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In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 position of
cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many roles, particularly in
suppressing transposable and repeat elements in DNA. Moreover, in many cellular systems, cell lineage
specification is accompanied by DNA demethylation at the promoters of genes expressed at high levels in the
differentiated cells. However, since direct cleavage of the C-C bond connecting the methyl group to the 5
position of cytosine is thermodynamically disfavoured, the question of whether DNA methylation was
reversible remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten-
Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the
tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as a-ketoglutarate) to oxidise the methyl group
of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-generated oxidised methylcytosines are
intermediates in at least two pathways of DNA demethylation, which differ in their dependence on DNA
replication. In the decade since their discovery, TET enzymes have been shown to have important roles in
embryonic development, cell lineage specification, neuronal function and cancer. We review these findings and
discuss their implications here.
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1. Introduction

The biochemical activity of ten-eleven translocation
proteins was reported ten years ago in a collaboration
between the Aravind and Rao labs (Iyer et al. 2009;
Tahiliani et al. 2009). In this article, we review these
and subsequent findings in the field, with a focus on
published studies from our labs.

2. Overview of the evolution of TET/JBP proteins

In 2009, the three mammalian members of the TET
family were predicted to be members of the large
superfamily of 2-oxoglutarate (2OG)- and Fe(II)-
dependent (2OGFe) dioxygenases (Iyer et al. 2009).
TET proteins are the animal homologs of the kineto-
plastid JBPs (base J-binding proteins) which oxidise
the methyl group of thymine to yield 5-hydroxyuracil
(5hU), which is subsequently modified with a sugar
moiety to yield Base J (Yu et al. 2007; Iyer et al. 2009;
Iyer et al. 2013; Bullard et al. 2014). In contrast, TET
enzymes were predicted to oxidize 5-methylcytosine
(5mC), also a 5-methyl pyrimidine, because two of the
three vertebrate TET proteins—TET1 and TET3—
contain a CXXC domain, known to bind unmethylated
Cytosine-Guanine (CpG) sequences. Thus, TET pro-
teins were predicted to act on the methyl group of 5mC
rather than that of thymine (Iyer et al. 2009). Although
TET2 does not currently possess a CXXC domain, the
primordial TET2 did contain such a domain; however,
the CXXC and catalytic domains of TET2 were sepa-
rated during evolution through a chromosomal inver-
sion (Ko et al. 2013) (figure 1a).

The prediction that TET proteins were 5-methylcy-
tosine oxidases was experimentally verified in 2009
(Tahiliani et al. 2009). The use of recombinant TET
proteins confirmed that TET proteins not only oxidized
5mC to 5-hydroxymethylcytosine (5hmC) (Iyer et al.
2009; Tahiliani et al. 2009) but also carried out two
additional oxidations, converting 5hmC to 5-formyl
and 5-carboxylcytosine (5fC and 5caC, respectively)
(Tahiliani et al. 2009; He et al. 2011; Ito et al. 2011;
Crawford et al. 2016) (figure 1b). These oxidised
methylcytosines (oxi-mC) are intermediates in at least
two pathways of DNA demethylation as described
below.

bFigure 1. Ten-Eleven Translocation (TET) proteins and
DNA modification. (a) TET family proteins. Mammalian
genomes encode three members of the TET/JBP family:
TET1, TET2, and TET3. The diagram depicts the domain
structures and the length in amino acids (aa) of human TET
proteins. The CXXC domains of TET1 and TET3 (red) bind
unmethylated CpG sequences in DNA. Note that during
evolution, the CXXC domain of primordial TET2 was
separated from the TET2 catalytic domain due to chromo-
somal inversion and evolved as a different gene (IDAX or
CXXC4). All three TET proteins contain cysteine-rich
domains (green) followed by a C-terminal catalytic domain
(purple). (b) TET-mediated DNA modifications and
demethylation. DNA methyltransferases (DNMT) methylate
unmodified cytosines (C) to yield 5-methylcytosine (5mC).
TET proteins can successively oxidize 5mC to 5-hydrox-
ymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-car-
boxylcytosine (5caC). Among these three oxidized
methylcytosines (oxi-mC), 5hmC is a stable modification
and is the most abundant, accounting for *1–10% of 5mC
depending on the cell type, while 5fC and 5caC are *100-
fold and *1000-fold less abundant than 5hmC. All three
oxi-mCs are intermediates for DNA demethylation. During
DNA replication, the 5mC at the CpG motif on the template
strand pairs with unmodified CpG on the newly synthesized
strand, resulting in the hemi-methylated CpG motif. The
maintenance methyltransferase complex, DNMT1/UHRF1
binds to the hemi-methylated CpG and rapidly restores
methylation on the CpG on the newly synthesized DNA, to
restore symmetrical CpG methylation. In contrast, the
presence of oxi-mCs in the template strand inhibits the
binding of DNMT1/UHRF1 to hemi-modified CpGs, thus
preventing methylation of CpGs in the newly synthesized
strand. This process is known as ‘passive’ DNA demethy-
lation (top arrows). Additionally, 5fC and 5caC can be
recognized and removed by thymine DNA glycosylase
(TDG). The abasic site will be repaired by the base-excision
repair (BER) system and replaced by an unmodified
cytosine, a process termed ‘active’ (replication-independent)
DNA demethylation (bottom arrows).
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The TETs and the JBPs define a distinct family within
the double-stranded b-helix fold 2OGFe-dioxygenase
superfamily. Within the superfamily they are more clo-
sely related to the AlkB family, members of which spe-
cialize in the oxidative repair of N6-alkyl adducts to
adenine and the resetting of N6-methyladenosine marks
in eukaryotic DNA and RNA (Aravind and Koonin
2001; Iyer et al. 2016). This suggests that both the TET/
JBP and AlkB families diversified as part of an ancient
radiation of nucleic acid-modifying 2OGFe-dioxyge-
nases. Indeed, both share certain common features in
their nucleic acid binding interface (Pastor et al. 2013).
The TET/JBP family additionally includes members

