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In this review, we briefly outlined salient features of pathophysiology and results of the genetic association studies hitherto
conducted on type 2 diabetes. Primarily focusing on the current status of genomic research, we briefly discussed the limited
progress made during the post-genomic era and tried to identify the limitations of the post-genomic research strategies. We
suggested reanalysis of the existing genomic data through advanced statistical and computational methods and recom-
mended integrated genomics-metabolomics approaches for future studies to facilitate understanding of the gene-environ-
ment interactions in the manifestation of the disease. We also propose a framework for research that may be apt for
determining the effects of urbanization and changing lifestyles in the manifestation of complex genetic disorders like type 2
diabetes in the Indian populations and offset the confounding effects of both genetic and environmental factors in the
natural way.
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1. Introduction

Diabetes is one of the most prevalent complex disorders with
type 2 diabetes accounting for more than 90% of all diabetic
cases. Hyperglycemia is the characteristic feature of this
syndrome, which results from defective insulin secretion or
action. The disease itself may not lead to death of the
affected individual but being the major risk factor of
macrovascular complications like coronary artery disease,
cerebrovascular events and peripheral vascular disease,
diabetes is an indirect cause of deaths due to such diseases. It
is also responsible for disabilities such as diabetic
nephropathy, diabetic neuropathy, diabetic retinopathy, skin
complications, eye complications as well as mental illness.
The International Diabetes Federation (IDF) 2015 reported
an estimate of 415 million adults (20–79 years of age)
worldwide to have diabetes in the year 2015, which is pro-
jected to reach 642 million by the year 2040. Diabetes has
been a major public health concern in the 21st century (IDF
2015) among the worldwide countries/territories, particu-
larly in China, India and USA, which show the alarmingly
increasing prevalence (figure 1). India, in particular, is
expected to have doubled its prevalence by 2040.

2. The pathophysiological processes leading to type 2
diabetes

Glucose, a monosaccharide, is the key carbohydrate of
energy metabolism. The three major sources of circulating
glucose in the human body are intestinal absorption, glu-
coneogenesis and glycogenolysis. Blood glucose home-
ostasis is regulated by gluco-regulatory hormones such as
insulin, glucagon, amylin, glucagon-like peptide 1, glu-
cose-dependent insulinotropic peptide, epinephrine, cortisol
and growth hormone (Stephen et al. 2004). Insulin is the
key regulatory hormone of blood glucose homeostasis with
its excitatory action of stimulating glucose uptake and
inhibitory actions on gluconeogenesis, glycogenolysis,
proteolysis, lipolysis and ketogenesis (Sonksen and
Sonksen 2000). Ever since the role of insulin in glucose
homeostasis is understood, it has been the primary thera-
peutic target in type 2 diabetes patients (Tibaldi 2013).
The major pathological mechanisms of type 2 diabetes are
the defective insulin secretion due to dysfunctional pan-
creatic b-cells and impaired insulin action through insulin
resistance (Lin and Sun 2010; Ashcroft and Rorsman
2012).
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3. Genetic susceptibility

The complex genetic disorders in general are hypothesized
to result from the action of a large number of genes, each
with a small effect, besides the epistatic interactions among
them as well as the interaction of each one of them with the
environmental factors. The genetic susceptibility towards
type 2 diabetes is well established from twin and family
based studies. Mutations in the genes that are involved in the
regulation of plasma glucose levels and synthesis/action of
gluco-regulatory hormones can increase the risk for type 2
diabetes, implying its polygenic nature. However, in an
overwhelmingly large proportion of type 2 diabetes cases,
the disease mechanisms are triggered through an interaction
between genetic and environmental factors, as reflected
through the association of processed and carbohydrate rich
diet, physical inactivity, stress, smoking and alcohol con-
sumption with the disease (Kommoju and Reddy 2011;
Olokoba et al. 2012). The variation in genetic architecture of
individuals/populations and the intensity of environmental
risk factors might have contributed to the variation in geo-
graphical prevalence and ethnic susceptibility of the disease.
Pleiotropy, a phenomenon of multiple effects of the same
genetic loci, has been the characteristic feature of prominent
susceptible genes of complex diseases. For example, the
TCF7L2, which is so far considered to be the most promi-
nent gene associated with type 2 diabetes is found to be
involved in multiple metabolic pathways and associated with
other diseases like obesity and abnormal lipid traits (Del-
gado-Lista et al. 2011). The observed pleiotropic disease
causing effects of these genes might be by virtue of their
location in the regulatory genomic domains. All these fea-
tures make type 2 diabetes a challenging complex genetic

