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Rational design of type-IA receptor-derived cyclic peptides
to target human bone morphogenic protein 2
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Human bone morphogenetic protein 2 (BMP2) is a bone-growth regulatory factor involved in the formation of bone and
cartilage, and has been recognized as an attractive therapeutic target for a variety of bone diseases and defects. Here, we
report successful design of a head-to-tail cyclic peptide based on crystal structure to target BMP2. Computational alanine
scanning identifies two hotspot regions at the crystal complex interface of BMP2 with its type-1A receptor; promising one is
stripped from the interface to derive a linear self-inhibitory peptide RPS2I78~%4] that covers residues 78-94 of the receptor
protein. Dynamics simulation and energetics analysis reveal that the peptide is highly flexible in isolated state and cannot
spontaneously bind to BMP2. The RPS2I787"4 peptide is further extended from its N- and C-termini until reaching two
spatially vicinal residues 74 and 98 in the crystal structure of intact BMP2—receptor complex system, consequently resulting
in a longer peptide RPS2I74~%81 which is then cyclized in a head-to-tail manner to obtain its cyclic counterpart
cycRPS2I74=%8] Computational analysis suggests that the cyclic peptide can well maintain in a conformation similar with
its active conformation in complex crystal structure, exhibiting a smaller disorder and a larger potency than its linear
counterpart. Further assays confirm that the two linear peptides RPS2I78 =4 and RPS2[7*~8! are nonbinders of BMP2,
whereas, as designed, the cyclic peptide cycRPS2U7#~%®1 can bind to BMP2 with a moderate affinity. The cyclic peptide is

expected as a lead molecular entity to develop new and potent peptide-based drugs for BMP2-targeted therapy.
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1. Introduction

Human bone morphogenetic proteins (BMPs) are a group of
growth factors that belong to the TGFP superfamily of
cytokines and metabologens (Chen et al. 2004). Similar to
other TGFp family proteins, BMPs are highly conserved
across animal species, which has pivotal roles in the regu-
lation of bone induction, maintenance and repair (Hogan
1996). BMPs act through an autocrine or paracrine mecha-
nism by binding to cell surface receptors and initiating a
cascading of downstream cell signaling events that have
multiple effects on the formation of bone and cartilage
(Sykaras and Opperman 2003). To date, thirteen more BMPs
have been discovered, probably bringing the total to around
twenty (Even et al. 2012), in which the BMP2 is one of the
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most documented members because of its functional
importance and clinical significance (Agrawal and Sinha
2017). Over the past decades, accumulated evidences have
shown that BMP?2 is a central regulator of bone defects, non-
union fractures, spinal fusion, osteoporosis and root canal
surgery through induction of cartilage and bone cells (Geiger
et al. 2003; Khan and Lane 2004), which also exhibits
therapeutic benefits for a variety of bone diseases such as
osteoporosis (Segredo-Morales et al. 2018), multiple mye-
loma (Seher et al. 2017), and osteonecrosis of femoral head
(Vandermeer et al. 2011).

In recent years, BMP2-targeted therapy has been established
as a potential and attractive strategy to modulate the bone-related
TGF[/BMP signaling at molecular level (Wu et al. 2011; Peng
etal.2018). Several forms of BMP2 exist, that is, a mature active
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30 kDa homodimer, an N-terminal propeptide of 4045 kDa,
and a small amount of 60 kDa precursor protein (Israel ez al.
1992). Proteolytic hydrolysis of the precursor protein produces
variable-length propeptides, which can be further cleaved to the
mature homodimer. The mature BMP2 dimer has a large
hydrophobic surface exposed to solvent, contributing to its
unusually low solubility in aqueous solution (Vallejo and Rinas
2013). The BMP2 monomer can also form a series of function-
ally active heterodimers with other members of this family, such
as BMP2/6 and BMP2/7 (Valera et al. 2010; Morimoto et al.
2015). Like other growth factors such as EGF, FGF and HGF, the
BMP2 is hard to be targeted by small-molecule chemical drugs
due to its small size and smooth surface. Previously, biological
agents such as monoclonal antibodies (Moshaverinia et al. 2013)
and peptide ligands (Zhu et al. 2017) have been successfully
applied to suppress the biological activity of several TGF[3/BMP
family proteins.