from several bacteriophages, certain bacteria and diverse
eukaryotes such as the filamentous fungi, the chloro-
phyte algae and basal land plants, and the heterolo-
boseans such as Naegleria (Iyer et al. 2009; Iyer et al.
2013). Phylogenetic analysis indicates that the origin of
TET/JBP family lies in the bacteriophages, where they
are part of the highly diverse DNA-modification systems
typical of DNA phages. In the phages, DNA modifica-
tions by TET/JBP enzymes are likely to help in evading
host restriction and marking the genome for packaging
into the phage-head. Notably, in several phages, the
5-hydroxymethylpyrimidine is further modified by
phosphorylation by a P-loop kinase and is used as an
intermediate for the generation of hypermodified bases
(Iyer et al. 2009; Iyer et al. 2013; Lee et al. 2018).
The bacterial and phage versions already show a

divergence into two types which might respectively act
on 5mC and T. These appear to have been laterally
transferred on more than one occasion to eukaryotes to
give rise to their TET/JBP proteins (Iyer et al. 2009; Iyer
et al. 2013). Interestingly, TET/JBP proteins are also
encoded by intracellular pathogenic bacteria such as
Legionella and related genera. These proteins are pre-
dicted to function as effectors that are delivered into the
eukaryotic host cell to modify its DNA. Thus, other than
direct transfer from phages, such endo-parasitic bacteria
might have also served as a conduit for the transfer of
TET/JBP genes to eukaryotes (Iyer et al. 2009; Iyer et al.
2013). A comparable scenario has been proposed for the
origin of the histone methylase H3K79 methylase Dot1
from a Legionella effector secreted into eukaryotic host
cells (Aravind et al. 2011).

3. Enzymatic activities of TET proteins

Like all 2OGFe-dioxygenases, TET enzymes utilize
2OG, reduced iron (Fe(II)) and both atoms of molec-
ular oxygen, to generate their oxidised substrates, with

CO2 and succinate as byproducts (Hausinger 2004).
Succinate, which structurally resembles 2OG, is an
inhibitor of many 2OGFe-dioxygenases, including the
TET enzymes (Xiao et al. 2012), whereas Vitamin C,
which likely facilitates the reduction of Fe(III) at the
active site back to Fe(II), is an activator of these
enzymes (Blaschke et al. 2013; Yue et al. 2016).
A major function of mammalian TET proteins is to

facilitate DNA demethylation through the production
of oxi-mC through both passive (replication-depen-
dent) and active (replication-independent) mechanisms
(figure 1b). The first pathway relies on the fact that the
maintenance DNA methyltransferase, DNMT1, effi-
ciently methylates hemi-methylated CpGs, in which
5mC is present across from the unmethylated cytosine
on the newly-replicated strand. However, DNMT1 is
much less efficient at methylating the unmodified CpGs
on newly replicated DNA strands if an oxi-mC (rather
than 5mC) is present on the template strand (Hashi-
moto et al. 2012; Otani et al. 2013). This process of
TET-dependent ‘passive’ DNA demethylation displays
an absolute requirement for replication and for TET
catalytic activity, and may be the major process that
operates to demethylate the promoters and enhancers of
genes that characterize specific cellular lineages during
the process of cell lineage specification (Inoue and
Zhang 2011; Lio et al. 2019). A second, replication-
independent, mechanism of DNA demethylation relies
on the ability of the DNA repair enzyme thymine DNA
glycosylase (TDG) to excise 5fC and 5caC from hemi-
modified DNA strands, a process that requires base
excision repair to replace the original 5fC or 5caC with
an unmodified cytosine (He et al. 2011; Maiti and
Drohat 2011). This mechanism appears to make only a
minor contribution, if any, to DNA demethylation in
replicating cells. Moreover, TET-dependent active
demethylation in the zygote is unaffected by TDG
deletion, suggesting the existence of additional active
demethylation pathways downstream of TET-mediated
oxidation (Guo et al. 2014). Intriguingly, a 5caC
decarboxylase activity has been claimed in mouse
embryonic stem cells (mESC) (Schiesser et al. 2012),
although currently, there are no likely candidates in the
human genome for such an activity.
Notably, most eukaryotes that possess one or more

