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Osterix (or Sp7) is an important transcription factor that promotes osteoblast differentiation by modulating the expression of
a range of target genes. Although many studies have focused on Osterix/Sp7 regulatory mechanisms, the detailed functions
have not been fully elucidated. Toward this end, in this study, we used CRISPR/Cas9 technology to knock out the zebrafish
sp7 gene, and then analyzed its phenotype and biological function. Two knockout sp7 mutant lines were successfully
obtained. The bone mineralization level was significantly reduced in the zebrafish sp7-/- homozygote, resulting in
abnormal tooth development in the larvae. Quantitative real-time polymerase chain reaction showed that loss of sp7 led to
down-regulated expression of the dlx2b and bglap genes related to tooth development and bone mineralization, respec-
tively. Moreover, cell transfection experiments demonstrated that Sp7 directly regulates the expression of dlx2b and bglap
through Sp7-binding sites on the promoter regions of these two genes. Overall, this study provides new insight into the role
of Sp7 in bone mineralization and tooth development.
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1. Introduction

Osterix (or Sp7) is an important zinc finger transcription
factor that activates the transcription of downstream target
genes through binding DNA, and is thus designated Sp7
protein binding sites by zinc finger domain (Koga et al.
2005; Zhang et al. 2008). To date, many genes have been
identified as downstream targets of Sp7, including
Col1a1(Ortuno et al. 2010), Col5a3 (Yun-Feng et al. 2010),
Satb2 (Tang et al. 2011), Mmp13 (Nishimura et al. 2012)
and sclerostin (Perez-Campo et al. 2016). Sp7 is mainly
expressed in osteoblasts and plays an important role in the
maturation of both osteoblasts and osteocytes (Nakashima
et al. 2002). Recent studies have also pointed to a role of
Sp7 in bone regeneration (Hosoya et al. 2013).

The majority of studies focused on the function of Sp7
have used different model organisms to knock out or knock-
down the gene with various technologies. Knockout of Sp7
in mice resulted in severe skeletal loss, and the osteoblasts

could not mature (Nakashima et al. 2002). Moreover, Sp7
mutant mice showed abnormal osteoblast formation and
development, which was ultimately lethal at the prenatal
stage (Nakashima et al. 2002). This study further supported
an important role of Sp7 in determining the fate of skeletal
development. In addition, the sp7 gene of Japanese medaka
(Oryzias latipes) was knocked down via injection with
antisense morpholino oligonucleotides (MO) to cause
splicing and block translation, resulting in severe bone
development abnormalities and a high larval mortality rate
(Renn and Winkler 2014). In addition, ossification of more
mature bones such as the operculum and cleithrum was
delayed but recovered during further development. In the
axial skeleton, formation of the neural arches and centra was
strongly delayed (Yu et al. 2017). Similarly, knockout of sp7
in zebrafish caused reduced mineralization of the cranial
bone and disturbance of the axial bone (Yu et al. 2017;
Kawai et al. 2017). Recent studies also showed that the loss
of sp7 in zebrafish can affect the formation and
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differentiation of teeth (Kague et al. 2018), suggesting a role
of Sp7 in regulating tooth development; however, the precise
role and mechanism remain unclear.

Thus, to further explore the role of the zebrafish sp7 gene
in bone mineralization and tooth development, in the present
study, we used CRISPR/Cas9 technology to knock out the
zebrafish sp7 gene, which is recent genome editing tech-
nology that provides a faster and more convenient method
for gene manipulation than conventional mutation genera-
tion (Ran et al. 2013). The confirmed mutants were analyzed
with regard to the effect of sp7 loss on bone mineralization
and tooth development during development. We further
conducted cells transfection and rescue experiments to
identify the underlying mechanism and identify target genes
of Sp7. Together, these results should provide new insights
into the role of sp7 in bone mineralization and tooth
development.

2. Materials and methods

2.1 Fish maintenance

Adult zebrafish of the AB strain were raised in a recirculating
water system under a 14-h/10-h light/dark (L/D) cycle at 28�C
and fed three times per day. To produce embryos, male and
female zebrafish were paired in the evening, and spawning
occurred the next daywithin 1 h after the lightswere turned on.
The embryoswere placed in 10-cm Petri disheswith eggwater
containing methylene blue (0.3 ppm) and raised in a light-
controlled (14-h/10-h L/D) incubator at 28�C.

