
proteins, and thus perform very poorly in predicting the
plant vacuole proteins. This emphasizes the need for an
accurate computational model specifically trained for the
plant vacuole proteins. Therefore, in this study, we
developed a SVM-based prediction model for classifica-
tion of vacuole proteins which is much better than previ-
ously developed software.

2. Materials and methods

2.1 Dataset preparation

The dataset used in this study was derived from publi-
cally available database UniprotKB/SwissProt (release 3
July 2019). We searched the database with the query:
(taxonomy: viridiplantae, location: SL-0272, length:
[50, and reviewed: Yes), removed sequences with non-
standard amino acids and identified a total of 579 plant
vacuole proteins. To develop a supervised machine-
learning-based model, the requirement of negative data
is must. Thus, in a similar manner, we created the neg-
ative dataset with the query (taxonomy: viridiplantae,
NOT location: SL-0272, length:[50 and reviewed: Yes)
and identified 36,189 non-vacuole proteins from plants.
To develop a non-redundant dataset of both vacuole and
non-vacuole proteins, we used the CD-HIT program at
40% and 60% sequence identity threshold (Li and
Godzik 2006). In case of vacuole proteins, this results in
a total of 200 and 274 sequences at 40%and 60% identity
cut-off. Similarly, CD-HIT results in 9485 proteins
sequences at 40% identity cut-off from the non-vacuole
protein dataset. To create a balanced dataset, we ran-
domly selected 200 proteins from negative dataset and
used them for developing the prediction model (Wei
et al. 2018a). Thus, our final training dataset had 200
vacuole and 200 non-vacuole plant proteins. Hereafter,
we call them positive and negative datasets.

2.2 Independent dataset

Evaluation of the performance of any machine-learn-
ing-based model requires an independent dataset.

Therefore, to create an independent dataset, we con-
sidered the difference of proteins at 60% (274) and
40% (200) cut-off and used it as an independent pos-
itive dataset. An equal number from the negative
dataset which was not present in negative training
dataset was used for creating negative independent
dataset. Thus, our independent dataset consisted of 74
vacuole and 74 non-vacuole protein sequences.

2.3 Blind dataset

A blind dataset of plant vacuole proteins was created
from the cropPAL database (Hooper et al. 2016). This
database had experimentally determined (FP or MS/
MS experiments) and predicted (more than 10 soft-
ware) subcellular location of proteins from the 12 dif-
ferent plants. We extracted 228 vacuole proteins which
were experimentally verified by either FP or MS/MS
experiment. Further, one protein of length shorter than
50 amino acids was removed, thus making our final
dataset of 227 vacuole proteins.

2.4 Feature calculation

To develop a machine-learning-based predictive model,
a fixed-length vector is an essential requirement. In the
past, different types of protein features, such as com-
position-based, physicochemical properties, and posi-
tion-specific sequence matrix (PSSM), were used to
develop robust prediction models. These features can
be easily calculated by simple mathematical expres-
sions. In this study, we used 7 types of composition-
based features and 21 types of PSSM-based features to
develop an efficient and reliable prediction model
(supplementary table 1).

1. Composition-based features

a. Amino acid composition (AAC): This is most
widely used in developing protein sequence-
based predictionmodels. In this case, any protein
sequence is represented by 20 amino acids of
fixed length. Percentage of each amino acid
residue in a protein sequence is calculated as:

Percentage of amino acid ið Þ

¼ Total number of amino acid ið Þ
Total number of amino acids in protein

� 100

ð1Þ

where i represent one of the 20 standard amino acids.

106 Page 2 of 9 A K Yadav and D Singla



b. Dipeptide composition (DPC): In this method,
the composition of two consecutive amino
acids of a sequence is calculated. This has a total
vector of size 400 (20 9 20) having partial
information of the order of amino acids. It can
be calculated using the following formula:

Dipeptide composition ið Þ

¼ Total number of Dipeptide ið Þ
Total number of all possible dipeptides

� 100

ð2Þ

where i represent one out of 400 dipeptides.
c. Tripeptide composition (TPC): Tripeptide

composition represents the percentage compo-
sition of each of the 8000 possible tripeptide
form by 20 amino acids and calculated as:

Tripeptide composition ið Þ

¼ Total number of Tripeptide ið Þ
Total number of all possible Tripeptides
� 100

ð3Þ

where i represent one out of 8000 tripeptides.
d. C-terminal Composition: Previously, it was

observed that the C-terminal protein region
might have any significant roles in biological
activity, so this portion could be used for
separate sequence composition calculations. In
this study, we extracted the 5 and 10 amino
acid residues from the C-terminal region of the
protein and used for calculation of amino acid
composition.

e. Split and rest amino acid composition: Previ-
ous studies reported that some important
sequence motifs might be present in a specific
protein region and help to improve prediction
accuracy (Srinivasan et al. 2013). In the case,
the whole protein is split into three equal parts
and composition of each part is calculated
separately. However, in case of rest composi-
tion method, amino acid composition of
protein is calculated after removing the spec-
ified N- and C-terminal residues. In our case,
we removed 10 residues from each of N- and
C-terminal of protein and calculate the com-
position of rest region of protein.