genes encoding a TET-like member of the TET/JBP-
family proteins also code for a DNA methyltransferase
(DNMT) gene (Iyer et al. 2009; Iyer et al. 2011),
suggesting a strong functional link between these TET-
like enzymes and DNA methylation in eukaryotes. In
eukaryotes, other than animals and kinetoplastids, the
TET/JBP enzymes of the amoeba Naegleria, the

TET methylcytosine oxidases: new insights from a decade of research Page 3 of 14 21



mushroom Coprinopsis cinerea and the chlorophyte
alga Chlamydomonas reinhardtii have been biochemi-
cally characterized. Both Naegleria and C. cinerea
TETs produce 5hmC, 5fC and 5caC in differing pro-
portions using 5mC as a substrate (Chavez et al. 2014;
Zhang et al. 2014). In fungi like C. cinerea, TET genes
are genomically linked to novel transposon families,
which belong to the so-called Kyajuka-Dileera-Zisup-
ton class of transposons. TET genes have probably
been widely disseminated across the chromosomes of
the fungi by these transposons (Iyer et al. 2014), and
their protein products appear to have a role in regu-
lating the activity of the linked transposons in addition
to marking certain regions of the chromatin. The TET
from the yeast Schizosaccharomyces pombe is cat-
alytically inactive but might have a role in inducing
certain epigenetic states via a non-enzymatic mecha-
nism (Iyer et al. 2014).
An interesting recent finding was that one of the TET

enzymes from the green alga C. reinhardtii utilizes
ascorbate instead of 2OG as its essential co-substrate
in vitro. The enzyme, CMD1, produces a mixture of
stereoisomers of 5-glyceryl-methylcytosine (5gmC), in
which the glyceryl moiety is linked to the -CH2 group
at the 5 position of cytosine (Xue et al. 2019). Like the
oxi-mCs generated by mammalian and fungal TET/JBP
enzymes, 5gmC antagonized the repressive effects of
DNA cytosine methylation; mutants lacking CMD1
showed increased cytosine methylation and decreased
expression of two genes encoding LHCSR3 (light-
harvesting complex stress-related protein 3), a complex
that is required for growth under conditions of high
light intensity (Aravind et al. 2019; Xue et al. 2019).

4. 5hmC is present in euchromatin and is enriched
at expressed genes and active enhancers

The genomes of most mammalian cell types can be
roughly divided into euchromatic and heterochromatic
compartments (Dekker et al. 2013), which correspond
to actively transcribed and transcriptionally silent
regions of the genome. These compartments were
originally defined by cytology and then later by
immunocytochemistry, but have recently become
amenable to definition using an unbiased genome-wide
chromosome conformation capture method known as
Hi-C. Briefly, principal component analysis of the
interaction matrix obtained from Hi-C data can be used
to partition the genome into A and B compartments
that correspond, respectively, to euchromatin and
heterochromatin (Lieberman-Aiden et al. 2009).

Euchromatin is defined by positive PC1 values and
high gene density; it contains expressed genes whose
promoters bear the ‘active’ histone modification H3K4
trimethylation (H3K4me3), and replicates early during
S phase (van Steensel and Belmont 2017). In contrast
the heterochromatic compartment is gene-poor and
transcriptionally silent, replicates during late S phase, is
enriched for histone 3 lysine 9 di- and tri- methylation
(H3K9me2 and me3), and is associated with the
nuclear lamina (van Steensel and Belmont 2017).
In all cell types examined, 5hmC is most highly

enriched in gene bodies of the most highly expressed
genes, and also at the most active enhancers defined by
the highest levels of histone 3 lysine 4 mono-methy-
lation (H3K4me1) and histone 3 lysine 27 acetylation
(H3K27Ac) (Tsagaratou et al. 2014; Lio et al. 2019)
(figure 2a). In contrast, the TET substrate 5mC is pre-
sent throughout the genome, in both euchromatin and
heterochromatin. To determine the extent to which
5hmC was present in the heterochromatic, transcrip-
tionally silent Hi-C B compartment, we integrated
5hmC mapping data from TAB-seq (Tet-Assisted
Bisulfite Sequencing) (Hon et al. 2014) and CMS-IP
(Cytosine-5-Methylene-Sulfonate Immunoprecipita-
tion) (Huang et al. 2014) with Hi-C data from the same
cell type—mouse embryonic stem cells (mESC). The
data showed, unambiguously, that the bulk of 5hmC
was in the euchromatic Hi-C A compartment (with
similar observations in haematopoietic stem/precursor
cells, pro-B cells and natural-killer-T/NKT cells), as
expected from the known overlap of 5hmC-containing
regions with transcribed genes and active enhancers
(Lopez-Moyado et al. 2019).