2.2 Design of sp7 guide RNAs, and generation
and genotyping of mutants

sp7 gRNAs were designed according to the methods
described by Hsu et al. (2013). The purified gRNA (100 ng/

ll each) was co-injected with Cas9 mRNA (300 ng/ll) into
zebrafish embryos at the one-cell stage. Adult potential
founders were genotyped by fin clipping and then crossed to
obtain germ line mosaic F1 embryos. Adult genotyped F1
fish were then outcrossed with wild-type fish to obtain
heterozygous F2 offspring. The phenotype of homozygous
F3 carriers was then analyzed. For genotyping, larvae or
adult fish were anaesthetized with 0.01% or 0.005% ethyl
3-aminobenzoate methanesulfonate (Tricaine; Sigma),
respectively. Larvae or clipped caudal fin fragments were
lysed individually in 50 ll of 50 mM NaOH and incubated at
95�C for 15 min. The samples were neutralized with 5 ll of
1 M Tris-HCl (pH 8.0). Stained embryos were fixed and
washed with 19 phosphate buffered saline with 0.1% (v/v)
Tween 20 (PBST) five times before genomic DNA isolation.
Individual larvae were lysed with DNA lysis buffer (10 mM
Tri-HCl pH 8.2, 50 mM KCl, 0.3% NP 40, 0.3% Tween) and
Proteinase K (20 lg/ml; Sigma) at a 49:1 ratio and incubated
at 55�C for 60 min and then at 90�C for 10 min. The
supernatant contained genomic DNA for analysis. A 147-bp
fragment was amplified (using primers GAGGAAA-
CACGTTATGGATC and GTTCAGAAGTCATGCTGTAG)
and digested with MspI (New England Biolabs). Mutants
with undigested fragments were sequenced for confirmation.

2.3 Whole-mount skeletal staining

Alizarin red staining was performed on the larvae fish as
previously described (Walker and Kimmel 2007). In brief,
the zebrafish larvae were collected at 6, 10, and 12 days
post-fertilization (dpf) and then fixed in 2% paraformalde-
hyde overnight. After washing with 10% glycerol/0.5%
KOH, the larvae were stained overnight with 0.02% alizarin
red stain/10% glycerol/0.5% KOH and then washed over-
night twice with 50% glycerol/0.1% KOH. Images were
acquired using a stereomicroscope (Leica, M165FC, Ger-
many). Digital images were analyzed to quantify and

Table 1. List of primer sequences in this study

Gene name Forward primer Reverse primer Note

dlx2b TCCTATGGCGCTTATGGAAC TTTTTGGCTTTCCATTCACC qRT-PCR
mag AGCCCAACATTGATGTTCCT GTGGATTTCTGGGCTCATGT qRT-PCR
pthlha ATGCATGATAAAGGCCGAAC CACCACTGCTGATGCTGACT qRT-PCR
ercc2 GATGCAAAGGGTCATGGAGT GCAGTACACGAGCTTGGTGA qRT-PCR
acvr1l CTTCGACTGCTGCTCACAAG GCCAGAAAAGACAGCAGACC qRT-PCR
ssvb2rs1 TGATGATCAGCGTGGGTTAC TCCTGCAGTCTGTGTGTGTG qRT-PCR
smoc2 AATGCAAAGATACGCCCAAG AGGTTCCATCAGGATTGCAG qRT-PCR
bglap CTGCTGCCTGATGACTGTGT CACGCTTCACAAACACACCT qRT-PCR
sparc TGGGAATAAACCCAGTCCAG CCCTTCTTGCAGTGATGGTT qRT-PCR
spp1 CACCATCATCCCAGTCACAG CAAAGTCTTTTGCGTCCACA qRT-PCR
col1a1a ACGGCCAGGTCTACAATGAC TGTGTCCTCGCAGATCACTT qRT-PCR
col10a1a CCGCAGTACCAGCCTTACTC CTGGCAGACCTTCACCATCT qRT-PCR
b-actin ACGAACGACCAACCTAAACTCT TTAGACAACTACCTCCCTTTGC qRT-PCR
dlx2b AAGTCTAGGGAAGTGGGAGG CATATCCATAGTTGATGGAGG cDNA clone
bglap GGCCTCAACCTCTGCTACTGC TTCTGTGTCAGCTGATCTGTG cDNA clone
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compare the stained area and staining density. Three repli-
cates were performed with 10 fish per replicate.

