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Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent progenitor cells of mesodermal origin
possessing multilineage differentiation potential and ease of expansion in vitro. Over the years, these cells have
gained attention owing to their potential in cell-based therapies in treating various diseases. In particular, the
wide spectrum of immunoregulatory/immunomodulatory role of MSCs in various clinical conditions has
gained immense attention. The immunomodulatory properties of BM-MSCs are mediated by either cell–cell
contact (interactions with various immune cells in a context-dependent manner), paracrine mode of action or
extracellular vesicles, making them a potential option as immunosuppressants/immunomodulators in treating
various clinical conditions. A plethora of studies have demonstrated that MSCs do so by exhibiting a profound
effect on various immune cells for example they can inhibit the proliferation of T cells, B cells, and natural
killer cells; modulate the activities of dendritic cells and induce regulatory T cells both in vitro and in vivo. In
this review we aim at briefly elucidating the characteristics of BM-MSCs, specifically addressing the current
understanding on the hypoimmunogeneticity and immunomodulatory properties of the same with specific
reference to their interactions with B cells, T cells, Dendritic cells and natural killer cells. We also aim at
reviewing the secretory profile and their role in some clinical conditions that have shown promising outcomes.
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1. Introduction

Mesenchymal stem cells (MSCs) are heterogeneous
sub-populations of multipotent cells and their culture
characteristics, mode of actions of MSCs have been
increasingly recognized over a period of more than 50
years (Dominici et al. 2006; Friedenstein et al. 1966;
Trivedi et al. 2019). The International Society for
Cellular Therapy (ISCT) has characterized MSCs as
multipotent mesenchymal stromal cells and recom-
mends this to refer the plastic-adherent elements from
stromal tissues, while holding the term mesenchymal
stem cells to refer the subpopulation that really has the
two cardinal stem cell properties, i.e. self-renewal and

the ability to separate down into various lineages
(Dominici et al. 2006). The criteria set down by ISCT
incorporate the MSCs (i) being plastic adherent, (ii)
having osteogenic, adipogenic, and chondrogenic tri-
lineage differentiation potential, (iii) and being positive
([95%) for CD 73, CD 90 and CD 105, and negative
(\2%) for CD34, CD45, CD14 or CD11b (present on
monocytes and macrophages), CD79-a or CD19, and
HLA-DR except if stimulated with IFN-c (Chan et al.
2006; Chan et al. 2008). They were initially identified
as the supportive cells for hematopoietic stem cells
(HSC), that form the microenvironmental niche, but
with time, their role independent of nurture cells has
emerged.
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Apart from being first identified and isolated from
bone marrow, MSCs have been also isolated from other
sources like adipose tissue, umbilical cord, placenta and
fetal membrane, dental pulp, skeletal muscle, amniotic
fluid, fetal blood, peripheral blood, Wharton’s Jelly and
corneal limbus and have been shown to have similar
characteristics (Ab Kadir et al. 2012; Campagnoli et al.
2001; Erices et al. 2000; Gronthos et al. 2000; In’t
Anker et al. 2003; Polisetty et al. 2008; Raynaud et al.
2012; Wang et al. 2004; Zuk et al. 2001). In addition to
mesodermal lineage, MSCs have also exhibited trans-
differentiation potential into neuroectodermal lineages
like neuronal cells and endodermal lineages like hepa-
tocytes and pancreocytes (An et al. 2014; Anghileri
et al. 2008; Datta et al. 2011; Gabr et al. 2013;
Govindasamy et al. 2011; Hang et al. 2014; Lee et al.
2004; Naghdi et al. 2009; Pavlova et al. 2012; Safford
et al. 2002; Stock et al. 2014; Tang et al. 2012). Having
regenerative potential and affinity to home to the
damaged sites, MSCs have paved way in research and
clinical applications in tissue regeneration, bone disor-
ders, metabolic diseases, etc. (Horwitz et al. 2002; Koc
et al. 2002; Undale et al. 2009) Other than MSC char-
acteristics like self-renewal, multipotency and regener-
ation, another characteristic that has drawn the attention
of clinicians and researchers is the immunoregulatory
aspect of MSCs. Over the years, these added charac-
teristics and potential have drawn the attention of clin-
icians and researchers. Low or absence of HLA class I
antigens, protect these cells from cell-mediated cyto-
toxicity, thus eliminating the risk of being considered as
non-self and being targeted. MSCs have been reported
to secrete a multitude of growth factors and cytokines
(prostaglandin, interleukins, tumor necrosis factor-
stimulated gene, etc.) which contribute to the paracrine
effects on the target tissue (Monsel et al. 2014).
Specifically, the microvesicles released from MSCs,
carrying mRNA, microRNA, and proteins induce
remodeling and a stem cell-like phenotype in injured
cells (Biancone et al. 2012; Chen et al. 2015). Inter-
estingly, recent studies indicate that it’s not just MSCs,
even the apoptotic, metabolically inactivated or even
fragmented MSCs possess immunomodulatory poten-
tial (Gonçalves et al. 2017; Luk et al. 2016). In view of
these two unique characteristics of MSCs, and the
diminishing evidence for its properties of transdiffer-
entiation, researchers and scientists have explored their
potential to serve as ‘‘adjuncts’’ along with other forms
of cell therapy. Among the different sources of MSCs,
BM-derived MSCs have been studied extensively and
offer the widest avenues for therapeutics in human
regenerative medicine.

This review summarizes the immunoregulatory/im-
munomodulatory properties of BM-MSCs and their
potential role as well as their proven role as a cell-
based therapy.