5. Dynamic changes in 5mC and 5hmC at de novo
enhancers during signal-dependent cell activation
and differentiation

Studies in many different systems have established the
general principle that transcription factors recruit TET
enzymes to enhancers, where they deposit 5hmC and
facilitate DNA demethylation (figure 2b). In the fol-
lowing sections, we describe the roles of TET proteins
at three different types of immune cell enhancers
examined in the Rao lab, which control a develop-
mental switch in immature B cells and two signal-de-
pendent processes in mature B cells and in T
‘regulatory’ cells respectively.
TET proteins mediate 5hmC deposition and DNA

demethylation at the Igj locus during B cell develop-
ment: Rearrangement of the immunoglobulin light

21 Page 4 of 14 Chan-Wang J. Lio et al.



chain including the kappa chain (Igj) occurs during the
pro-B to pre-B switch in early B cell development, and
is required for the expression of immunoglobulin M
(IgM) on the surface of mature B cells (Hamel et al.
2014). At least 3 Ej enhancers are known to be
important for germline Igj locus transcription, a pre-
requisite for Igj chain rearrangement: an intronic
enhancer (iEj), a 30 enhancer (30Ej) and a distal
enhancer (dEj) (Hamel et al. 2014). TET proteins are
recruited to and deposit 5hmC at the 30 and distal Ej
enhancers, which contain 2 and 3 CpG sequences
respectively; the intronic j enhancer, which is essential
for j chain rearrangement, does not contain any CpGs
and so is unlikely to be a target of regulation by TET
proteins, given that the vast majority of 5mC occurs
symmetrically on CpGs (Lio et al. 2016).
We generated mice in which deletion of the Tet2 and

Tet3 genes was induced with Mb1-Cre, which is
expressed at the early pro-B stage. Using pro-B cells
from these mice, we showed that TET proteins are

required for Igj germline transcription and rearrange-
ment by rendering the Igj enhancers accessible.
Mechanistically, TET2 co-immunoprecipitates under
stringent conditions with PU.1 and E2A, two tran-
scription factors essential for Igj rearrangement and
the pro-B to pre-B cell transition. The evidence sup-
ports a mechanism whereby TET proteins are recruited
by PU.1 to the Igj enhancers, and the associated
increase in chromatin accessibility at the enhancers
permits E2A and TET-induced IRF4 to bind the
enhancers and facilitate subsequent germline tran-
scription of the Igj locus (Lio et al. 2016).
TET proteins act at activation-dependent ‘de novo’

enhancers to facilitate AID expression and class switch
recombination (CSR) in mature B cells: To avoid
complications arising from TET deletion during
development, we deleted the Tet2 and Tet3 genes in
mature B cells using Cre-ERT2, a tamoxifen-inducible
fusion of Cre recombinase with the estrogen receptor
ligand-binding domain. This inducible system permits

Figure 2. Regulation of enhancers by TET proteins. (a) 5hmC levels at enhancers show a strong positive correlation with
enhancer activity. The diagram depicts all enhancers in naı̈ve mouse B cells (n=22,539), ranked according to their relative
levels of H3-lysine 4-monomethylation (H3K4me1; a mark for most enhancers) and H3-lysine 27-acetylation (H3K27Ac; a
mark for enhancer activity). The color indicates the relative enrichment of 5hmC. In general, active enhancers bearing both
marks (right) are enriched in 5hmC relative to poised enhancers bearing only the K3K4me1 mark (left). The figure was
adapted from Lio et al. (2019) with permission. (b) Working model for TET-mediated enhancer regulation. Pioneer
transcription factors (TF1, purple circle) are able to bind to nucleosomes at enhancers and recruit TET proteins. Using
2-oxoglutarate (2OG; also known as alpha-ketoglutarate), reduced iron (Fe(II)) and O2, TET proteins oxidize 5mC into 5hmC
at CpG motifs around the enhancer, releasing succinate and CO2. After rounds of DNA replication, the CpG motifs become
demethylated and the enhancer becomes more accessible for binding of additional transcription factors (TF2, orange circle).
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a detailed kinetic analysis of 5hmC deposition, DNA
demethylation and transcriptional and chromatin
changes occurring over a four-day time period (Lio
et al. 2019). The experiments showed that TET
enzymes regulate CSR in mature B cells activated with
lipopolysaccharide (LPS) and Interleukin-4 (IL-4).
Briefly, B cell activation results in rapid upregulation of
the basic region/leucine zipper (bZIP) transcription
factor BATF, and later upregulation of the activation-
induced cytidine deaminase (AID). Both BATF and
AID are essential for CSR, a process in which B cells
replace the IgM-encoding exons with those encoding
other antibody isotypes such as IgG1 or IgA. In the
absence of TET proteins, CSR was reduced by 50%,
but reconstitution with catalytically active, but not

