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Traumatic brain injuries (TBI) manifest into post-traumatic stress disorders such as anxiety comorbid with gut ailments. The
perturbations in gut microbial communities are often linked to intestinal and neuropsychological disorders. We have
previously reported anxiety and abnormalities in gut function in mild TBI (MTBI)-exposed rats. The current study
demonstrates the changes in gut microbiome of MTBI-exposed animals and discusses its implications in intestinal health
and behaviours. The rats were subjected to repeated MTBI (rMTBI) and microbial composition in jejunum was examined
after 6 h, 48 h and 30 days of rMTBI. Significant reduction in bacterial diversity was observed in the rMTBI-exposed
animals at all the time points. Principal coordinate analysis based on weighted UniFrac distances indicated substantial
differences in gut microbial diversity and abundances in rMTBI-exposed animals as compared to that in healthy controls.
The abundance of Proteobacteria increased dramatically with reciprocal decrease in Firmicutes after rMTBI. At the genus
level, Helicobacter, Lactobacillus, Campylobacter, and Streptococcus were found to be differentially abundant in the
jejunum of rMTBI-exposed rats as compared to sham controls indicating profound dysbiosis from the healthy state.
Furthermore, substantial depletion in butyrate-producing bacterial communities was observed in rMTBI-exposed animals.
These results suggest that the traumatic stress alters the gut microbiome with possible implications in gut health and
neuropsychopathology.

Keywords. Gut microbiota; gut–brain axis; mild traumatic brain injury; Proteobacteria; jejunum; 16S rRNA amplicon

1. Introduction

The advent of recent high-throughput sequencing technolo-
gies led to gain deeper insights into the understanding of
various host–microbe interactions. On similar lines, studies
on gut microbiota have attracted considerable attention in
recent years, with a special emphasis on its impact on
multiple aspects of host physiology. Gut microbiome plays
an integral role in host metabolism, homeostasis mainte-
nance, nutrition, and immune function (Tremaroli and
Bäckhed 2012; Round and Mazmanian 2009). These
microbes synthesize vitamins, amino acids, and metabolites
such as short-chain fatty acids (SCFA; Bull and Plummer
2014). Therefore, characterization of the gut microbial
communities holds paramount importance in understanding
the host–microbe interplay in health and disease. Recently, a
growing body of evidence linked perturbations in the gut
microbiome to various metabolic and comorbid

neuropsychiatric disorders such as autism, depression,
schizophrenia, obesity, type 2 diabetes mellitus, rheumatoid
arthritis, etc. (Grochowska et al. 2018; Shreiner et al. 2015).

The bacteria associated with the human host are reported
to be of the same order as the count of human cells (Sender
et al. 2016). The consortium of bacteria colonising the gut
play a crucial role in regulating the gut–brain axis; hence it is
also referred as gut–microbiome–brain axis (Cenit et al.
2017). The comorbidity of stress-induced neuropsychiatric
disorders and gastroenteric ailment implicate the importance
of bidirectional communication between the gut–brain axis
in pathophysiology of stress (Carabotti et al. 2015). Dis-
ruption of the gut–microbiome–brain axis is recently repor-
ted in diseases such as irritable bowel syndrome (IBS),
autism spectrum disorders, Parkinson’s disease and disorders
of mood, anxiety and chronic pain (Mayer et al. 2015).
Specifically, alterations in gut microbiome have been asso-
ciated to dysregulation of microglial activity, blood–brain
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barrier disruption along with impairment of neuropsychiatric
activities leading to anxiety, abnormal behaviour and cog-
nition (Logsdon et al. 2018; Cenit et al. 2017).