2. Bone marrow mesenchymal stem cells

MSCs were first identified in the BM (0.01% to
0.001%) as adherent cells with the characteristic fea-
tures like self-renewal and multipotency i.e. differen-
tiating into mesodermal lineages like adipocyte,
chondrocyte and osteocytes (Friedenstein et al. 1970;
Koppula et al. 2010; Peister et al. 2004; Polisetti et al.
2010). Besides mesodermal lineage, BM-MSCs have
also been shown to transdifferentiate into neuro-ecto-
dermal lineages-neuronal cells and endodermal lin-
eages hepatocytes (Lee et al. 2004; Naghdi et al. 2009;
Stock et al. 2014; Tang et al. 2012). The summary of
the characteristic features of BM-MSCs is enlisted in
table 1. In view of their ability to home to the damaged
sites and regenerate the target tissues, MSCs have
paved the way for research and clinical applications in
tissue regeneration, bone disorders, metabolic, etc.
(Ren et al. 2008). BM-MSCs exhibit moderate levels of
class I major histocompatibility complex (MHC), lack
expression of class II MHC and other co-stimulatory
molecules like CD 80, CD40, CD40L, Fas ligand,
B7–1 or B7–2 on their surface (Deans and Moseley
2000; Hass et al. 2011; Pittenger et al. 1999; Tse et al.
2003). Fu et.al reported that BM-MSCs demonstrate
upregulation of MHC-II expression upon stimulation
with a minimal dose of IFN-c (pro-inflammatory
cytokine), although the expression levels of co-stimu-
latory molecules remained intact (Fu et al. 2015). BM-
MSCs exert their effect by interacting with immune
cells like B cells, T cells, NK cells and dendritic cells
and also by secretion of soluble factors like growth
factors and cytokines such as granulocyte-macrophage
CSF (GM-CSF), macrophage-colony stimulating factor
(M-CSF), Interleukin (IL) IL-6, IL-11, IL-7, IL-8, stem
cell factor, thyroid peroxidase, FLT3L, stem cell-
derived factor (SDF-1), hepatocyte growth factor
(HGF), monocyte chemoattractant protein 1 (MCP-1),
insulin growth factor 1 (IGF-1), transforming growth
factor (TGF)-b, platelet-derived growth factor (PDGF),
vascular endothelial growth factor (VEGF), angiopoi-
etin-1 and basic fibroblast growth factor (bFGF)
involved in hematopoiesis, immunomodulation, vas-
cular stabilization (Carmeliet and Jain 2011; Majumdar
et al. 2000; Park et al. 2009). This peculiar profile of
BM-MSCs (summary listed in table 1), makes them

98 Page 2 of 17 Aparna Mohanty et al.



immune elusive and hence a potential candidate for
cellular therapies.

3. Immunomodulation by BM-MSCs

The immunoregulatory properties of BM-MSCs are
facilitated by their interactions with immune cells like T
cells, B cells, dendritic cells, macrophages and natural
killer (NK) cells in a context and microenvironment
dependent manner (Wang et al. 2014). These cells are
also known to inhibit NK cell activity, B cell prolifer-
ation, DC differentiation and function (Augello et al.
2005; Jiang and Xu 2020; Sotiropoulou et al. 2006).
Interestingly MSCs are also known to act as antigen-
presenting cells (APC) at low concentration of IFN-c
but the response reduces at high concentration of IFN-c
(Chan et al. 2006). BM-MSCs are known to immuno-
suppress the local environment by virtue of their
secretions (cytokines and growth factors) and cell-cell

contact. For example, soluble factors like growth factors
and cytokines namely prostaglandin E2 (PGE2), indo-
leamine 2,3-dioxygenase (IDO), IL-6 and M-CSF have
been explored and evaluated in various clinical studies
and the cell-based properties have been explored in
many T-cell-mediated diseases like graft-versus-host
disease (GVHD), Crohn’s disease, etc., via T-cell sup-
pression (Bartholomew et al. 2002; Dean and Bishop
2003; Di Nicola et al. 2002; Duijvestein et al. 2010; Le
Blanc et al. 2004). Evidence from mixed lymphocyte
reactions (MLR) suggests that both undifferentiated and
differentiated BM-MSCs have suppressive effects on
mitogen-stimulated and alloantigen lymphocyte prolif-
eration followed by a concomitant reduction in the
production of proinflammatory cytokines such as tumor
necrosis factor (TNF-a) and interferon-c (IFN-c)
(Klyushnenkova et al. 2005; Koppula et al. 2009).
Thus, the clinical applications of human BM-MSCs are
substantially greater than other human Stem Cells (SC),
ranging from transplantation, immune-related disorders
including autoimmune disorders and cell replacement
for degenerative diseases–common application for stem
cells (Le Blanc et al. 2008).

4. Mechanisms of immunomodulation

Although the exact mechanism behind the
immunomodulation is still evolving, MSCs have
shown to exert their immunomodulatory effects by
mainly two mechanisms: (1) by soluble factors and (2)
by cell-cell contact (figure 1).
Inflammation is a primary response by the immune

system during tissue damage. Several factors and
cytokines that are produced in inflamed tissue stimulate
migration, proliferation, and differentiation of cells.
Possibly, BM-MSCs protect cells from excessive
damage by controlling the transition from inflammation
to repair steps thereby preventing the production of
extracellular matrix responsible for fibrosis. It has been
reported that BM-MSCs can regulate the functional
activity of lymphocyte and other immune cell types in a
microenvironment dependent manner (Bartholomew
et al. 2002; Rubtsov et al. 2012). Soluble factors such
as IFN-c and TNF-a secreted by activated lymphocytes
in vitro initiate the BM-MSC mediated immunosup-
pression, inducing synthesis of protein factors induci-
ble nitric oxide synthase (iNOS) and Indoleamine 2,3-
dioxygenase (IDO) products (kynurenine and NO) of
which have been reported to hinder lymphocyte func-
tion and proliferation (Rasmusson 2006; Raynaud et al.
2012; Ringdén et al. 2006).