Peptides possess many attractive features when compared to
small molecule and protein therapeutics, such as high structural
compatibility with target proteins and the ability to disrupt
protein—protein interaction interface. This kind of biologics is
also recognized for being highly selective and efficacious and,
at the same time, relatively safe and well tolerated (Fosgerau
and Hoffmann 2015). However, efficient development of high-
affinity peptide ligands that can specifically target disease-re-
lated proteins has been a major obstacle to the development of
this potential drug class (Vanhee et al. 2011; Ren et al. 2011). In
recent years, computational peptidology has been recognized as
a new and promising strategy to rationally design bioactive
peptides (Zhouetal.2013a, b; Liet al. 2019a). Previously, Song
et al. have successfully grafted, striped and stapled of several
helical peptides from the dimerization interface of BMP2 (Song
et al. 2019). Here, we attempt to rationally design self-binding
cyclic peptides (Yang et al. 2015a, 2016; Li et al. 2019b) based
on the crystal complex structure of BMP2 with its type-IA
receptor, which are expected to disrupt BMP2-receptor com-
plex interaction by rebinding to their native sites at the complex
interface. Here, a structure-based strategy that integrated com-
putational analysis and experimental assay was described to
dissect the high-resolution crystal structure of BMP2—receptor
complex. A peptide segment was derived from the hotspot
region of receptor protein, which was then extended, optimized
and cyclized via a rational approach, aiming to improve its
affinity and specificity for BMP2. The structural basis and
energetic property underlying the intermolecular interaction
between BMP2 and the designed peptides were also investi-
gated systematically.

2. Materials and methods

2.1 Crystal structure of BMP2 in complex
with its type-IA receptor

The 1.8 A-resolution crystal structure of human BMP2 in
complex with its cognate receptor was solved by Keller and
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Figure 1. Crystal structure of the quaternate complex of human
BMP2 homodimer with the extracellular domains of its two cognate
type-1A receptors (PDB: 1REW).

co-workers using X-ray crystallography; the structure can be
retrieved from the PDB database with accession code IREW
(Keller et al. 2004). The structure is a quaternate complex
that contains a disulfide-bridged BMP2 homodimer bound
with the extracellular domains of two type-IA receptors. As
can be seen in figure 1, the two receptors are spatially sep-
arated from each other and can bind to two remote regions
on BMP2 protein surface in an independent manner, sug-
gesting no intermolecular interactions between them. Here,
the cocrystallized water molecules, ions and cofactors were
manually removed from the raw crystal structure (Luo et al.
2015).

2.2 Computational simulation and binding analysis

Molecular dynamics (MD) simulations of the investigated
system of protein, peptide or their complex were carried out
using AMBER ff03 force field (Duan et al. 2003). The
system was immersed into an octahedral TIP3P water box
(Jorgensen et al. 1983) with a 10 A buffer extension from the
solute. Counterions were added to make the system elec-
troneutral. The system was heated from 0 to 300 K over
100 ps and then equilibrated for 500 ps (Yang et al. 2015b;
Zhou et al. 2016). Next, 50-120-ns MD production simu-
lations were performed with periodic boundary conditions
(Bai et al. 2017; Zhou et al. 2018). A time step of 2 fs was
set and the particle mesh Ewald (PME) method (Darden
et al. 1993) was employed to calculate long-range electro-
static interactions for the simulations. A cut-off distance of
10 A was used to calculate the short-range electrostatics and
van der Waals interactions.