Tannock and Savage in 1974, have suggested that neu-
ropsychological stress induced dysregulation of the
hypothalamic–pituitary axis can influence gut microbiota
(Tannock and Savage 1974). Traumatic brain injuries (TBI)
including concussions result in psychological and physio-
logical disturbances in the clinical population (Karr et al.
2014). The TBI is commonly found comorbid with abnor-
malities in gut functions such as gut motility, permeability,
and inflammation (Mayer 2000; Drossman 2011). Gas-
trointestinal dysfunction is one of the most common, but
neglected consequences of TBI (Kharrazian 2015; Zhu et al.
2018). Abnormalities in gut motility and mucosal alterations
are frequently observed in TBI patients that can lead to
ulceration and inflammation (Kao et al. 1998; Hang et al.
2003). According to a recent survey, 85% of TBI are char-
acterized as MTBI graded on Glasgow Coma scale (Li et al.
2016). Usually the symptoms of MTBI resolve within
3 weeks of trauma; however, a few patients experience post-
concussion syndrome (McInnes et al. 2017).

Weight drop on closed head induces MTBI in rodents and
cause anxiety, depression and cognitive deficits similar to
post concussion syndrome (Meyer et al. 2012; Mychasiuk
et al. 2014; Zohar et al. 2003; Sagarkar et al. 2017a). Our
previous studies showed that the repeated MTBI (rMTBI)
induces anxiety-like behaviour in rats and decreases gut
motility, specifically in the jejunal part of the gut (Sagarkar
et al. 2017a, b). However, the perturbation in the microbial
population colonizing the jejunum post-MTBI remains
mostly unknown. The current study is aimed to investigate
the changes in the microbial communities in jejunal mucosa
post-MTBI, which may further help in understanding the
microbial contribution to the imbalance in the gut–brain axis
after physical traumatic stress. In this study, the rats were
subjected to rMTBI at immediate and protracted time points,
and changes in their gut microbiota composition were
tracked. The changes in microbial communities at different
levels of their classification and diversities are discussed in
view of gut–brain pathophysiology post-rMTBI as previ-
ously reported (Sagarkar et al. 2017a, b, 2019).

2. Materials and methods

2.1 Animal experiments

Adult (75–90 days old) male Wistar rats weighing
200–225 g were housed under controlled light (12 h of light,
followed by 12 h of darkness) and temperature (25 ± 2 �C)
conditions. All protocols employed in the present study were
carried out in accordance with National Institutes of Health
(NIH), USA Guidelines under the strict compliance with
Institutional Animal Ethics Committee (IAEC), Savitribai

Phule Pune University, Pune, India. Food and water were
provided ad libitum during the course of the study.

2.2 rMTBI experiments

The closed-head weight drop paradigm was used to simulate
MTBI in rats as described previously (Sagarkar et al.
2017a, b). Briefly, the trauma simulator has a hollow guide
tube (100 cm) with an inner diameter of 15 mm and a
cylindrical metal weight of approximately 200 g that results
in a contact area of 5–7 mm2 on the skull surface. The rats
were mildly sedated using diethyl ether and placed on a
platform made of aluminium foil. The weight was dropped
on the intact skull, from the height of 30 cm by releasing the
key. The drop was made at the intersection of lines con-
necting ears and eyes from opposite sides of the skull to
ensure uniform impact on the head. The animals from
trauma-induced group were subjected to 5 impacts with a
recovery time of 48 h between each injury. The sham control
(n=2; C1MTBI and C2MTBI) animals were not subjected to
head trauma but underwent the rest of the procedures,
including anaesthesia. The animals were allowed to recover
from anaesthesia (2–3 h) and righting reflex, beam walking
tests were performed. Animals from each of the three MTBI
groups (n=2 per group) were decapitated at different time
points; i.e. 6 h (6h1MTBI, 6h2MTBI), 48 h (48h1MTBI,
48h2MTBI) and 30 days (30d1MTBI, 30d2MTBI) post-
trauma under deep anaesthesia induced by intraperitoneal
(IP) injection of thiopentone sodium (60 mg/kg, Neon
Laboratories Ltd, Mumbai). Before sacrificing, animals were
deprived of food for 6 h to empty portions of the gastroin-
testinal tract. Rat jejunum samples were carefully dissected
from the rest of the small intestine and stored at -80 �C
until further use. The jejunums were thawed at room tem-
perature; the jejunal mucosa was collected by scrapping the
internal lining after longitudinally cutting the jejunum in
aseptic conditions. The animal experimental paradigm is
summarized in figure 1.