Table 1. Summary of Characteristics of BM-MSCs

Sl.
no. Characteristics of BM-MSCs References

1. Cell Surface
Marker
Expression

Positive - CD71,
CD90, CD105,
CD44, CD106
(VCAM-1),
CD29, CD54
(ICAM-1),
CD13, CD146
Negative - CD34,
CD31 CD45,
HLA-DR,
CD11b

Dominici et al.
(2006),
Koppula et al.
(2010),
Polisetty et al.
(2008)

2. Differentiation
Potential

Mesodermal
lineage-
Osteocytes,
Adipocytes,
Chondrocytes,
skeletal muscle,
endothelial cells
Ectodermal
lineage:
Neuronal cells,
Photoreceptor
Cells, retinal
tubular
epithelial cells

Endodermal:
Hepatocytes,
Insulin
Producing Cells

Kicic et al.
(2003),
Koppula et al.
(2010),
Pittenger et al.
(1999),
Polisetty et al.
(2008), Reyes
et al. (2002),
Singaravelu and
Padanilam
(2009), Tang
et al. (2012)
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Other than soluble factors, the exosomes or the
extracellular vesicles from BM-MSCs, have been
reported to retain immunomodulatory properties and
regenerative effects suggesting for use as cell-free
therapy (Lai et al. 2015; Phinney and Pittenger 2017).
Due to their small size, BM-MSCs derived exosomes
pass through most physiological barriers. In one of the
studies, BM-MSCs derived exosomes inhibited the
IFN-c production and significantly increased produc-
tion of PGE2, TGF-b, IL10 and IL-6 of PBMNCs
isolated from type I diabetic mellitus (T1DM) patients
(Favaro et al. 2016). Similar anti-inflammatory activity
was reported in a recent study where BM-MSCs
derived exosomes improved survival and ameliorated
the pathologic damage of chronic graft versus host
disease (cGVHD) by suppressing Th17 cells and
inducing Treg (Lai et al. 2018). In some of the animal
studies, BM-MSC derived exosomes attenuated the
complement activation, injury-induced inflammatory
response and allogenic rejection of skin grafts.BM-
MSC derived exosomes also have been found to
polarize activated CD4? T cells to Tregs through
inducing an M2-like anti-inflammatory phenotype in
monocytes (Du et al. 2018; Zhang et al. 2014).

Although paracrine mechanisms play a substantial part
in immunosuppression, they exert greater suppressive
potential while in direct contact with target cells (Kram-
pera et al. 2003). Elucidation of cell contact-dependent
mechanism for immunosuppression is further compli-
cated in comparison to the paracrinemode of action due to
the presence of co-stimulation and cell adhesion mole-
cules on both BM-MSCs and surfaces of stimulated
immune cells (Newman et al. 2009). The list of candidate
molecules involved in contact-dependent mechanisms of
immunosuppression was narrowed down to programmed
death-1 receptor/programmed death-1 receptor ligand
(PD-1/PD.L1), the B7 family immune-regulatory orphan
ligand H4 (B7-H4), vascular cell adhesion molecule
(VCAM) and intercellular adhesion molecules of adhe-
sion molecule family (ICAM)(Augello et al. 2005; Ren
et al. 2010; Xue et al. 2010).

5. BM-MSCs and immune cells: crosstalk

Bone marrow serves as a repository of hematopoietic
stem cells (HSCs) which self-renew, differentiate into
cells of hematopoietic lineage, and cater sustainable

Figure 1. Immunomodulatory effects of MSCs on immune cells: The immunosuppressive effects of BM-MSCs are
mediated by soluble factors and cell–cell contact and exosomes. Immunomodulatory effects of BM-MSCs include
suppression of B- and T-cell proliferation, induction and regulation of regulatory T cells, inhibition of NK cell function and
inhibiting dendritic cell maturation and activation.
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production of blood. The concept of a niche was first
projected in 1978 as a hub populated by stem cells and
an environment conducible enough for stem cells to
retain their stemness (Schofield 1978). In the 1980s,
pioneering work of Friedenstein and colleagues revealed
connective tissue-forming cells in bone marrow having
fibroblast-like appearance and nomenclature as colony-
forming units fibroblasts (CFU-f). Further transplanta-
tion experiments revealed that the transplanted colonies
provided adequate microenvironment for HSC homing
and subsequent hematopoiesis, emphasizing on the
hypotheses of hematopoietic inductive microenviron-
ment and HSC niche. The multipotency and the trilin-
eage potential was demonstrated by several researchers
(Beresford 1989; Owen et al. 1987; Pittenger et al.
1999). Later in 1991, Caplan coined the term mes-
enchymal stem cells for these stromal cells. Over last
half a century, several studies have reported tangible
evidence unraveling the presence and essence of pre-
cursor marrow stromal cells/nurturing cells in the
hematopoietic niche supporting hematopoiesis and
required for maintenance and differentiation of HSCs
(Amsel and Dell 1971; Dazzi et al. 2006; Dexter et al.
1977; Johnson and Dorshkind 1986; Knospe et al. 1972;
Muguruma et al. 2006; Saleh et al. 2015; Tavassoli and
Crosby 1968; Wagner et al. 2007). A further study
reported by Mendez et.al revealed the heterogeneous
and unique bone marrow niche consisting of
Hematopoietic Stem Cells (HSCs) and Mesenchymal
Stem Cells (MSCs) (Méndez-Ferrer et al. 2010). While
MSCs are bona fide cells catering to various processes
like immunomodulation/immunosuppression and hom-
ing to damaged sites for repair/regeneration nevertheless
HSCs work towards the formation of blood cells and all
the immune cells. These immune cells play a major role
in defense against any infections or inflammatory con-
ditions, thereby producing immune response in the body
and they do so by their ability to distinguish between self
and non-self thus protecting the body. During any
inflammation or tissue damage, immune response is
relayed through cell–cell contact with different immune
cells and secretion of soluble immune factors inducing
MSC-regulated immunosuppression in a cell-dependent
manner.