2. PSSM-based features
PSSM profile generated using the PSI-blast search is
based on evolutionary information used to identify

the remote homologs. Previously, it has been used in
developing various machine-learning-based models
for the sequence annotation (McGuffin et al. 2000;
Saha et al. 2006). POSSUM server was used to
produce a PSSM profile based on the uniref50
database searched for three iterations at e-value 0.001
and 21 different types of PSSM-based features were
calculated and used formodelling (Wang et al. 2017).
POSSUM divided these features set into four major
groups, i.e. generated by transformation of rows,
columns, both row and column, combination of all
these features (supplementary table 1).

2.5 Support Vector Machine (SVM)

SVM is a powerful machine-learning software that has
been extensively used in various bioinformatics anal-
yses (FY et al. 2019; Boopathi et al. 2019; Manavalan
et al. 2018a, 2018b; Manavalan and Lee 2017; Wei
et al. 2018b). This is a very reliable technique for
biological sequence analysis due to its capability of
handling noise and high-dimensional feature space
(Zavaljevski et al. 2002). SVM allows the users to tune
various parameters available for different kernels such
as linear, polynomial, sigmoid, or radial basis function
(RBF) (Ramana and Gupta 2009; Ramana 2015; Mis-
hra et al. 2014). In this study, we used freely available
software SVMlight (http://svmlight.joachims.org) to
train SVM classifiers and develop prediction models.

2.6 Five-fold cross-validation

A five-fold cross-validation technique was used to
examine the quality of develop models. In the case, the
complete dataset was divided into five equal subsets of
which four subsets were combined and used for as a
training set and fifth subset was used as test set. The
complete process was repeated five times so that each
subset was used as a test set at least one time.

2.7 Performance evaluations

To evaluate the quality of developed models, we used
confusion matrix metrics with sensitivity, specificity,
accuracy, and Matthew correlation coefficient (MCC)
as described previously (Dao et al. 2019). Area under
receiver opening curve (ROC) was also considered to
measure the overall prediction performance.
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Sensitivity ¼ TP

ðTPþ FNÞ � 100 ð4Þ

Specificity ¼ TN

ðTN þ FPÞ � 100 ð5Þ

Accuracy ¼ ðTPþ TNÞ
ðTPþ FPþ TN þ FNÞ � 100 ð6Þ

MCC ¼ ðTP� TNÞ � ðFP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTPþ FPÞðTN þ FPÞðTN þ FNÞ
p

ð7Þ

Here TP, FP, TN, and FN are the true positives, false
positives, true negatives, and false negatives,
respectively.

3. Results

3.1 Composition-based models

The present study reported the various composition-
based models developed using amino acid, dipeptide,
C-terminal, and rest and split amino acid composition
for the annotation of plant vacuole proteins. Firstly, the
model developed on AAC resulted in *79% accuracy
with an MCC value 0.58 on the independent dataset
(table 1). Similarly, the dipeptide composition-based
model showed 82.43% sensitivity and 78.38% speci-
ficity with an accuracy of 80.41% on the independent
dataset (table 1). However, C-terminal-based C5 and
C10 model performed poorly with maximum accuracy
*49% and 55% on independent datasets respectively.
Furthermore, the model developed using split and rest
amino acid composition achieve 70.95% and 75.68%
accuracy on independent datasets. As observed from
table 1, DPC-based model performs the best compared
with all the other composition-based models.

3.2 PSSM-based models

Based on the PSSM profile, we developed 21 different
models for evaluating the significance and performance of
each of the PSSM-based features. Among the various
row-transform-based features, AAC-PSSM showed
93.24% sensitivity, 78.38% specificity, and 85.81%
accuracywithMCCvalue 0.72 on an independent dataset.
From table 2, we observed that F-PSSM and Smooth-
PSSM performed poorly with maximum MCC values
0.30 and 0.46 on independent dataset respectively.