2.4 RNA isolation, cDNA synthesis, and reverse
transcription-quantitative polymerase chain reaction
(qRT-PCR)

Total RNA was extracted from more than 25 larvae by
TRIzol (Invitrogen) reagent and reverse-transcribed into
cDNAs using Superscript III Reverse Transcriptase (Invit-
rogen). qRT-PCR was then performed on an ABI Step-One
Plus instrument using the SYBR (TaKaRa) system with a
thermal profile of 40 cycles of 95�C for 10 s and 58�C for 30
s. Each qRT-PCR analysis was performed in triplicate on

three independent biological samples, and b-actin served as
the reference gene for relative quantification of expression
levels, calculated using the 2-44Ct method in Microsoft
Office Excel. The qRT-PCR primers were designed based on
the exon boundaries using Primer Express 3.0 software, and
were checked for self-annealing, hetero-dimers, and hairpin
structures with Oligo Analyzer 3.1. The primer sequences
are listed in table 1.

2.5 Luciferase activity assay

A segment of the wild type (WT) about 3kb dlx2b and
bglap promoter cloned into the pcDNA4.17 vector

Figure 1. Generation of the sp7 mutant line using CRISPR/Cas9. (A) The target site of gRNA selection in sp7 exons 3; the MspI
restriction enzyme cutting site was located in the PAM site to facilitate selection of mutant zebrafish. (B) Different concentrations of gRNA
were mixed with 300 lg/L Cas9-capped mRNA, and then injected into single-cell zebrafish fertilized eggs. At 24 h post-fertilization,
genomic DNA was extracted to check the gRNA efficiency. (C) Sequencing results showing different mutants generated by non-
homologous recombination repair. (D) Two mutant types were ultimately chosen in the F1 generation of zebrafish. Neither mutant encodes
Sp7 proteins. The mutant with an 11-bp deletion was chosen for subsequent experiments.
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(Promega), and a mutant dlx2b and bglap-luc was gen-
erated by altering the predicted Sp7 binding site via a
two-step PCR approach. HEK 293T cells were co-trans-
fected with either a WT or mutant dlx2b and bglap-luc
vector, and added Sp7 expression vector or not, cultured
for 24 h, and then assessed to ascertain their exhibited
luciferase activity using a dual-luciferase reporter assay
system (Promega).

2.6 Statistical analysis

Three biological replicates and three technical replicates
were performed for each experiment, and all experimental
data are presented as mean ± standard deviation values.
One-way analysis of variance was performed to determine
the statistical significance, followed by post-hoc Dunnett’s
or Turkey’s tests to independently compare the effects of sp7

Figure 2. Whole-mount skeletal staining showing decreased bone mineralization lack of tooth development in the sp7 mutant
homozygous zebrafish. (A–C) Alizarin Red staining of WT fish at 6, 10, and 12 dpf. (D–F) Alizarin Red staining in sp7 mutant fish at 6, 10,
and 12 dpf. (G–I) Digital image analysis of the stained area and staining density of mineralized tissue via fluorescence intensity. Mean
values are plotted (n = 10) and Student’s t-test was performed to determine statistical significance.
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knockout to wild-type fish. All statistical analyses were
conducted using SPSS 16.0 software and values of p\0.05
were considered to be statistically significant.

3. Results

3.1 Generation of sp7 zebrafish mutants using
the CRISPR/CAS9 system

To obtain sp7 mutants, CRISPR/CAS9 technology was used
to knock-out the sp7 gene in zebrafish. The process of muta-
tion generation and selection is outlined in figure 1. The
gRNA target site was exon 3, and the restriction enzymeMspI
was chosen to identify the mutation close to the PAM sites. To
confirm the activity of the candidate gRNAs generated, dif-
ferent concentrations of gRNAwere mixed Cas9, and capped
mRNA was injected single-fertilized eggs. The efficiency of
the gRNAwas 62%, 50%, 48%, 45%, and 40%whenmixed at
concentrations of 100, 50, 25, 15, and 10 ng, respectively.
Uncleaved bands were extracted from the gel and cloned into
the pMD-19T vector. The sequencing results demonstrated a
difference of mutant type generated by non-homologous
recombination repair. Ultimately, two homologous sp7
mutants were identified in the F2 generation. Bioinformatics

analysis further revealed that these two mutants encode
124- and 45-amino acid truncated proteins, which both result
in nonsense mutations. Most of the subsequent experiments
were performed using the 11-bp-deletion mutant.