2.3 Sample processing and DNA extraction

DNA was isolated from jejunum scrapings of animals using
Fast DNA spin kit for faeces (6570-200, MP bio, USA) as
per manufacturer’s instructions. Further, the qualitative and
quantitative analysis was performed using Nanodrop 2000C
spectrophotometer (Thermo Scientific, USA) (supplemen-
tary table 1).

2.4 Amplicon sequencing and bioinformatics analysis

The amplicon libraries were prepared using the Nextera XT
index Kit as per 16S amplicon library preparation protocol
by Illumina Inc. Amplification of the V3–V4 region of the
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16S rRNA gene was carried out and PCR products were
resolved on 1.2% agarose gel. The amplicons with the
Illumina adaptors were amplified using i5 and i7 primers as
per standard Illumina protocol. The amplicon library was
purified by 1X AMPure XP beads and quantified by Qubit
fluorometer. The amplified libraries were analysed on 4200
Agilent Tape Station system (Agilent Technologies) as per
the manufacturer’s instructions. The samples were
sequenced using Illumina MiSeq with 2*300 paired-end
chemistry that generates at least 0.1 million reads per sam-
ple. The primers used for V3–V4 hypervariable region
amplification are as follows: Forward primer 50

GCCTACGGGNGGCWGCAG 30 and reverse primer 30

ACTACHVGGGTATCTAATCC 50. After sequencing, the
quality of raw paired-end reads was checked by FASTQC
tool (Andrews 2010) and pre-processing of sequences (pri-
mers and barcodes trimming) was performed using Cutadapt
(Martin 2011). Trimmed sequences were assembled by
PEAR with default parameters (Zhang et al. 2014). Micro-
biome_helper package was used for pre-processing of the
data such as trimming, chimera removal and conversion of
Fastq to Fasta files (Comeau et al. 2017). The pre-processed
Fasta sequences were merged into a single Fasta file using
QIIME v1.8 (Quantitative Insights Into Microbial Ecology)
(http://qiime.org/) (Caporaso et al. 2010). Sequence reads
were assigned to operational taxonomic units (OTUs) by
using a reference-based OTU picking approach with
Greengenes database (DeSantis et al. 2006). The OTU
picking was performed using UCLUST method with a
similarity threshold of 97% (Kopylova et al. 2016). The
RDP naı̈ve Bayesian classifier (version rdp_classi-
fier_2.10.1) (Wang et al. 2007) was used for taxonomic
assignment. Using QIIME pipeline, alpha and beta diversity
analysis was performed. Alpha diversity indices, i.e., ACE,
Chao1, Simpson, Shannon index and Goods coverage were
estimated using QIIME pipeline. Data normalization was
carried out at 99,138 reads per sample, at the lowest
sequence count. Beta diversity was also calculated within the
QIIME pipeline using weighted and unweighted UniFrac
distances (Lozupone et al. 2011). From these estimates,
jackknifed Principal Co-ordinates (PC) were computed to
compress dimensionality into three-dimensional principal
coordinate analysis (PCoA) plots. Further statistical analysis
was performed using in-house R scripts and R package. The
raw reads have been deposited in the sequence read archive

(SRA) and are available under the BioProject ID
PRJNA51195.