inactive, AID fully reconstituted CSR. The mechanism
involves recruitment of TET proteins to at least two
activation-dependent (‘de novo’) enhancers in the
Aicda locus by BATF; in the absence of BATF, TET
proteins were unable to mediate the progressive 5hmC
deposition and DNA demethylation seen at these loci in
wildtype cells (figure 3a).
TET proteins regulate an intronic enhancer

required for the stable expression of FOXP3 in T
regulatory cells: Regulatory T (Treg) cells are a
minor subpopulation of T cells that are critical for
immune homeostasis and prevention of autoimmune
disease (Sakaguchi et al. 2008; Lio and Hsieh 2011;
Josefowicz et al. 2012). The lineage-determining
transcription factor for Treg cells is FOXP3; germ-
line mutations in FOXP3 in either mice or humans,
as well as induced deletion of the Foxp3 gene in
healthy adult mice, leads to fulminant autoimmune
disease (Sakaguchi et al. 2008; Josefowicz et al.
2012). Loss of TET function does not impair the
development of thymic Treg cells, but greatly
impairs the stability of Foxp3 expression through cell
division (Yue et al. 2016). The stability of Foxp3
expression is controlled by an intronic enhancer,
CNS2, within the Foxp3 locus, in a manner linked to
its DNA methylation status (Floess et al. 2007;
Zheng et al. 2010; Feng et al. 2014; Li et al. 2014).
CNS2 is fully methylated in naı̈ve T cells but mainly
demethylated in Treg cells (Floess et al. 2007). The
demethylation is controlled by TET proteins, since
Treg cells from mice lacking Tet2 and Tet3 (or Tet1
and Tet2) show DNA hypermethylation at CNS2 and
consequent loss of Foxp3 expression as a function of
cell division (Yang et al. 2015; Yue et al. 2016)
(figure 3b).
Tregs can be generated in vitro from naı̈ve T cells by

culturing them in the presence of TGFb (Chen et al.
2003) and/or retinoic acid (RA) (Benson et al. 2007);
these cells have been termed ‘induced’ Tregs (iTregs).
However, iTregs generated under these conditions do
not show demethylation of CNS2 (Floess et al. 2007;
Yue et al. 2016). Rather, addition of the TET activator
Vitamin C (Blaschke et al. 2013) to cultures of naı̈ve T
cells with TGFb and/or RA results in full demethyla-
tion of CNS2 and a substantial increase in the stability
of FOXP3 expression, compared to iTregs cultured
with TGFb or TGFb ? RA alone, in both mouse and
human (Sasidharan Nair et al. 2016; Yue et al. 2016).
Moreover, inhibition of the Vitamin C transporter
reverses the demethylation status of CNS2, both in
Vitamin C-treated iTregs in vitro and in peripheral
Tregs generated in vivo (Sasidharan Nair et al. 2016).

Figure 3. Function of TET proteins in immune system.
(a) TET proteins are required for the full potential of
enhancers. During T cell development and B cell activation,
transcription factors (TFs) recruit TET proteins to the key
enhancers that promote the expression of lineage-related
genes (Tbx21 and Zbtb7b in T cells; Aicda in B cells)
(Tsagaratou et al. 2014; Lio et al. 2019). TET proteins
oxidize and demethylate enhancers, augmenting gene
expression. In the absence of TET proteins, the inability to
demethylate enhancers results in decreased gene expression,
potentially by affecting chromatin conformation and the
binding of additional transcription factors. (b) TET proteins
are required for stable gene expression. A variety of
transcription factors recruit TET proteins and assemble at
the intronic enhancer (CNS2) of Foxp3, the lineage-defining
transcription factor for regulatory T (Treg) cells. This results
in the demethylation of *12 CpGs located in the CNS2
enhancer, a process central to establishing and maintaining
the stable expression of Foxp3 (Yue et al. 2016).
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6. Association of TET loss-of-function with cancer