The homozygous sp7mutants developed into adults fish, but
showed an abnormal body morphology such as a defected gill
and crooked spine. Compared with wild-type (WT) zebrafish,
the homozygous sp7 mutant also had a lower body length and
bodyweight (data no shown). Importantly, the homozygous sp7
mutant was not able to spawn. However, when eggs out from
the sp7mutantwere removed and artificially fertilizedwithWT
sperm, the eggs developed normally. These results suggested
that sp7 likely also plays a role in fertilization.

3.2 Bone mineralization and tooth development were
defective in the homozygous sp7 mutant

Alizarin Red staining performed at 6, 10, and 12 dpf showed
that the area of stained bone tissue significantly decreased in
the sp7 mutant compared with WT zebrafish (figure 2). In
particular, there was barely any mineralization detected in
the craniofacial bones in the mutant, with only a 20% stained
area compared with that of WT fish.

Figure 3. Tooth development- and bone mineralization-related genes were down-regulated in the sp7 mutant zebrafish at 6 dpf. (A–G)
Tooth development gene expression patterns in the sp7 mutant zebrafish. (H–L) Bone mineralization gene expression patterns in the sp7
mutant zebrafish. Student’s t-test was performed to determine statistical significance.
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3.3 Genes related to tooth development and bone
mineralization were down-regulated in the sp7 mutant

As shown in figure 3, compared to the WT fish, the
expression levels of the tooth development genes dlx2b,
map, pthlha, and smoc2 significantly decreased in the sp7
mutant zebrafish; however, the levels of acvr1l and ssvb2rs1
significantly increased, and there was no difference in the
expression level of ercc2. The expression levels of the bone
mineralization genes bglap, sparc, spp1, col1a1a, and
col10a1a significantly decreased in the sp7 mutant com-
pared with those of WT zebrafish.

3.4 Sp7 positively regulates dlx2b and bglap

Bioinformatics promoter analysis identified an Sp7-binding
site in the 2-kb promoter region of dlx2b (figure 4A), which
is known to play a role in tooth morphogenesis in mice and
zebrafish. Moreover, cell transfection experiments showed
that Sp7 significantly up-regulated dlx2b expression;

however, when the Sp7-binding site was mutated, this
up-regulation was no longer observed (figure 4B).

Similarly, two Sp7-binding sites was identified were
identified in the promoter region of bglap (figure 4C), which
encodes osteocalcin secreted by osteoblasts, and is thus
implicated in bone mineralization and calcium ion home-
ostasis. In addition, cell transfection experiments showed
that Sp7 up-regulated bglap expression, which was not
observed with mutation of the two Sp7-binding sites
(figure 4D).

3.5 Whole-body sp7 expression rescued tooth
development and bone mineralization in sp7 mutant
zebrafish

Transgenic zebrafish were generated that express sp7
throughout the entire body. The plasmid was generated via a
Tol2 backbone, and crystailin beta promoter-driven EGFP
was clonde into this vector as a screening tag. EF1a then
triggered sp7 to express Sp7 in the whole body (figure 5B).

Figure 4. Sp7 positively regulates tooth and bone mineralization-genes (dlx2b and bglap, respectively). (A) Promoter analysis of dlx2b
identifying one Sp7-binding site. (B) Cell transfection experiment showing that Sp7 regulates dlx2b expression via direct interaction with
the promoter. (C) Promoter analysis of bglap identifying two sp7-binding sites. (D) Cell transfection experiment showing that Sp7 regulates
bglap by diret interaction with the promoter. SBS: sp7 binding site. Three independent experiments were performed. One-way ANOVAwas
performed to calculate statistical significance followed by post-hoc Dunnett or Turkey tests.
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qRT-PCR experiments analysis showed that whole-body sp7
expression rescued the decrease of dlx2b and bglap
expression from the homozygous mutation. Whole-body
Alizarin staining at 12 dpf further demonstrated that whole-
body sp7 expression rescued both bone mineralization and
tooth development in the mutant.