3. Results

High-throughput sequencing resulted in generation of
approximately 3 million raw reads from eight samples with
average 368,869 ± 50,449 reads per sample. After assembly
of paired-end reads, 2.3 million reads were retained from all
the samples. Finally, 1,362,785 high-quality sequences were
used for taxonomic assignment resulting in 2005 operational
taxonomic units (OTUs) in all samples (supplementary
table 2). Good’s coverage for all the control and trauma
samples was found to be 0.998 ± 0.001 (mean ± SD)
indicating that the majority of the bacterial diversity was
captured in all the samples. Alpha diversity measures such as
Chao1, observed and Shannon indicated significant diversity
reduction in rMTBI samples as compared to sham controls
(table 1; figure 2). A linear decrement in diversity was
observed with increase in days post-rMTBI implying that
rMTBI decreases bacterial diversity in a time-dependent
manner. A similar observation was made using rarefaction
curve which represents number of OTUs as a function of
number of sequences in the samples (supplementary fig-
ure 1). Species richness was also found to be higher in
control samples as compared to rMTBI samples with lowest
species richness post 30 days (figure 3).

Beta diversity analysis using PCoA ordination plots based
on weighted and unweighted UniFrac metrics considering all

Figure 1. Experimental paradigm explaining the time course of study. The figure summarizes the sacrifice time points of each group post
repetitive MTBI series.

Table 1. The following table depicts alpha diversity measures in
rats from different groups (C1MTBI, sham control; C2MTBI, sham
control; 6 h 1MTBI, MTBI-6h; 6 h 2MTBI, MTBI-6h; 48 h
1MTBI, MTBI-48h; 48 h 2MTBI, MTBI-48h; 30 days 1MTBI,
MTBI-30 days; 30 days 2MTBI, MTBI-30 days)

Sample ID Observed species Chao1 Shannon Simpson

C1MTBI 836 1189.33 5.00 0.92
C2MTBI 608 929.31 5.65 0.95
6h1MTBI 496 691.66 4.44 0.91
6h2MTBI 302 436.12 3.91 0.88
48h1MTBI 516 745.52 4.50 0.90
48h2MTBI 437 665.80 4.10 0.84
30d1MTBI 307 549.00 3.64 0.82
30d2MTBI 358 662.94 4.26 0.89
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the OTUs demonstrated that samples from control and
rMTBI groups segregated into distinct clusters based on their
abundances and presence/absence of OTUs (figure 4).

Control samples formed a separate cluster showing less
interindividual variation between the samples. However,
rMTBI samples showed higher interindividual variations.

Figure 2. Box plot of alpha diversity measures viz. Observed species, Chao1 and Shannon index in trauma and control samples. 30 days,
48 h, 6 h represents time points after MTBI. Observed species, Chao1 and Shannon index showed substantial differences in microbial
diversity between trauma and control samples.

Figure 3. Bar chart representing total bacterial and archaeal species richness across all samples.
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Analysis suggests immediate changes in the gut microbiota
after rMTBI (6 h) and the perturbation with reduction in
bacterial diversity was persistent until 30 days.

A total of 15 bacterial phyla were detected in all the
samples. Bacterial phyla Proteobacteria (57.2%), Firmicutes
(33.4%), Tenericutes (4.43%) and Fusobacteria (2.3%) were
most abundant in rMTBI samples and constituted for 97% of
the total microbiome in rMTBI group. Similarly, Firmicutes
(64.1%), Proteobacteria (27.8%), Bacteroidetes (3.1%), TM7
(2.1%) and Actinobacteria (1.2%) were most abundant in
sham controls and constituted for 98.4% of the total
microbiome (supplementary table 3). The relative abun-
dances of top 10 phyla and top 30 genera across all samples
were calculated and the results are represented in figure 5a
and b respectively. Figure 5a indicates waxing and waning
of abundance of Proteobacteria and Firmicutes in rMTBI
samples respectively, as compared to controls. A total of
11 genera were detected in MTBI samples and 10 gen-
era were detected in control samples with relative abundance
above 1% (supplementary table 4). Moreover, the most
abundant genus in rMTBI exposed animals was Heli-
cobacter (29.2%) followed by Lactobacillus (21.7%) and
Campylobacter (17.7%), while in controls the most abundant
genus was Lactobacillus (40.3%) followed by Helicobacter
(11.5%) and Streptococcus (9.8%) (figure 5b). We observed
a gradual increase in relative abundance of genus Heli-
cobacter (29.2% ± 4.9) in trauma samples from 6 h to
30 days, but decrease in abundance of the genus Lacto-
bacillus was independent of time post-trauma