5.1 BM-MSCs and T cells

T Cells are the central component of the cell-medi-
ated/adaptive immune system. Upon activation they
form three different populations- helper, cytotoxic and
regulatory T cells functioning in different ways These

cells play a crucial role in auto-immune diseases,
keeping infections and malignancies at bay. BM-
MSCs are known to modulate T cells at different
stages. For instance, BM-MSCs have been shown to
immunoregulate T cells by inhibiting the activation
and proliferation of effector T cells (both CD4? and
CD8?) via cell-cell contact and the secretion of var-
ious soluble factors (Duffy et al. 2011b; Hwu et al.
2000; Klyushnenkova et al. 2005). Upregulation of
soluble factors like PGE2, TGF-b1 and HGF have
been implicated in inhibiting T cell proliferation by
IFN-c primed BM-MSCs (Liang et al. 2018). Another
possible mechanism of T cell suppression by BM-
MSCs might be via IDO induced by IFN-c. IDO
induces tryptophan depletion leading to T cell sup-
pression (Hwu et al. 2000). In non-alcoholic fatty
liver disease (NAFLD) mouse model, BM-MSCs
were found to suppress the activation of CD4?T cells
proving to be of clinical importance in the treatment
of NAFLD (Wang et al. 2018a, b). In one of the
studies conducted by Glennie et al., they reported
BM-MSCs hindering T cell proliferation leaving
activation of T cells undisturbed (Glennie et al. 2005).
Other than having immunomodulatory/ immunosup-
pressive effects on T cell populations, BM-MSCs are
also known to alter helper T cell balance. Under
certain unwanted circumstances such as allergic /au-
toimmune diseases like asthma, T1DM or multiple
sclerosis (MS), apart from modulating T cell prolif-
eration and function, BM-MSCs are also known to
shift Th1/Th2 balance and vice versa (Bai et al. 2009;
Fiorina et al. 2009). Interestingly, under certain con-
ditions such as sclerodermatous chronic GVHD and
allergic airways inflammation (in mice), the contra-
dictory result was observed. BM-MSCs exhibited a
shift from the Th2/Th1 phenotype causing a shift
from anti-inflammatory to pro-inflammatory pheno-
type (Goodwin et al. 2011; Zhou et al. 2010). BM-
MSCs have also shown to modulate Th17 differenti-
ation in favor of Treg generation or towards IL-4-
producing Th2 cells (Duffy et al. 2011a; Tatara et al.
2011). Interestingly, Di lanni and group reported BM-
MSCs acting as a potential homeostatic niche for T
regulatory cells (Tregs) recruiting, regulating and
maintaining the phenotype and function (Di Ianni
et al. 2008). They demonstrated the upregulation of
FoxP3 and downregulation of CD127 levels - char-
acteristic of Tregs in BM-MSCs/T-cell co-culture. In
similar lines, expansion of Tregs and suppression of
cytotoxic T cells in a TGF-b1 manner in the case of
human autoimmune disease – associated lung fibrosis
(Liu et al. 2016). BM-MSCs were also evident in
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inhibiting T17 cell differentiation in IFN-c mediated
manner leading to activation of SOC3 (Liu et al.
2015). Despite the number of studies so far, it is still
necessary to acquire in-depth knowledge about the
complex crosstalk between BM-MSCs and T cells, for
effective use of BM-MSCs in clinical settings.

5.2 BM-MSCs and dendritic cells

DC cells are the sentinel cells that act as messengers
between innate and adaptive immune systems. BM-
MSCs are known to alter the maturation, differentiation
and functions of DCs through direct cell contact or by
soluble factor (Chen et al. 2013). For example, reports
have suggested suppression of increased expression
levels of CD40, CD80, CD86 and HLA-DR by BM-
MSCs during DC differentiation while hindering
increased CD40, CD86, and CD83 expression levels
during DC maturation (Zhang et al. 2004). Co-culture
studies with TGF-b1 primed BM-MSCs/DCs have
shown reduced expression of CD40, CD86 and MHC
II and lower level of TNF-a secretion (Daneshmandi
et al. 2017). Co-cultured DCs were also shown to
induce lower levels of allogeneic T cell proliferation
and IFN-c release in comparison to control DCs sug-
gesting that MSCs have a profound modulatory role on
DCs. PGE-2 appears to be important in inhibiting the
maturation of DCs by MSCs. In a study, BM-MSCs
mediated inhibition of DC maturation was reported to
be Galectin-1(Gal-1) dependent and that Gal-1 secreted
by these cells had positive feedback in the respective
expression levels thereby stimulating the DCs to be
immunotolerant, probably via MAPK signaling to
impede the role of DCs (Zhang et al. 2017). The
inhibitory effect of MSCs on DCs has been implicated
in various clinical conditions (detailed in later
sections).