disorder to study. In this review we shall briefly outline the
status of understanding on the genetic etiology of type 2
diabetes, with focus on the post-genomic strategies and
briefly deal with the relative progress in the transcriptomics,
proteomics and metabolomics research as well. We also
outline the status of research on the Indian populations and
propose an appropriate framework that may be best suited
for the Indian population scenario and help in proper
understanding of the role of gene–environment interactions
in the manifestation of the disease, which may help in
devising preventive measures.

4. Broad overview of research on type 2 diabetes

4.1 Genomics

During the past few decades, candidate gene approach with
case-control study design has been most successful in
understanding the genetic etiology of any complex disease.
The method begins with selection of putative candidate gene
based on its functional role in disease related metabolic
pathway, followed by prioritizing single nucleotide poly-
morphisms (SNPs) that have functional consequences either
by affecting the gene regulation or its product. Finally, the
prioritized SNPs/variants are genotyped in a random sample
of cases and controls and tested for their association with the
trait. So far, a total of 1874 unique markers that belong to
421 genes were identified as associated with type 2 diabetes
through this approach (Lim et al. 2010). However, an
overwhelming inconsistency is observed in the patterns of
their association with the disease, with exception to the
polymorphisms that belong to TCF7L2, CAPN10, PPARG,

Figure 1. Top ten countries for estimated number (millions) of adults (aged 20–79 years) with type 2 diabetes in the years 2015 and 2040
(Data taken from IDF Diabetes Atlas, 7th Edition, 2015).
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KCNJ11, ABCC8, HNF1A, HNF4A, GCK, PC-1/ENPPI,
IRS, PTPN1, and LMNA genes which showed much greater
degree of consistency (Kommoju and Reddy 2011; Ali
2013). Not being satisfied with this approach, researchers
shifted the focus to genome wide association studies
(GWAS), which is an agnostic method of testing for asso-
ciation of all the SNPs identified in human genome project
with a particular disease through chip based microarray
technologies such as Illumina and Affymetrics. A large
number of cases and controls are screened through this
method and the SNPs with strong signal/high significance
(pB10-08) are considered to be disease susceptible/causing.
Only these SNPs are further evaluated for their functional
consequences. Through this approach, numerous polymor-
phisms have been identified as associated with type 2 dia-
betes and the SNPs of TCF7L2, HHEX, CDKN2A/2B,
IGF2BP2, SLC30A8, CDKAL1, HMGA2, KCNQ11, and
NOTCHADAM30 genes being the most replicated ones
(www.genome.gov/gwastudies).The search results for type 2
diabetes associated genetic variants yielded 388 significant
SNPs from 58 GWAS studies. However, many of these type
2 diabetes associated variants need to be functionally vali-
dated before attempting to understand their prospective
clinical benefits. The TCF7L2 is the only gene which is
hitherto functionally characterized as key transcription factor
coding gene and involved in regulating the glucose home-
ostasis (Savic et al. 2011; Boj et al. 2012). As a key com-
ponent of WNT signaling pathway, it is involved in
pancreatic b-cell proliferation and in turn insulin secretion
and action (Gupta et al. 2008). It was initially identified as
associated with the disease through a genetic linkage study
on the Icelandic population (Grant et al. 2006) and subse-
quently replicated in Danish (Grant et al. 2006), European
(Scott et al. 2006) and US cohorts (Zhang et al. 2006) and
currently known to be associated across the ethnic groups
worldwide (Kommoju and Reddy 2011). Additionally, a 4kb
haplotype block at 9p21.3 chromosomal region was found
specific to and associated with type 2 diabetes (Silander
et al. 2009). Harboring CDKN2A/CDKN2B genes with
functional implications in cell proliferation pathway, this
chromosomal region was observed to be associated with
multiple complex diseases and needs detailed exploration for
its potential as a therapeutic target in general and particularly
with type 2 diabetes. However, the variants identified by
GWAS were found to explain only 10% of variation in type
2 diabetes and most of those (more than 90%) are located in
the non-coding region (Grarup et al. 2014; Scott et al. 2016).
The search for rare variants with larger penetrance and
functional significance is on through next generation and
exome sequencing strategies (Jenkinson et al. 2016).