In mouse models developed in the Rao lab, deletion of
the Tet2 and Tet3 genes in developing T cells using
CD4Cre resulted in the rapid oligoclonal expansion of a
normally minor T cell population known as NKT cells,
which recognize lipid antigens presented on a non-clas-
sical major histocompatibility complex protein (CD1d)
and undergo controlled proliferation rather than being
deleted in the thymus due to self-reactivity (Tsagaratou
et al. 2017). The expansion is quickly followed by the
development of aggressive transmissible T cell lym-
phomas in 100% of mice, which show various hallmarks
of cancer, including DNA damage, and the mice suc-
cumb within 5–8 weeks (Tsagaratou et al. 2017; Lopez-
Moyado et al. 2019). Similarly, deletion of both Tet2 and
Tet3 in B cells using Mb1-Cre results in a fully-penetrant
B cell lymphoma that arises from a few surviving B cells
in these mice, and is fatal within 5 months (Lio et al.
2016). In both cases, deletion of either the Tet2 or Tet3
genes alone resulted in a less dramatic phenotype, sug-
gesting that profound TET deficiency was necessary. We
proved this point in a different model system in which the
Tet2 gene was disrupted in the germline and the Tet3 gene
was inducibly deleted (i.e. adult Tet2 -/- Tet3 fl/fl Mx1-Cre
and Tet2-/- Tet3 fl/fl Cre-ERT2 mice, in which Cre
recombinase is induced by injection of polyI:polyC and
tamoxifen respectively (An et al. 2015)). In this system,
tamoxifen-treated (but not mock-treated) mice almost
immediately showed massive myeloid expansion with
concomitant loss of T, B and erythroid cells, and rapidly
developed an aggressive acute myeloid leukemia that
caused them to succumb within 4–5 weeks of injection
(An et al. 2015). Together these data indicate that pro-
found TET loss-of-function predisposes cells to rapid,
signal-dependent expansion that quickly progresses to
frank malignancy.
Even in the absence of TET coding region mutations,

TET loss-of-function and low 5hmC levels are fre-
quently observed in many different types of cancers
(Ko et al. 2010; Huang and Rao 2014; Ko et al. 2015b;
Marcais et al. 2017; Lemonnier et al. 2018), including
both blood malignancies and solid tumours. This may
occur as a result of silencing or degradation of TET
proteins at different stages of gene expression, includ-
ing transcriptional silencing as a result of TET pro-
moter hypermethylation, post-transcriptional processes
including microRNA-mediated silencing, and
increased degradation, as posttranslational modifica-
tions differentially impact TET proteins stability
(Cimmino et al. 2015; Ko et al. 2015a; Raffel et al.
2017; Wu et al. 2018). Additionally, hypoxia and

metabolic alterations could lead to TET loss-of-func-
tion by impairing its enzymatic activity (along with
other dioxygenases), by decreasing the levels of the
substrates 2-oxoglutarate and molecular oxygen or by
increasing the levels of the competitive inhibitor
2-hydroxyglutarate (2-HG) (Kaelin and McKnight
2013; Losman and Kaelin 2013; Huang and Rao 2014;
Ko et al. 2015b; Raffel et al. 2017). For example, gain-
of-function mutations in the isocitrate dehydrogenases,
IDH1 and IDH2, lead to accumulation of 2-HG, and
mutations in these genes are frequently observed in
patients with acute myeloid leukemia (AML) and
glioblastoma (Dang et al. 2010; Cairns and Mak 2013;
Losman and Kaelin 2013). Similarly, overexpression of
the Branched chain amino acid transaminase 1
(BCAT1) gene, as reported in AML, leads to decreased
levels of 2-oxoglutarate and therefore low TET func-
tion (Raffel et al. 2017).

7. DNA hypermethylation in TET2-mutant
cancers

Most studies of TET2-mutant cancers have focused on
the fact that loss-of-TET function results in increased
methylation at genomic regions where TET proteins
play a transcriptional regulatory role. This focal DNA
hypermethylation, which occurs primarily at promot-
ers and enhancers, can result in transcriptional
silencing of tumour suppressor genes and genes
involved in DNA damage repair, thus promoting
oncogenesis (Jones and Baylin 2002; Baylin and
Jones 2016). Indeed, focal DNA hypermethylation is
commonly observed in tumours with impaired
expression or activity of TET proteins. The presence
of hypermethylation at these active genomic regions is
consistent with the finding that 5hmC in wildtype
cells is primarily present in euchromatin, at active
enhancers and in the gene bodies of highly transcribed
genes (Tsagaratou et al. 2014). DNA hypermethyla-
tion signature have been defined for many cancers,
and some of these are characteristic of either TET2
mutations or TET deficiency resulting from metabolic
and other aberrations. For instance, both IDH-mutant
and BCAT-overexpressing cancers have been shown
to have a DNA hypermethylation signature that
resembles that of TET-deficient cancers (Sasaki et al.
2012; Raffel et al. 2017). However, whether IDH-
mutant and BCAT-overexpressing cancers show a
second feature observed in TET-mutant cancers—
DNA hypomethylation in heterochromatin—has not
yet been resolved (see the following section).
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8. TET deficiency is associated with a paradoxical
loss of DNA methylation in heterochromatin