5.3 BM-MSCs and B cells

B cells are the second major players in the adaptive
immune system hindering and inhibiting pathogens by
secretion of specific antibodies. BM-MSCs have been
reported to exert their effect on B cells by hindering the
proliferation and differentiation (Corcione et al. 2006;
Tabera et al. 2008). Upon BM-MSCs/B cell co-culture,
BM-MSCs demonstrated a reduction in the plasma cell
generation in vitro, and the same was replicated in vivo
by a mechanism that involved humoral factors released
by BM-MSCs along with decreased mRNA expression

of B lymphocyte-induced maturation protein-1 (Blimp-
1)-required for B cell activation (Asari et al. 2009). Co-
cultures of BM-MSCs/B cells were reported to down-
regulate immunoglobulins like IgM, IgA production
and the chemokine receptors like CXCR4, CXCR5,
and CCR7 leaving the costimulatory molecules (CD80,
CD86 and CD40) as well as the range of cytokines
(TNF-a, IFN-c, IL-4, IL-10, and IL-12) expressed and
secreted by B cells unaffected by BM-MSCs (Augello
et al. 2005). There are several reports suggesting hin-
dered B cell proliferation by MSCs. For example, the
proliferation of B cells has been reported to be stalled
upon stimulation with anti-immunoglobulin antibodies,
anti-CD40L antibody and cytokines, IL-2 and IL-4
(Corcione et al. 2006). Adding to the story, the study
revealed that the immunosuppressive environment
generated by BM-MSCs possibly could be due to of
SDF-1-CXCR4/CXCR7 axis responsible for the
secretory effects of BM-MSCs (Qin et al. 2015).
Inhibition of B cells by BM-MSCs was also reported to
be T-cell-mediated i.e. both presence of T cells and
cell-cell communication between BM-MSCs and T
cells is crucial for B cell inhibition (Rosado et al.
2015). There were contradictory results by other groups
reporting the induction of B cell proliferation and dif-
ferentiation by MSCs. However, recent studies have
suggested that IL-35-secreting BM-MSCs might turn
out to be a desirable therapeutic in treating B cell-
mediated autoimmune diseases through expanding
Breg cells (Cho et al. 2017). All these studies have
paved the way for more intriguing questions about the
exact outcome of BM-MSCs and B cell interactions.

5.4 BM-MSCs and natural killer cells

NK Cells are granular lymphocytes and are a central
component of the innate immune system protecting
against any infection and cancer. These cells are known
to exert cytolytic effects and mediate antibody-depen-
dent cellular cytotoxicity. Effector functions are gen-
erally mediated by immune-regulatory cytokines like
IFN-c, TNF-a, IL-10, GM-CSF and other chemokines
that mediate immune response (Trinchieri 1989). The
crosstalk between the BM-MSCs and NK cells referred
to as crossmodulation with BM-MSCs partially impairs
proliferation of NK cells while up-regulating IFN-c and
TNF-a secretion at the same time triggering the
degranulation of NK cells; however, stimulated NK
cells being cytotoxic induce killing of BM-MSCs via
generation of reactive oxygen species (ROS) decreas-
ing their viability and serpin B9 expression levels
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(Najar et al. 2018). In vivo studies in C57Bl/6 mice
suggested protective action of BM–MSCs against acute
liver injury via cytotoxicity attenuation and production
of inflammatory cytokines by liver NK T cells in an
iNOS and IDO dependent manner (Gazdic et al. 2018).
Although there are several reports of immunosuppres-
sion of immune cells by MSCs, the contradictory result
was reported by Cui.et al. Co-culture studies demon-
strated a stimulatory effect on primary NK cells and
cytokine secretion. Improvement in CCR2 mediated
IFN- c levels in patient’s NK cells was demonstrated
upon co-culture with BM-MSCs and respective con-
ditioned media and BM-MSC/NK cell co-cultures from
healthy donors (Cui et al. 2016). The exact mechanism
by which BM-MSCs affect NK cells remains to be
elucidated. Contradictory reports urge for more inves-
tigational work in this regard.

5.5 BM-MSCs and TLR3/4

BM-MSCs have shown to express a class of proteins
called toll-like receptor (TLR) proteins playing a key
role in the innate immune system. These proteins have
been found to aid in proliferation, migration and dif-
ferentiation of BM-MSCs in vitro (Tomchuck et al.
2008). TLR3 is known to induce migration in BM-
MSCs under stress conditions. Emerging studies on
TLRs have revealed their effect on MSCs (Pevsner-
Fischer et al. 2007). Being expressed on BM-MSC in
abundance, TLRs on ligation induce stimulation of pro-
inflammatory signals thereby preventing inhibition of T
cell proliferation, probably via downregulated Notch
ligand by BM-MSC (Liotta et al. 2008; Tomchuck
et al. 2008).

6. Immunomodulation in various clinical
conditions

One of the initial illustrations of immunomodulatory/
immunoregulatory properties of BM-MSCs in in vivo
condition were for skin transplantation in a baboon
model, in which, administration of BM-MSCs led to a
prolonged skin graft survival. The immunomodulatory
effects of BM-MSCs currently being explored in vari-
ous clinical trials are enlisted in the clinical trials
website by the National Institute of Health (http://
clinicaltrails.gov). The profile of BM-MSCs (summary
listed in table 2), makes them immune elusive and thus
desirable candidate for cellular therapies for numerous
medical situations (enlisted in table 3). We present a

brief review of some of the common clinical conditions
in which the immunomodulatory properties of BM
MSC have been put to best use.