Structural snapshots were collected from the dynamics
trajectory of production simulations and then employed to
analyze the complex binding energetics by using molecular
mechanics/Poisson-Boltzmann surface area (MM/PBSA)
method (Tian et al. 2011, 2013). The method calculated the
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complex interaction energy AE;, and the desolvation free
energy ADy, upon the complex binding using molecular
mechanics (MM) approach and finite-difference solution of
implicit solvent model (PBSA), respectively (Homeyer and
Gohlke 2012). If the complex is formed by a BMP2—peptide
interaction, conformational flexibility of the peptide ligand
was dissected with normal mode analysis (NMA) to estimate
entropy penalty —TAS upon the peptide binding. Conse-
quently, the total binding free energy AGy, can be expressed
as follows (Wu et al. 2018):

AGy = <AEin(i)
+ ADyg, (i) > (for BMP2—receptor interaction)
(1)
or
AGy = < AEint(i) + ADygy (l) —TAS(I) (2)
> (for BMP2—peptide interaction)

where <---> represents average over the collected confor-
mational snapshots and i corresponds to the ith snapshot of
the complex.

2.3 Peptide affinity assay

Two linear peptides (RPS2M*794:  Ac-”*MKYEGSD

FQCKDSPKAQ?-NH2  and  RPS2747%81.  Ac-™+
ASGCMKYEGSDFQCKDSPKAQLRRT?®>-NH2) and a
head-to-tail  cyclic peptide (cycRPS2I747%8)  cye[™*

ASGCMKYEGSDFQCKDSPKAQLRRT®®]) were synthe-
sized by Fmoc solid phase chemistry. The human BMP2
protein is natively in homodimer form stabilized by a
disulfide bond (Cys78-Cys78) across two monomers. The
fluorescence polarization (FP) assays were performed at
298 K using a protocol modified from previous reports
(Tyler et al. 2010; Hu et al. 2017). Titrations were conducted
by monitoring FP as a function of increasing amounts of
BMP2 proteins added to 10 uM FITC-labeled peptides in a
buffer containing 50 mM Tris-HCl, 100 mM NaCl and
5 mM EDTA. No DTT was added to avoid the reduction of
BMP2 disulfide bond. Each assay was performed in
triplicate.

3. Results and discussion
3.1 Derivation of linear peptide segments

The quaternate complex system of human BMP2 homod-
imer with the extracellular domains of its two type-IA
receptors was subjected to 50-ns MD simulations. The
dynamics trajectory indicated that the system can reach
stable state after ~ 10 ns simulations. Subsequently, com-
putational alanine scanning (Kortemme et al. 2004) was

Page 3 of 7 130

carried out to determine the residue importance of receptor
binding to BMP2 based on analysis of the last 40-ns
dynamics equilibrium trajectory. The scanning strategy
separately mutated each residue of receptor protein to neutral
alanine and then calculated change in total binding free
energy AAGy upon the mutation. The resultant AAGy, val-
ues can be used to measure the relative contribution of each
residue in the receptor to its binding capability for BMP2;
the favorable and unfavorable residues in the binding can be
indicated by AAG>0 and <0, respectively.

As can be seen in figure 2, most residues of receptor
protein are favorable for BMP2 binding (AAG>0). This is
expected if considering that the sequence and structure of
naturally evolved type-IA receptor have already been opti-
mized to be well compatible with its cognate partner BMP2;
the residue mutation would impair the compatibility and
therefore cause unfavorable effect on the binding. Most
mutations can only affect the BMP2-receptor interaction
moderately or modestly, with AAG<0.5 kcal/mol. Struc-
tural examination revealed that a wide contact interface can
be observed in the interaction complex, at which a number
of receptor residues are tightly packed against BMP2 active
site, presenting two hotspot regions of residue ranges 43—64
and 78-94 as characterized by the alanine scanning. The two
regions separately correspond to a PB-strand/loop segment
(peptide segment 1) and a o-helix/loop segment (peptide
segment 2) in receptor protein, which can directly interact
with BMP2 to confer strong binding affinity to the complex
system. As shown in figure 2, the residues with effective
favorable contribution in segment 1 are discontinuous; some
residues in the region such as 49-52 and 59 contribute very
modestly to the receptor binding (AAG;<0.3 kcal/mol). In
addition, as compared to segment 2 the segment 1 is longer,
more flexible and less residue contribution. Therefore, we
herein only considered the segment 2 as a potential peptide
candidate that is expected to competitively bind at its native
site in the complex interface to target and disrupt the com-
plex interaction.