4. Discussion

Sp7 is a zinc finger transcription factor that regulates the
expression of many genes by binding to corresponding sites
on the DNA sequence, and plays an important role in bone
development (Koga et al. 2005; Nishimura et al. 2012). In
this study, we used CRISPR/Cas9 technology to successfully
construct sp7 homozygous zebrafish mutants, and confirmed
its role in regulating bone development.

sp7 mutants have been generated in other model organ-
isms. In mice, the loss of sp7 has a lethal effect before birth
due to abnormal development of the bone and osteoblasts
(Nakashima et al. 2002; Baek et al. 2009). Similarly, less
than 1% of medaka sp7 mutants survived beyond 1 month of
age, and none survived up to 2 months (Yu et al. 2017). By
contrast, in zebrafish, all of the homozygous sp7 mutants
could survive to adulthood (Kague et al. 2018), confirming
previous studies indicating that the function of zebrafish sp7
slightly differs from that of mammals and medaka.

Establishment of an adult sp7 mutant also provides the
unique opportunity to study the function of Sp7 in adult fish.
However, our homozygous sp7 mutant could not success-
fully spawn, although in vitro-fertilized eggs developed
successfully. Thus, the bone damage caused by the loss of
sp7 also appears to affect the ovulation process.

Overall, loss of sp7 resulted in significant damage to bone
mineralization and tooth development. The zebrafish denti-
tion is fully established at around 26 days, comprising 11
teeth positioned on every fifth ceratobranchial (Jackman
et al. 2004; Wise and Stock 2010; Yuan et al. 2017). In the
early stage, zebrafish tooth development is similar to those
of mammals, and the process of zebrafish bone formation is
very similar to that of humans, with the same osteocyte type,
bone structure, and extracellular matrix, making it a suit-
able animal model for human translation (Arnold et al. 2008;
Slavkin et al. 1992). So the zebrafish is a good model to
research the tooth pathobiology.

The extremely low degree of bone mineralization in
zebrafish sp7 mutants is consistent with previous results in
both zebrafish and medaka (Ortuno et al. 2010; Renn and
Winkler 2014). Among bone mineralization-related genes,
loss of sp7 decreased the expression levels of bglap, sparac,
spp1, col1a1a, and col10a1a in our results. The latter two
genes were previously identified as direct targets of sp7
(Ortuno et al. 2010). spp1 encodes osteopontin (Reinholt
et al. 1990), sparc encodes osteonectin (Termine et al.

Figure 5. Whole-body expression Sp7 in the sp7 mutant zebrafish rescued tooth development and bone mineralization. (A) Construction
of a whole-body expression sp7 plasmid. (B) Whole-body expression of Sp7 in transgenic zebrafish was identified via the naked eye by
EGFP fluorescence. (C) Whole-body expression of Sp7 in the sp7 mutant zebrafish rescued dlx2b expression. (D) Whole-body expression
of Sp7 in the sp7 mutant zebrafish rescued bglap expression. (E) Whole-body expression of Sp7 in the sp7 mutant zebrafish rescued the
tooth development and bone mineralization phenotype. Three independent experiments were performed. One-way ANOVAwas performed
to calculate statistical significance followed by post hoc Dunnett’s or Turkey’s tests.

Sp7/osterix affects tooth development and bone mineralization in zebrafish larvae Page 7 of 9 127



1981), and bglap encodes osteocalcin (Weinreb et al. 1990);
thus, these three genes play an important regulatory role in
bone mineralization, especially bglap. The finding that sp7
can directly regulate bglap expression by binding to the
bglap gene promoter further supports that mineralization of
the zebrafish bone is achieved through the interaction of Sp7
with bglap (figure 6). However, some of the bones could
still be mineralized in the sp7 mutants, suggesting that there
may be additional pathways that also play a role in bone
mineralization (figure 6).

The Dlx gene family is associated with many develop-
mental processes, such as mandibular and limb development
(Verreijdt et al. 2006; Merlo et al. 2000), in which dlx2 is an
important transcription factor in tooth mineralization (Tho-
mas et al. 1995). Previous studies have found that retinoic
acid signaling pathway regulates the expression of dlx2b in
pharyngeal ridge and affects the development of zebrafish
teeth (Gibert et al. 2015). And dlx5 is directed regulated by
sp7 (Lee et al. 2003). In our experiments, we found that Sp7
can positively regulate the development of zebrafish teeth
though regulate the expression of dlx2b, and Sp7 overex-
pression can also rescue dlx2b expression and tooth loss
phenotype, which indicates that Sp7 can regulate tooth
development through dlx2b (figure 6).

In conclusion, zebrafish Sp7 can directly regulate the
expression of the dlx2b and bglap genes through Sp7-
binding sites of the promoter regions. This study thus pro-
vides new insights into the role of Sp7 in bone mineraliza-
tion and tooth development.
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