Conversely, S-PSSM and RPM-PSSM performed well
among the row-transformed features with RPM-PSSM
more balanced compared to S-PSSM in terms of sensi-
tivity and specificity values (table 2). Similarly, among
the column-transformed features, K-PSSM and TRI-
PSSM performed the best with sensitivity 90.54%/
93.24%, specificity 82.43%/82.43% with accuracy value
86.49%/87.84% respectively. However, DPC-PSSM and
TPC-PSSM were not as good as compared to the others.
We observed that the model developed on mixed features
performed better compared to individual transformed
features (table 2). As evident from table 2, K-PSSMwas
the best performing balanced model in terms of accuracy
and MCC value among all the PSSM-based models.

3.3 Validation on blind dataset

The blind dataset of vacuole proteins constructed in
this study was used to evaluate the performance of our
best models. We considered our two best model: DPC
model and K-PSSM model, and compared the perfor-
mance with previously developed models. The pre-
diction results of previously developed models showed

Table 1. Performance of composition-based models on
training and independent datasets

Feature Sensitivity Specificity Accuracy MCC ROC

AAC-
Train

76.00 72.00 74.00 0.48 0.79

AAC-
Ind

83.78 74.32 79.05 0.58 0.87

DPC-
Train

70.00 81.00 75.50 0.51 0.80

DPC-
Ind

82.43 78.38 80.41 0.61 0.84

TPC-
Train

62.00 83.50 72.75 0.47 0.78

TPC-
Ind

74.32 78.38 76.35 0.53 0.86

Split-
Train

74.50 68.00 71.25 0.43 0.76

Split-
Ind

82.43 59.46 70.95 0.43 0.80

Rest-
Train

76.50 70.00 73.25 0.47 0.79

Rest-
Ind

82.43 68.92 75.68 0.52 0.85

C5-
Train

55.00 61.50 58.25 0.17 0.59

C5-Ind 41.89 56.76 49.32 –0.01 0.53
C10-
Train

57.50 59.00 58.25 0.17 0.57

C10-Ind 60.81 50.00 55.41 0.11 0.59
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very poor performance with accuracy varies from
1.32% to 41.85% (figure 1, table 3). BaCello has
incorporated the amino acid composition, sequence
profile, and signal information to develop the SVM-
based model. However, MultiLoc2 is based on a six-
layered prediction that uses gene ontology and

phylogenetic information along with sequence com-
position and motif analysis. Similarly, Plant-mPLoc is
specially designed for plant proteins classification with
protein domain, gene ontology, and evolutionary
information along with sequence composition. TargetP
is based on N-, C-terminal signal sequences, while

Table 2. Performance of the PSSM-based models on training and independent datasets

Feature Sensitivity Specificity Accuracy MCC ROC

Row-transformation-based descriptors
AAC-PSSM-Train 75.00 76.50 75.75 0.52 0.80
AAC-PSSM-Ind 93.24 78.38 85.81 0.72 0.91
S-PSSM-Train 86.50 70.50 78.50 0.58 0.82
S-PSSM-Ind 97.30 63.51 80.41 0.65 0.91
F-PSSM-Train 62.00 65.00 63.50 0.27 0.66
F-PSSM-Ind 90.54 33.78 62.16 0.30 0.72
AB-PSSM-Train 76.50 75.00 75.75 0.52 0.80
AB-PSSM-Ind 93.24 68.92 81.08 0.64 0.90
PSSM-Comp-Train 74.00 76.50 75.25 0.51 0.81
PSSM-Comp-Ind 94.59 83.78 89.19 0.79 0.94
RPM-PSSM-Train 78.50 77.00 77.75 0.56 0.84
RPM-PSSM-Ind 94.59 74.32 84.46 0.70 0.91
Smooth-PSSM-Train 71.50 66.50 69.00 0.38 0.73
Smooth-PSSM-Ind 83.78 60.81 72.30 0.46 0.84
Column-transformation-based descriptors
DPC-PSSM-Train 64.50 86.00 75.25 0.52 0.81
DPC-PSSM-Ind 91.89 85.14 88.51 0.77 0.96
K-PSSM-Train 76.50 87.00 81.75 0.64 0.86
K-PSSM-Ind 90.54 82.43 86.49 0.73 0.93
TRI-PSSM-Train 74.00 85.50 79.75 0.60 0.87
TRI-PSSM-Ind 93.24 82.43 87.84 0.76 0.93
EEDP-PSSM-Train 74.50 76.00 75.25 0.51 0.80
EEDP-PSSM-Ind 98.65 75.68 87.16 0.76 0.92
TPC-PSSM-Train 88.00 53.00 70.50 0.44 0.79
TPC-PSSM-Ind 95.95 51.35 73.65 0.53 0.88
Mixed row- and column-transformation-based descriptions
EDP-PSSM-Train 70.00 67.50 68.75 0.38 0.71
EDP-PSSM-Ind 87.84 68.92 78.38 0.58 0.81
PSE-PSSM-Train 80.00 78.00 79.00 0.58 0.85
PSE-PSSM-Ind 97.30 71.62 84.46 0.71 0.91
DP-PSSM-Train 83.00 75.00 79.00 0.58 0.84
DP-PSSM-Ind 98.65 68.92 83.78 0.71 0.91
PSSM-AC-Train 56.50 77.00 66.75 0.34 0.70
PSSM-AC-Ind 70.27 77.03 73.65 0.47 0.78
PSSM-CC-Train 63.50 82.50 73.00 0.47 0.78
PSSM-CC-Ind 77.03 83.78 80.41 0.61 0.89
R-PSSM-Train 77.00 69.00 73.00 0.46 0.77
R-PSSM-Ind 98.65 71.62 85.14 0.73 0.90
Combinative descriptors
AADP-PSSM-Train 64.00 87.50 75.75 0.53 0.81
AADP-PSSM-Ind 91.89 89.19 90.54 0.81 0.96
AATP-Train 80.50 63.50 72.00 0.45 0.78
AATP-Ind 91.89 68.92 80.41 0.62 0.90
MEDP-Train 74.00 75.50 74.75 0.50 0.80
MEDP-Ind 95.95 75.68 85.81 0.73 0.92