The Receptor Peptide Segment 2 (RPS2I'77%%) is a
17-mer peptide ("*MKYEGSDFQCKDSPKAQ®) that cov-
ers the hotspot region 2 of type-IA receptor and can be
stripped from the crystal structure of the complex system
(figure 3A). The RPS2I78~24 peptide was then subjected to
120-ns MD simulations, during which the peptide confor-
mation changed dramatically and, particularly, its local o-
helical structure was totally disappeared, indicating that the
peptide is highly flexible and possesses a large intrinsic
disorder in isolated state (figure 3B). The total binding free
energy of RPS2I73794 peptide to BMP2 homodimer was
calculated as AGy; = 3.6 kcal/mol by using computational
energetics analysis, indicating that the peptide cannot bind to
BMP2 in a spontaneous manner. In order to elucidate the
binding energetics, we have decomposed the total free
energy AGy into intermolecular interaction energy AFEj,,
desolvation effect ADg,, and entropy penalty —TAS (table 1).
According to the decomposition the interaction energy is
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Figure 2. Computational alanine scanning determination of the residue importance of (one) type-IA receptor binding to BMP2
homodimer. The scanning identifies two hotspot regions, which cover residues 43—64 and 78-94 of the receptor protein and represent

peptide segments 1 and 2, respectively.

very favorable (AE;, = —137.8 kcal/mol), which, however,
is largely counteracted by the unfavorable desolvation effect
(ADys, = 98.2 kcal/mol) and entropy penalty (—TAS = 43.2
kcal/mol). Consequently, the isolated RPS2I737%4 peptide
cannot bind to BMP2 effectively due to its high
hydrophilicity and large flexibility without protein context
support (Zhou et al. 2019). In order to substantiate this
computational finding, the RPS2I78~24 peptide (with N- and
C-termini capped by —Ac and —NH2, respectively) was
synthesized and purified commercially, and its binding
affinity to the recombinant protein of human BMP2

homodimer was measured using FP assays. Consequently,
no affinity can be observed (K4 = n.d.), suggesting that the
linear peptide is a nonbinder of BMP2 as predicted by in
silico calculations.

3.2 Extension and cyclization of RPS2!"*=%% peptide
Previously, Yu et al. found that entropy penalty has become

the main content of the indirect readout energy in protein—
peptide recognition instead of deformation energy as the
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Figure 3. Crystal structure of BMP2-receptor complex (PDB: 1REW). (A) The segment is stripped from the complex system to derive a
linear RPS2U78~94 peptide. (B) The RPS2I78~°4 peptide is subjected to MD simulation, during which the peptide exhibits a large intrinsic
disorder in isolated state. (C) The RPS2U7874 peptide is extended separately at its N- and C-termini to derive a longer linear peptide
RPS2I747981 (D) The RPS2747%8 peptide is then cyclized from its C- to N-termini to obtain a head-to-tail cyclic peptide cycRPS2[74~%81,
During MD simulations the cyclic peptide shows a larger rigidity and smaller disorder, which can well maintain in a conformation similar

with its active conformation in complex crystal structure.