6.1 Graft-versus-host disease

Graft-versus-host disease (GVHD) is a complicated
condition caused after allogeneic transplants where
donor T cells react against host tissues that can
potentially be life-threatening. In humans, the success
rate of BM transplantation across major histocompati-
bility complex (MHC) barriers is lowered by graft
rejection and incomplete T cell recovery. BM-MSCs
suppress the allogenic T cell response by secretion of
TGF-b suggesting that pretreatment of BM-MSCs
might be useful in the prevention of GVHD in HLA-
mismatched BM transplantation and further donors for
hematopoietic stem cells could be selected with greater
potentials (Tian et al. 2008). It was also demonstrated
that the anti-proliferative activity of BM-MSCs is due
to its effect on T cell proliferation rather than on its
effector function (Joo et al. 2010; Zhou et al. 2010).
New strategies of GVHD prophylaxis include the
infusion of expanded MSCs and downregulation of
host antigen-presenting cells. Effective treatment using
third-party haploidentical BM-MSCs in patients with
severe GVHD lead to numerous phase I and II trials
which further demonstrated clinical benefits of BM-
MSC therapy in GVHD (Le Blanc et al. 2008, 2004).
BM-MSC in combination with Tregs provides a
reciprocal immunomodulatory effect coupled with
mutual regulation of Th1/Th2 and Th17/Treg cells in a
murine GVHD model (Lim et al. 2014). In 2016, a
pilot study conducted in Turkey reported allogeneic
hematopoietic stem cell transplantation (allo-HSCT) to
treat refractory acute GVHD in 33 pediatric patients.
About 68 doses of BM-MSCs were infused into the
patients out of which twelve patients developed chronic
GVHD; eight of them were alive, with five having
extensive disease and three having limited disease
suggesting BM-MSCs to be benign and effective
treatment opportunity for pediatric patients with ster-
oid-refractory acute GVHD. But the efficacy at the
same time remains limited (Erbey et al. 2016). Despite
the efficacy of allo-HSCT, the procedure is still asso-
ciated with high toxicity in patients with refractory
GVHD, BM-MSCs being the new mode of therapy in
the context of allo-HSCT. There were reports demon-
strating BM-MSCs treated GVHD having a higher
CD4?/CD8? T cell ratio, higher levels of T cell
receptor rearrangement excision circlets and increased
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frequency of Tregs, compared to pre-treatment and
non-treated GVHD patients (Liu et al. 2015). Although
the emerging evidence is promising, more robust data
from larger clinical trials with predictable insight of the
biology of BM-MSCs would possibly pave the way for
considering it as part of the treatment protocols.

6.2 Autoimmune diseases

These conditions arise due to dysfunction of the body’s
immune system where recognition between self and
non-self is lost resulting in attacking own cells/tissues.
Almost 50 years ago the importance of autoimmunity
and the underlying principles was recognized following
Macfarlane Burnett’s hypothesis of the ‘forbidden
clone’. The major causes of autoimmunity continue to
be an environmental trigger like infections or genetic
predisposition. Due to their immune-regulatory prop-
erties, BM-MSCs are being tested in various

auto-immune diseases for their efficacy and safety in
alleviating the condition. We present the review of
some of the conditions in which it has been extensively
studied.

6.2.1 Systemic lupus erythematosus (SLE): SLE is an
inflammatory disease marked by the existence of self-
reactive T and B lymphocytes, with polyclonal stimu-
lation of B cells and plasma cells producing autoanti-
bodies subsequently with the release of cytokines. In
2007, Sun and coworkers reported abnormality in BM-
MSCs in patients with SLE suggesting an important
role that BM-MSCs might play in SLE pathogenesis in
these patients (Sun et al. 2007). Many reports reported
the efficacy of MSCs and it’s secretome in SLE
pathogenesis. For example, MSCs were found to exert
its effect through secreted paracrine factors like extra-
cellular microvesicles as important mediators of BM-
MSC therapy (Figueroa et al. 2014). Reports from
combined transplantation of autologous hematopoietic

Table 2. Summary of secretory and hypoimmunogenic profile of MSCs

Sl.
no. Secretory and immunogenic profile of MSC References

1. Secretory Profile Hematopoiesis: Leukemia inhibitory factor
(LIF), macrophage colony stimulating factor
(M-CSF), and stem cell factor (SCF)
Immunomodulation/Immunoregulation: IDO,
PGE-2, TGF-b, NO, IL-10, IL-6, CCL2/
MCP-1, CCL-5/RANTES, VEGF, ICAM

Neuroprotection: BDNF, NGF, GDNF,
GALECTIN-1

Growth factors: b-FGF, NGF, VEGF, TGF-b,
GM-CSF

Chemoattraction: CCL-2,3,4,5,6,20, GCSF,
MCSF, VEGF, CXCL-2, -3, -5, -8, -10, -11

Angiogenesis: VEGF-A; VEGF-D, Ang-1,
IGF-1, PDGF, HGF, EPO, MCP-1

Anti-Fibrosis – MMP-2, MMP-9, TIMP-1,
TIMP-2, HGF, KGF

Aggarwal and Pittenger (2005), Chamberlain
et al. (2007), Klyushnenkova et al. (2005),
Kyurkchiev et al. (2014), Polisetti et al.
(2010), Sato et al. (2007)

2. Hypoimmunogenicity Low expression: MHC-I
Negative expression: MHC-II
Costimulatory molecules CD40, CD40 ligand,
CD80 and CD86

Stimulation with IFN-g can upregulate the
expression of MHC class I molecules and
induce expression of MHC class II but are
not able to modify the expression of co-
stimulatory molecules