(21.7% ± 12.3). Overall, a substantial reduction in the rel-
ative abundance of Lactobacillus followed by Streptococcus
and an increase in the abundance of the Helicobacter and
Campylobacter was observed in the rMTBI group.

A hierarchical clustering using ward method was
employed to analyse the clustering between the rMTBI
groups with microbial abundance at phylum (figure 6a) and
family level (figure 6b). The hierarchical clustering showed
clear separation between rMTBI and control samples, but no
clear separation was observed within distinct rMTBI groups,
i.e. 6 h-MTBI, 48 h-MTBI, and 30 days-MTBI. Firmicutes,
Actinobacteria, and TM7 were found to be abundant in
control rats, whereas Proteobacteria was abundant in rMTBI-
exposed rats (figure 6a). At family level, Campylobacter-
aceae and Helicobacteraceae were most abundant in
rMTBI-exposed rats, especially post 30 days of rMTBI. On
the contrary, these bacterial families were least abundant in
the jejunum of control rats. Similarly, families such as
Actinomycetaceae, Erysipelotrichaceae, and Lach-
nospiraceae were abundant in control samples as compared
to rMTBI samples (figure 6b). Discriminant Analysis was
conducted to find the biomarkers associated with trauma
(figure 7). The linear discriminant analysis predicted
Campylobacteraceae, Helicobacteraceae, Mycoplasmat-
aceae, and Aerococcaceae as the biomarkers of trauma.

Based on the previous literature, members of the families
Lachnospiraceae and Ruminococcaceae (Vital et al. 2014),
Veillonellaceae (Esquivel-Elizondo et al. 2017) and Erysi-
pelotrichaceae (Pozuelo et al. 2015) are considered as
potential butyrate producers. We conducted imputed analysis
on our dataset which revealed the differential abundance of
members of these families as shown in figure 8. Moreover,
the relative abundance of butyrate-producing bacterial fam-
ilies was decreased in rMTBI samples. A sharp decline in
relative abundance of Lachnospiraceae, Ruminococcaceae,
and Erysipelotrichaceae was seen at 6 h post-rMTBI com-
pared to control, and such a trend was persistent up to
30 days.

4. Discussion

Increasing evidences are showing that the intestinal micro-
biota contributes to the host physiology and maintains
homeostasis. A plethora of studies relate the microbial
communities to immunity mechanisms and inflammatory
challenges in the intestine. Therefore, intestinal microbiota is
linked to gut pathologies such as inflammatory bowel dis-
ease and cancer (Ayres et al. 2012; Dupont and Dupont
2011; Le Chatelier et al. 2013; Yoshimoto et al. 2013). Not
only intestinal health but in recent years the perturbations in
gut microbiota have been implicated in neurodevelopmental
and neurobehavioral disorders such as depression, anxiety,
and autism (Hsiao et al. 2013; Kang et al. 2013). The present
study characterizes the alterations in microbial communities
in jejunal mucosa of the rMTBI-induced rats using high-

Figure 4. Principal coordinate analysis (PCoA) based on
weighted UniFrac metrics among trauma and control samples.
Proportion of variance explained by each axis is denoted in the
corresponding axis labels. Each circle (designated by the color)
represents control and trauma group and labels represent sample
IDs.
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throughput targeted amplicon sequencing of the 16S rRNA
gene. Although this study is based on a small cohort size,
which is one of the shortcomings of our findings, the results
for the first time link rMTBI to perturbations in microbial

communities in jejunum as early as 6 h post-trauma, and it
persisted through 48 h and continued until 30 days. Whereas
rMTBI induced the increase in phylum Proteobacteria,
owing to rise in the abundance of Helicobacter and