As detailed above, TET mutation or deficiency—which
could result from TET coding region mutations, chan-
ges in mRNA or protein expression or stability, or
metabolic alterations that result in inhibition of TET
enzymatic activity—results in increased DNA methy-
lation at genomic regions, including enhancers and
promoters active in the cell type being examined, as
well as certain CTCF sites (Cimmino et al. 2015;
Rasmussen et al. 2015; Flavahan et al. 2016; Ras-
mussen and Helin 2016; Yue et al. 2016; Tsagaratou
et al. 2017). This feature is expected from TET bio-
chemical activity (figure 1b). Surprisingly, however,
several studies that mapped DNA methylation, gen-
ome-wide, in TET-deficient cells noted unexpected and
widespread decreases of DNA methylation (Hon et al.
2014; Lu et al. 2014; An et al. 2015; Tsagaratou et al.
2017). These hypomethylated regions did not overlap
with active or regulatory regions of the genome, and so
were largely ignored.
We recently reported a comprehensive analysis of

DNA methylation in many different wildtype and TET-
deficient cell types, including embryonic stem (ES)
cells, neuronal precursor cells, haematopoietic stem
cells, B cells and T cells (Lopez-Moyado et al. 2019).
The TET-deficient cells bore individual deletions of the
Tet1 or Tet2 genes, Tet2/3 double deletions, or triple
deletions of all three TET genes, Tet1, Tet2 and Tet3.
Our study revealed that in each of these distinct cell
types, the widespread DNA hypomethylation observed
in TET-deficient cells was confined to the heterochro-
matin compartment (Lopez-Moyado et al. 2019).
Notably, the heterochromatin hypomethylation cannot
be explained simply by increased proliferation, since
TET triple-deficient ES cells do not proliferate faster
than their wildtype counterparts (Li et al. 2016).
Rather, in Tet1-deficient mESC, we observed a relo-
calization of DNMT3A from the heterochromatic to the
euchromatic compartment, to the sites where TET1
would bind in wildtype conditions. These data provide
a potential mechanism for the heterochromatic DNA
hypomethylation associated with TET mutations,
independent of proliferation rate (figure 4).
In addition to focal hypermethylation, cancer gen-

omes have long been known to have widespread DNA
hypomethylation (Feinberg and Vogelstein 1983; Jones
and Baylin 2002; Ehrlich 2009; Baylin and Jones
2016). In these cases, as well as in TET-deficient
genomes, DNA hypomethylation is primarily present
in the heterochromatic compartment (Lopez-Moyado

et al. 2019). Although we currently have a reasonable
understanding of the biochemical mechanisms under-
lying focal hypermethylation and their consequences
for gene transcription, the causes and consequences of
DNA hypomethylation in cancer remain unclear.

9. Unexpected synergy between TET2
and DNMT3A mutations

Despite their opposing catalytic activities (TET
removes DNA methylation whereas DNMT3A depos-
its this modification), TET2 and DNMT3A mutations
are frequently observed, individually and together, in
diverse blood malignancies including myelodysplastic
syndromes (MDS), acute myeloid leukemias (AML)
and peripheral T cell lymphomas (PTCL) (Couronne
et al. 2012; Ley et al. 2013; Odejide et al. 2014;
Palomero et al. 2014; Sakata-Yanagimoto et al. 2014;
Papaemmanuil et al. 2016). A previous study (Zhang
et al. 2016) comparing the phenotypes of Dnmt3a,
Tet2, and double Dnmt3a/Tet2 loss-of-function muta-
tions in the mouse hematopoietic precursors found that
the Dnmt3a/Tet2 double mutation resulted in decreased
survival and increased number of hematopoietic pre-
cursor cells and white cells (monocytes) in the
peripheral blood, compared to that of the mice singly
deficient for Dnmt3a or Tet2. Additionally, we recently
found that Dnmt3a/Tet2 doubly-deficient cells dis-
played more profound losses of DNA methylation than
Dnmt3a or Tet2 mutations alone, even though both
mutations resulted in heterochromatic DNA
hypomethylation to different extents (Lopez-Moyado
et al. 2019). Potentially, the similar phenotypes of
DNMT3A and TET2 mutations could be a result of the
loss of oxi-mC (TET deletions will decrease the
amount of 5hmC, 5fC and 5caC, whereas DNMT
mutations will decrease the amount of 5mC, which is
the substrate for the TET-mediated cytosine oxida-
tions). Thus, our study (Lopez-Moyado et al. 2019)
opens up the possibility that some of the similarities
between DNMT3A and TET2 mutations are a result of
a shared loss of DNA methylation in heterochromatin.
DNA hypomethylation has been associated with