Evade allo-rejection in various clinical
conditions like leukodystrophy, Breast
Cancer, Osteogenesis Imperfect, Graft versus
host disease

Fu et al. (2015), Götherström et al. (2003),
Horwitz et al. (2002), Koç et al. (2002), Koc
et al. (2000), Koppula et al. (2009), Park
et al. (2009), Polisetti et al. (2010), Polisetty
et al. (2008), Shi et al. (2010)
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SC and allogenic BM-MSC suggested an increase in
the population of Tregs in SLE with refractory lupus
nephritis and leukopenia (Wang et al. 2015). Infusion
of BM-MSCs suppressed follicular helper T-Cell
development thereby alleviating autoimmune nephritis
in a lupus model (Jang et al. 2016). A recent long-term
follow-up study of allogenic BM-MSCs transplantation
has reported overall survival rate was 84% and
demonstrated allogenic BM-MSC transplantation is

safe and stemmed in a prolonged clinical diminution in
SLE patients (Wang et al. 2018a, b). Although
numerous works have been done on understanding the
immunomodulatory role of BM-MSCs in SLE, the
complete understanding remains unclear.

6.2.2 Type I diabetic mellitus (T1DM): T1DM is a
chronic auto-immune disorder in which the immune
system is activated to destroy the insulin-producing

Table 3. Clinical trials using Bone marrow mesenchymal stem cells (BM-MSCs) as immunosuppressants (source: http://
clinicaltrails.gov)

Disease Clinical Trail Status Location Phase No.
ClinicalTrails.gov

Identifier

Multiple
Sclerosis (MS)

Autologous Mesenchymal Stromal Cells for
MS

Active,
not
recruiting

Spain I & II 8 NCT02495766

Safety and Efficacy Study of Autologus BM-
MSCs in MS

Completed Jordan I & II 13 NCT01895439

Mesenchymal Cells From Autologous Bone
Marrow, Administered Intravenously in
Patients Diagnosed With MS

Recruiting Spain I & II 30 NCT01745783

Mesenchymal Stem Cells for Progressive
MS_Sweden

Completed Sweden I 7 NCT03778333

Phase I-II Clinical Trial With Autologous
BM-MSCs for the Therapy of MS

Completed Spain I & II 9 NCT02035514

Systemic Lupus
Erythematosus
(SLE)

Mesenchymal Stem Cells Transplantation for
Refractory SLE

Unknown China I & II 20 NCT00698191

Pilot Trial of Mesenchymal Stem Cells for
SLE

Completed United
States

I 6 NCT03171194

Type I Diabetes
Mellitus

Safety Study of Stem Cells Treatment in
Diabetic Foot Ulcers

Unknown Israel I 12 NCT01686139

Mesenchymal Stem Cell Therapy for Type 1
Diabetes Mellitus Patients

Recruiting Vietnam I & II 20 NCT00781872

Autologous Transplantation of Mesenchymal
Stem Cells for Treatment of Patients With
Onset of Type 1 Diabetes

Unknown China II &
III

80 NCT01157403

MSC Administration for the Management of
Type 1 Diabetic Patients

Unknown Chile II 10 NCT02893306

GVHD Allogenic BM-MSCs Infusion in Patients
With Steroid-refractory GVHD

Completed Pakistan I & II 10 NCT02824653

Safety Study of Homeo-GH (BM-MSCs) to
Treat Acute/Chronic (GVHD)

Completed Republic
of
Korea

I 10 NCT01318330

Safety and Efficacy Study of Adult Human
Mesenchymal Stem Cells to Treat Acute
GVHD.

Completed United
States

II 33 NCT00136903

Safety and Efficacy Study of Allogenic
Mesenchymal Stem Cells to Treat Extensive
Chronic GVHD

Unknown China II 52 NCT00972660

Rheumatoid
Arthritis

Transplantation of BM-MSCs in Affected
Knee Osteoarthritis by Rheumatoid Arthritis

Completed Iran II &
III

60 NCT01873625

Transplantation of Autologous BM-MSCs in
Patients With Rheumatoid Arthritis

Active,
not
recruiting

Unknown I 100 NCT03067870
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b-cells of the pancreas. BM-MSCs have been reported
to play an evident role in the treatment regimen of
T1DM. Some of the earlier reports demonstrated the
differentiation of BM-MSCs into insulin-producing
cells using numerous transcription factors associated
with the b-cell developmental pathway upon culture
in a suitable niche (Moriscot et al. 2005). There is
also evidence from an in vivo experiment that the
mouse BM-MSCs, can be differentiated into func-
tional b-cells insulin gene (Ianus et al. 2003). In
similar lines, insulin gene transfected BM-MSCs were
reported secreting insulin, offering a different way to
deal with b-cell shortage for T1DM therapy (Lu et al.
2006). With respect to immunoregulatory properties,
although the underlying mechanism of tissue regen-
eration was not known, cytokines and growth factors
may exert their effects via a combination of bioactive
and immunoregulatory factors. Importantly, these
growth factors have been shown to promote islet
survival and enhance b-cell function in several pub-
lished studies (Lim et al. 2009; Suarez-Pinzon et al.
2005). BM-MSCs inhibited immune response medi-
ated by T cells against novel b-cells which could be
one of the suitable methods for T1DM treatment (Li
and Ikehara 2014). Antidiabetic effect of BM-MSCs
is also believed to be due to the restoration of the
equilibrium between Th1 and Th2 immunological
responses in addition to the pancreatic microenviron-
ment modification (Ezquer et al. 2012). Recently a
study reported decreased daily dosage level of insulin
within 3 months after transplantation of autologous
BM-MSCs in 5 patients (Ulyanova et al. 2019).
Although there are promising results demonstrating
possible efficacy of BM-MSCs in preserving b-cell
function in some T1DM patients, confirmed by the
reduced insulin doses, improved HbA1c levels and
higher C-peptide level, long term effectiveness of
BM-MSCs for T1DM management remains doubtful
(Gazdic et al. 2018).