Train: training dataset; Ind: individual dataset; MCC: Matthews correlation coefficient; ROC: area under receiver opening curve.
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WoLF PSORT, in addition to signal, is based on
composition and functional motifs. Recently, Plant-
mSubP for classification of single as well as dual-label
plant protein has been developed which shows the best
performance on a hybrid model (PseAAC-NCC-
DIPEP) composed of pseudo-amino acid composition,

N-terminal signal, and dipeptide composition. Fur-
thermore, most of the good performing models have
predicted multiple locations rather than one location, as
evident from the cropPAL database. This clearly shows
that these models have not captured sufficient features
for plant vacuole proteins. However, our DPC and
K-PSSM model has correctly classified 136 and 143
proteins with accuracy 59.91%, and 62.99% respec-
tively (figure 1). The high accuracy clearly indicates
the applicability of our models.

3.4 Software

Based on our study, we have developed GUI-based
software ‘VacPred’ that is compatible with the different
operating systems (figure 2). We have incorporated our
two best algorithms – DPC model and K-PSSM model
– for the prediction of plant vacuole proteins. To exe-
cute the DPC-based prediction, users only need a
protein sequence fasta file without any limitation on file
size or number of sequences. Our K-PSSM-based
model is based on the features calculated using POS-
SUM software; thus, users need to first calculate the
K-PSSM features using POSSUM software and the
output file of this software is directly given as input for

Table 3. Benchmarking of different software on blind
datasets

Software
Vacuole
predicted

Accuracy
(%)

BaCelLo 48 21.15
MultiLoc2 4 1.76
Plant-mPLoc 39 17.18
PProwler 1.2 95 41.85
Predotar v1.03 39 17.18
TargetP 1.1 65 28.63
WoLF PSORT 9 3.96
YLoc 3 1.32
pLoc-mPlant 45 19.83
Plant-mSubP-DPC 64 28.19
Plant-mSubP-
PseAACNCCDipep

38 16.74

VacPred-DPC 136 59.91
VacPred-PSSM 143 62.99

Figure 1. Performance of different software on the blind dataset.
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the prediction of plant vacuole proteins. VacPred is
developed using nodejs-based framework from electron
software that used javascript and PERL in the backend.
This is accessible at www.deepaklab.com/vacpred.

4. Discussion

Next-generation sequencing has completed various
genome or transcriptome projects and many more are
in progress. Genome annotation including subcellular
localization is the most crucial and important steps of
any genome sequencing projects that shed the light on
protein structure and functions. Among the various
cellular organelles, plant vacuole is one of the most
important components of plant cells that perform
diverse functions (Zhang et al. 2014a, b; Pereira et al.
2014). The experimental identification of plant vacuole
protein is a time-consuming and costly affair that
requires sophisticated instruments and manpower.
To overcome this, machine-learning-based compu-

tational methods evolved as highly efficient and less

expensive way of sequence annotation. Furthermore,
our analysis confirmed that all the previously devel-
oped models were not able to predict plant vacuole
proteins with high accuracy. We applied machine-
learning-based techniques and developed more than 30
different types of models. In the end, we had selected
two best performing models including one dipeptide
composition-based and one PSSM-based model. Both
models showed similar performance on a blind dataset
with *60% and *63% accuracy on DPC and
KPSSM-based model. Based on this analysis, we
developed a standalone GUI software ‘VacPred’ that
will be useful for large-scale annotation projects for the
plant vacuole protein prediction.
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