Figure 5. Bar plot showing relative abundance of bacterial taxa. (a) Bar plot for relative abundances of top 10 phyla between control and
MTBI groups. (b) Bar plot for relative abundances of top 30 genera between control and MTBI groups.
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Campylobacter; levels of Firmicutes declined persistently
from 6 h to 30 days post-trauma as compared to healthy
controls.

Recently, Nicholson and colleagues detailed the effect of
moderate TBI on the faecal microbiota composition and
reduction in bacterial alpha diversity post-TBI, similar to
what we have observed in the jejunal microbiota. Controlled
cortical impact model, wherein the animals underwent
craniotomy, was employed in their study (Nicholson et al.
2018); whereas we have applied a closed-head injury para-
digm. In yet another study, dramatic changes are reported in
the caecal microbiota in response to TBI in mice (Houlden
et al. 2016). These changes were observed post 72 h of
stroke in mice; similar to that found in trauma patients
(Howard et al. 2017). We have noticed the changes in
microbiome in jejunum as early as 6 h which persisted until
48 h and 30 days time points. In mice, the norepinephrine
release in the gut as a consequence to TBI was suggested as
causal to the perturbation in caecal microbiome (Houlden
et al. 2016). In this connection, the findings by Singh and
colleagues are noteworthy in which brain injuries due to a
stroke caused gut microbial dysbiosis and reduced gas-
trointestinal motility in mice (Singh et al. 2016). Using the
same rMTBI model as in this study, we have previously
reported the slowing in gut motility at the level of jejunum in
rats at identical time points of 48 h and 30 days (Sagarkar
et al. 2017b). These observations suggest the concurrence
between microbial dysbiosis and gut motility. However,
bacterial communities belonging to Bacteroidetes phylum
was overcrowded in faeces after the stroke (Singh et al.
2016). On the contrary, we have observed the increased
abundance of Proteobacteria in the jejunum of rMTBI-ex-
posed rats. The discrepancies in observations in these two
studies could be related to (1) species differences (mice
versus rats), (2) injury paradigm (stroke versus rMTBI), and
(3) microbial sample (faeces versus jejunual mucosa). A
recent study elucidated the link between TBI and gut bac-
terial dysbiosis in mice (Treangen et al. 2018). Although
they have observed an elevation of Eubacterium and
Marvinbryantia post brain injury, Helicobacter and
Campylobacter dominated in our trauma groups. Again,
these variations could be ascribed to different experimental
protocols and models. Proteobacteria are known to be
associated with inflammation and dysbiosis (Bäckhed et al.
2012). With the increase in Proteobacteria in the gut of
rMTBI-exposed rats, intriguing would be to examine the
inflammatory changes therein, in addition to reductions in
gut motility as reported earlier (Sagarkar et al. 2017b).

In the similar model of rMBTI in rats, we have observed
the deficits in learning and memory (Sagarkar et al. 2019)
and expression of anxiety-like behaviours as measured by
light dark box (LDB) exploration test (Sagarkar et al.
2017a), comorbid with reduced gastrointestinal motility
(Sagarkar et al. 2017b) at 48 h which persisted until
30 days. The TBI has been shown to induce alterations in
inflammatory responses (Chen et al. 2008), contractility