6.2.3 Multiple sclerosis (MS): Multiple Sclerosis is a
chronic immune-related disease of the central nervous
system where the immune cells attack and damage the
myelin sheath of nerves causing loss of communication
within the brain and between brain and rest of the body.
Due to their immune suppressive/immunoregulatory
ability and repair/regenerative ability, BM-MSCs have
been studied in various neurodegenerative diseases like
MS. BM-MSCs have been administered to small series
of patients who were tested under a variety of clinical
settings have supported their safety and potential effi-
cacy with signs of immunomodulation (Bonab et al.

2012; Cohen 2013; Karussis et al. 2010). Autologous
BM-MSCs from patients with MS exhibit similar
properties as those from volunteers, in the context of
immunosuppressive ability, proliferation, differentia-
tion and phenotype in vivo (Rice et al. 2010). Suc-
cessful attempts were reported by a study conducted
aiming at investigating the efficacy and clinical safety
of transplanted (autologous) MSCs into MS patients
(Karussis et al. 2010). International experts in MS and
SC, in association with immunologists, designed the
‘‘International Stem Cells Transplantation Study
Group’’ (IMSCTSG) intending to accomplish an
agreeable procedure on the practice of MSCs for MS
treatment- procedures for cell culture and treating
patients (Freedman et al. 2010). In an open-label study
conducted by Bonab and coworkers, 25 patients who
were recruited with progressive MS and administered
with a single intrathecal injection of autologous BM-
MSCs were found to have improvement in the disease
with no severe adverse effects (Bonab et al. 2012). A
randomized placebo-controlled phase II trial, where
patients were infused with MSCs intravenously,
exhibited a lesser proinflammatory T cell profile, sub-
sequently from reduced IFN-c levels and IL-17-pro-
ducing CD4? T cells intensity, in addition to reduced
Th1/ Th17 ratio signifying a persisting effect of MSCs
(Llufriu et al. 2014). Another open-label prospective
phase I/IIa clinical study using BM-MSCs followed by
respective conditioned media results showed that the
protocol was safe and feasible with possible efficacy
(Syková et al. 2017). A very recent study showed that
aging restricts the potential of BM-MSCs in supporting
the oligodendrocytes generation and consequently
inhibiting their ability to enhance the generation of
myelin-like-sheaths (Rivera et al. 2019). These find-
ings may impact the design of therapies using autolo-
gous BM-MSCs in older MS patients. To date, cell
therapy with BM-MSCs has been, overall, well-toler-
ated and safe.

6.2.4 Rheumatoid arthritis (RA): RA is an autoim-
mune disorder characterized by abnormal leukocyte
permeation, and proteases within the joint, persistent
inflammation of the synovium, ultimately leading to
bone and cartilage destruction. Transplantation of
human BM-MSC in collagen-induced arthritis (CIA)
mice resulted in reduced GM-CSF expressing CD4? T
cells in the spleen and blood, significant in RA
pathophysiology and induced a regulatory phenotype
in Th17 cells thereby reducing the Th1:Th17 ratio
along with significant reduction in TNF-a serum levels.
In the co-culture system, BM-MSCs have also been
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reported to repress follicular Th cell differentiation in
CIA mice hindering B cell differentiation resulting in
hindered B cell differentiation (Qin et al. 2015; Rosado
et al. 2015). BM-MSC inhibits osteoclast-mediated
bone resorption leading to bone loss followed by a
reduction in the production of inflammatory cytokines
and the induction of Tregs promoting osteoclastogen-
esis.BM-MSCs inhibit osteoclastogenesis either by
producing osteoprotegerin or through interacting with
the precursors, via CD200/CD200R communication
(Varin et al. 2013). The secretome of BM-MSCs has
also been reported in treating the disease. BM-MSC
derived EVs have been reported in reducing inflam-
mation and inducing pathological changes by influ-
encing Bregs (Cosenza et al. 2017). In summary,
human trials indicate BM-MSCs to be beneficial in RA
treatment, nevertheless more multicenter clinical stud-
ies are needed for further evidence.

7. Future directions

Because of the ease of access, well-identified pheno-
typic characteristics, ubiquitous presence in most tis-
sues of the body, longevity and hypoimmunogenecity,
the new tools of gene editing and gene therapy are
being applied to BM stromal cells. More preclinical
studies are warranted to standardize the dose, route of
application, long-term survival of cells, the sustain-
ability of hypoimmunogenecity in diverse host condi-
tions, etc., before they can gain popularity in clinical
practice.

8. Conclusion

BM-MSCs because of their ease of isolation, in vitro
expansion, and capability of differentiation into multiple
lineages have gainedmuch importance in the field of cell
therapy and regenerative medicine. Also, BM-MSCs
display immunomodulatory and immunosuppressive
property either by cell-cell communication or by soluble
factors. They are known to suppress the proliferation of
T cells, B Cells, NK cells, upregulate Tregs population
and need to be activated in order to exert its
immunoregulatory effect. This activation requires the
presence of proinflammatory cytokines from Tcells, NK
cells and macrophages suggesting there is bi-directional
communication between MSCs and the immune cells.
While the BM-MSCs have found its way to clinical
application, there is mounting evidence that the

secretome and the extracellular vehicles could possibly
pave the way for translational research in the future.
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