increased mutational load and genome instability
(Chen et al. 1998; Eden et al. 2003; Gaudet et al.
2003). It is well known that cancer genomes display
DNA hypomethylation which covers long regions of
the genome and overlaps with lamina-associated
domains, H3K9me2/3-marked, late-replicating regions
of the genome (Berman et al. 2011; Hon et al. 2012;
Zhou et al. 2018). Furthermore, it has been previously
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reported that cancer genomes display increased muta-
tion rates in H3K9me3-marked regions of the genome
(Schuster-Bockler and Lehner 2012). An interesting
open question is if the heterochromatic DNA
hypomethylation observed in TET deficient genomes
could account for their increased levels of DNA dam-
age, genome instability, and ultimately their role in
oncogenesis. For instance, in the case of a NKT cell
lymphoma that arises as a result of double Tet2/Tet3
deletion (Tsagaratou et al. 2017), there was an associ-
ation between progressive loss of methylation,
increased levels of DNA damage, pronounced enrich-
ment for single-nucleotide variations (SNVs) in the
heterochromatin, and genome instability (Lopez-Moy-
ado et al. 2019). However, the relationship between
oncogenic transformation and DNA hypomethylation
in heterochromatin and cancer is only just beginning to
be elucidated.

10. Hypomethylation of human heterochromatin is
associated with increased replication fork stalling,
DNA damage and chromosomal abnormalities

An interesting recent finding is that hypomethylation of
heterochromatin causes DNA damage and chromoso-
mal abnormalities through the induction of replication

stress (Delpu et al. 2019). Cells deficient in DNA
methylation struggle to complete S phase, suggesting
an essential and unexplored role for DNA methylation
in regulating DNA replication (Jacob et al. 2015;
Haruta et al. 2016). One of the most striking examples
of genomic instability triggered by hypomethylation
involves the repetitive sequence, Satellite 2 (SAT2),
which occurs in megabase-long tracts in the pericen-
tromeric heterochromatin of human chromosomes 1
and 16 (Ehrlich 2009; Altemose et al. 2014). Gains and
losses of the long arms of these two chromosomes are
overrepresented across many types of cancers, as well
as in aging cells, and correlate strongly with SAT2
hypomethylation (Qu et al. 1999; Suzuki et al. 2002;
Tsuda et al. 2002; Neve et al. 2006). Striking chro-
mosomal rearrangements involving SAT2 have also
been reported in lymphocytes and fibroblasts from
patients with the fatal genetic disease Immunodefi-
ciency, Centromeric instability, and Facial anomalies
(ICF) syndrome, which is caused by germline muta-
tions (including mutations in the de novo methyl-
transferase DNMT3B), that result in a dramatic loss of
methylation at SAT2 (Ehrlich et al. 2001; Thijssen
et al. 2015). Structural studies have demonstrated that
sequences contained in SAT2 have the potential to fold
into highly stable non-B DNA structures (Catasti et al.
1994). Such non-canonical DNA structures are known
to stall replication forks leading to the formation of
breaks and chromosomal rearrangements (Leon-Ortiz
et al. 2014), suggesting that hypomethylation of SAT2
may lead to chromosomal abnormalities through the
dysregulation of genomic secondary structures and the
induction of replication stress.
The Tahiliani Lab developed a single-molecule

approach that combined DNA combing with fluores-
cence in situ hybridization (FISH) to directly visualize
the impact of hypomethylation of SAT2 on replication.
Replication dynamics in well-characterized ICF patient
cell lines were compared to those in normally methy-
lated cells. This approach revealed that SAT2
hypomethylation results in increased DNA damage
specifically at SAT2 and strongly impairs the efficiency
of replicating these sequences (Delpu et al. 2019).
Consistent with increased fork stalling at these
sequences, they found increased levels of the single-
stranded DNA (ssDNA) binding protein, RPA2, as well
as asymmetric progression of sister replication forks
within hypomethylated SAT2 sequences (Delpu et al.
2019). Together these findings indicate that impaired
replication triggers the formation of chromosomal
aberrations observed at hypomethylated SAT2
sequences and also suggests a mechanistic basis for

Figure 4. Proposed model for loss of DNA methylation in
heterochromatin of TET-deficient embryonic stem cells.
Loss of TET proteins results in relocalization of the de novo
methyltransferase DNMT3 proteins, from the heterochro-
matic compartment to euchromatin regions previously
occupied by TET proteins. Potentially, this relocalization
contributes both to the heterochromatic DNA hypomethyla-
tion and the euchromatin DNA hypermethylation observed
in TET-deficient cells. Whether this relocalization also
occurs in other systems with TET loss-of-function is still
an open question. Adapted from López-Moyado et al.
(2019).
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how the loss of DNA methylation may contribute to
genomic instability in diverse pathological conditions.

11. Conclusion and perspectives

The studies of TET protein function over the last
decade have focused on its ability to facilitate DNA
demethylation through the production of oxi-mC. It has
only recently been recognized that loss of TET function
can also compromise heterochromatin integrity, and
that this process could be deleterious for genome sta-
bility and start cells on the road to oncogenic trans-
formation. We anticipate that studies over the coming
decade will elucidate the mechanisms involved.
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