(Olsen et al. 2013), motility (Smith 2013) and permeability
(Bansal et al. 2009) in the gut. Clinically, severe TBI has
also been reported to be comorbid with food intolerance due
to reduced gastrointestinal motility and absorption (Kao
et al. 1998; Tan et al. 2011). A growing body of evidence
also associates gut dysbiosis with neuropsychiatric ailments
(Bansal et al. 2009; Dinan and Cryan 2017; Evrensel and
Ceylan 2015). Several studies have associated stress and
imbalance of hypothalamic-pituitary axis with short term as
well as long term modulations in the gut microbial compo-
sition (Cryan and Dinan 2012). Exposure to early life
stressor such as maternal separation caused persistent alter-
ations in the composition of faecal microbiota of adult rats
(O’Mahony et al. 2009). In addition, germ-free mice
exhibited elevated anxiety like-behaviours as compared to
gnotobiotic mice, which were alleviated by monocoloniza-
tion with Blautia coccoides (Nishino et al. 2013). On the
contrary, reduction in the anxiety-like behaviours of germ-
free mice as accessed by LDB and elevated plus maze
(EPM) tests were also reported in three independent studies
(Clarke et al. 2013; Heijtz et al. 2011; Neufeld et al. 2010).
In view of the above, the gut microbial changes in rMTBI-
exposed rats are expected to be causal to the intestinal
pathologies such as motility and inflammation, and the
psychological manifestations of the rMTBI. Therefore,
future studies are warranted to discern the specific microbial
communities linked to rMTBI-induced imbalance of gut–
brain axis and molecular mechanisms therein. For example,
the expression of brain-derived neurotrophic factor (BDNF),
key synaptic plasticity regulating neuropeptide and NMDA
receptor subunit 2A (NR2A) was decreased in the cortex and
hippocampus of germ-free mice (Sudo et al. 2004). More-
over, infection of gut pathogen (T. muris) also reduced
BDNF mRNA expression in the hippocampus precipitating
into anxiety-like behaviours which were restored by Bifi-
dobacterium longum administration (Bercik et al. 2010). On
similar lines, we have previously reported the reduction in
the BDNF levels in the amygdala of rMTBI-induced rats at
48 h and 30 days post-trauma. While on one hand the gut
microbiome is linked with the BDNF expression and anxiety
levels in mice (Sudo et al. 2004; Bercik et al. 2010); on the
other hand, we have observed the trauma-induced changes in
gut microbiome and BDNF expression in amygdala coinci-
dent with anxiety-like behaviours (Sagarkar et al. 2017a).
Therefore, it may be speculated that the healthy microbial
communities in jejunum might confer a neuroprotective role
via regulation of neuropeptides such as BDNF; the imbal-
ance of which may be implicated in trauma-induced neu-
ropsychiatric behaviours.

Proteobacteria have been listed previously as a marker of
gut microbial dysbiosis (Shin et al. 2015). According to the
spatial distribution of the bacteria in the gut, the Heli-
cobacter are predominantly housed in stomach (Andersson
et al. 2008) with an extremely low abundance in the small
intestine and colon (Jandhyala et al. 2015). However, rMTBI
increased the abundance of the Proteobacteria in the jejunum
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suggesting bacterial translocation from adjoining areas of
intestine. The notion is further supported by the increased
abundance of Helicobacter and Campylobacter after trauma.
While Campylobacter has been shown to be elevated in the
fecal and intestinal samples of patients with Crohn’s disease
(Man et al. 2009), Helicobacter levels were found to be
elevated in duodenal ulcers and gastric cancer (Sheh and Fox
2013). On the contrary, Helicobacter are proposed to have a
protective role in intestinal bowel disease (Papamichael et al.
2014; Bartels et al. 2015). Therefore, the proposed model of
rMTBI can be further utilized to draw the causal potential of
these bacterial communities in traumatic stress-induced
intestinal ailments including inflammation.