Table 1. Three designed linear and cyclic peptides binding to BMP2 homodimer
Energy(kcal/mol)
Peptide Sequence Form AE; ADgq, TAS AGy  Kq (UM)
RPS2[r78-94] Ac-*MKYEGSDFQCKDSPKAQ%*-NH2 Linear —137.8 982 432 36 nd“
RPS2L74—9%] Ac-"*ASGCMKYEGSDFQCKDSPKAQLRRT?®- Linear —1462 1003  52.7 68 nd“
NH2
cycRPS2I747%] vy ASGCMKYEGSDFQCKDSPKAQLRRT?®] Cyclic  —128.4 954 258 712 56 + 8

“ n.d., not detectable.

major source of the indirect readout energy in classical
biomolecular binding phenomena (Yu ef al. 2014). Here, the
entropy contribution can bring as much as 43.2 kcal/mol of
unfavorable energetic effect to the total binding free energy
of linear RPS2I78~%4 peptide. This is because, as MD
simulations suggested, this linear peptide is highly flexible in
isolated state and thus its conformational degrees of freedom
would be reduced upon binding to BMP2, incurring con-
siderable entropy penalty for the binding. By visually
examining the native conformation of peptide segment 2 in
the complex interface of intact BMP2-receptor crystal
structure, it is revealed that the segment can form a partial
cycle that is fixed by two B-strand arms on receptor protein
surface. A further examination found that the N-terminal
residue Ala74 and C-terminal residue Thr98 of the two arms

are spatially vicinal to each other. Therefore, we considered
to cyclize the peptide in a head-to-tail manner by covalently
bonding the free amino and carboxyl groups of the two
spatially vicinal residues.

As shown in figure 3C, the RPS2I787%4 peptide is exten-
ded from its two termini until separately reaching the residues
Ala74 and Thr98, resulting in a longer linear peptide
RPS2[74-%%81 ("*ASGCMKYEGSDFQCKDSPKAQLR
RT?®). The amino and carboxyl groups of Ala74 and Thr98 is
distanced by ~ 4.5 A in crystal structure, and we performed
force-directed MD simulations with an additional restraint
(force constant = 10 kcal/mol/A?) between them to gradually
draw the two residues closer and link them together to model a
head-to-tail cyclic counterpart cycRPS2I74=981, (cyc[74'
ASGCMKYEGSDFQCKDSPKAQLRRT?®]) of the linear
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RPS2I78794 peptide. After ~ 120-ns simulations the dis-
tance between two groups fluctuates around the standard
length (~ 1.32 A) of peptide bond in biological context
(Crisma et al. 2015) and, during the simulations, the whole
cyclic peptide system showed a larger rigidity and smaller
disorder, which can well maintain in a conformation similar
with its active conformation in complex crystal structure
(figure 3D). As seen in Table 1, the total binding free energy
of cycRPS2[74~%8 peptide was calculated as a negative value
of AGy = —7.2 kcal/mol, indicating that the cyclic peptide
can spontaneously bind to BMP2 protein. In contrast, the
RPS2I747%81  peptide, the linear  counterpart of
cchPSZ[rM*gg], has a positive value of AGy; = 6.8 kcal/mol,
suggesting that the cyclization can restore the peptide potency
from unbinding to binding. In fact, the linear RPS2[74~%81
peptide can interact tightly with BMP2 (AE,=—
146.2 kcal/mol). However, strong entropy penalty (—7TAS =
52.7 kcal/mol) would considerably impair the favorable
interaction. Although the cyclic peptide cycRPS2I74~%¥ has
only a lower interaction energy (AE;,, = —128.4 kcal/mol) as
compared to the linear peptide (AE;,; = —146.2 kcal/mol),
entropy penalty of the cyclic peptide is also reduced signifi-
cantly (-TAS = 25.8 kcal/mol) upon the cyclization. In
addition, the desolvation effect seems not to be influenced
substantially by the cyclization (ADg, changes from 100.3 to
95.4 kcal/mol). Consequently, the cycRPS2I747%8) peptide
obtains a favorable binding energy (AGy = —7.2 kcal/mol) —
this can be confirmed by FP assays, that is, no binding affinity
was detected for linear RPS2"*~¥] peptide (K4 = n.d.), while
a moderate affinity was observed for cyclic cycRPS2["74~%%]
peptide binding to BMP2 (K4 = 56 + 8 pM).
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