We have noticed the depletion of butyrate-producing
communities in the gut of trauma-induced rats, which were
abundant in control animals. The healthy gut is believed to
harbour butyrate producers, mostly belonging to Clostridium

cluster IV and XIVa (Barcenilla et al. 2000; Rivière et al.
2016). Jejunum is known for its ability to absorb small
molecules like butyrate and other SCFAs from the food
(Schmitt et al. 1976). Butyrate is known for its effects as a
histone deacetylase (HDAC) inhibitor (Bourassa et al.
2016). Previous studies have elucidated the action of
microbiota-derived butyrate in HDAC inhibition in intestine
(Furusawa et al. 2013; Waldecker et al. 2008). Inhibition of
HDACs in brain by molecules such as butyrate, valproic
acid, and trichostatin A has been linked to reduction in
anxiety and fear (Whittle and Singewald 2014). Therefore,
the reductions in butyrate-producing microbial communities
might be suggested to be causal to increased anxiety levels
and reduced gut motility in rMTBI-induced rats (Sagarkar
et al. 2017a). Previous studies in rat and human support the
potential of Bifidobacteria (a butyrate producer) and other
probiotics in treating neurological ailments (Messaoudi et al.
2011). Recently, a study elaborated on the neuroprotective
effects of Clostridium butyricum (a butyrate producer) in
alleviating the impact of TBI, when trauma mice were
treated intragastrically with the mentioned bacterium (Li
et al. 2018). Hence, using the faecal microbiota transplan-
tation (FMT) in rMTBI-induced rats, future studies could
discern the contribution of butyrate-producing bacterial
communities in maintaining the healthy homeostasis in gut-
microbiome-brain axis.

In conclusion, the results of the present study potentially
relate rMTBI-induced microbial changes in jejunum to the
comorbid conditions of gut dysfunction and neuropsychi-
atric readouts. However, additional studies involving
molecular and cognitive phenotyping are required to estab-
lish a causal link between trauma, behaviour and microbial
perturbations. The depletion of butyrate-producing bacteria
after the trauma may alter the epigenome in the specific areas
of the brain relevant to emotional behaviours such as
amygdala. These observations further offer a plausible
explanation for the persistent anxiety-like behaviours

bFigure 6. (a) Hierarchical clustering and heatmap visualization at
phylum level using trauma and control group as experimental
factors. Hierarchical clustering was based on ward linkage algo-
rithm using Euclidean distance as a distance measure. Heatmap is
used to show taxa abundance in a particular sample. (b) Hierarchical
clustering and heatmap visualization at family level using trauma
group at different time points and control group as experimental
factors. Hierarchical clustering was based on ward linkage algo-
rithm using Euclidean distance as a distance measure. Heatmap is
used to show taxa abundance in a particular sample.

Figure 7. Uniqueness and divergence of jejunal microbial diver-
sity in MTBI and control group was determined by Linear
Discriminant Analysis (LDA) of effect size using LEFSe in
MicrobiomeAnalyst. Blue colored bars denote taxa which were
higher in MTBI group and pink colour denotes taxa which were
higher in control groups.

Figure 8. Bar chart showing relative abundance of potential
butyrate producing families at each time point in MTBI groups and
control group. Families Lachnospiraceae, Ruminococcaceae,
Erysipelotrichaceae, and Veillonellaceae were selected based on
available literature.
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comorbid with reduced gut motility. The rMTBI model used
in the present study, therefore, may prove useful in investi-
gating the relevance of gut psychobiome in stress-induced
neuropathologies.

4.1 Study limitation

The current study was carried out using only two samples per
group which remains as a limitation of the study. Although the
results show profound changes in the microbial composition
in the jejunum of rMTBI-induced rats as compared to control
rats, the degree of statistical significance cannot be provided in
view of a limited number of samples. Although non-signifi-
cant, a slight reduction in bodyweights of rMTBI-induced rats
at the 30 days time point was observed. Therefore, the pos-
sibility may not be excluded that the reduced gut motility and
consequent changes in feeding habits might underlie the
profound differences in microbiome post-rMTBI. Future
studies are warranted to scrutinize the relevance of gut
microbiome changes in rMTBI-induced neuropsychiatric and
intestinal ailments or vice versa to draw causal relationships
between consequences.
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