4.2 Transcriptomics

The complete set of products in particular tissue or popu-
lation of cells transcribed from genome may be called

transcriptomics. The advantages of transcriptomics include
bridging the gap between genotype and phenotype and
detecting genes of phenotypes due to proximity and mea-
sured effect of environment on transcription (Jenkinson et al.
2016). Transcriptomics research has shown that IGF2B2
(insulin like growth factor 2) is associated with glucose and
insulin homeostatis (Chen et al. 2016), decreased ADH1B
expression with increased obesity, insulin resistance of the
whole body, liver, skeletal muscle and adipose tissue and
reducing b cell function (Winnier et al. 2015), upregulation
of GPD2 and down regulation of FXYD2 in the state of
lower b cell mass (Segerstolpe et al. 2016), resemblance of
trascriptomic profile of a and b cells of pancreas of type 2
diabetics with that of children (Wang et al. 2016) and
reduced expression of BCAT2 and BCKDHB and increased
methylation in BCKDH (Hernández-Alvarez et al. 2017),
altered expression of genes involved in pathway of adren-
ergic signaling in cardiomyocytes in association with insulin
resistance (Matone et al. 2017) and upregulation of ERAF,
ALAS2, OSBP2, CA1, STYK1, and ZIC2a and down regu-
lation of GOS2,TEP1, PTGS2, IL4,IL8, IFI27,IFIT3,I-
FIT2,NFAIP6, RSAD2, APOBEC3A, ABGL4,
ABCA1,EPSTI1,EPHA6 and LRRN3 genes in white blood
cells of type 2 diabetes patients when compared to the
controls (Mao et al. 2011). In a study using peripheral blood
mononuclear transcriptome, a tissue specific interactome
(T2Di) was generated and identified 420 molecular signa-
tures associated with type 2 diabetes comorbidity and
symptoms. It was observed that at a novel locus near GWAS
loci AchE, upstream of SRRT, interacts with JAZF1, a type 2
diabetes GWAS gene involved in beta cell biology through
chromatin regulation and miRNA. The tissue specific inter-
actome (T2Di) identified drug targets PPARD, MAOB and
druggable targets NCOR2, PDGFR for type 2 diabetes (Li
et al. 2016). The drawbacks of transcriptomics include
failure to link nucleotides and clinical traits, dependence on
the limited source of tissue and the lack of feasibility of
detecting genetic mechanisms that are not mediated through
transcript or protein level (Jenkinson et al. 2016).

4.3 Proteomics

The objective of proteomics is to study mechanisms and find
out novel drug targets and prognostic markers for early
detection of the disease (Garbis et al. 2005). Proteomic
research on type 2 diabetes revealed downregulation of
apolipo-protein A-I and apolipoprotein E and up regulation
of leptin, apolipoprotein J and C-reactive protein in the
serum as compared to the controls (Riaz et al. 2010; Trou-
gakos et al. 2002). Stronger spots of Immunoglobulin (Ig),
a1-antitrypsin, a2-HS-glycoprotein, and complement C
fragment were observed in the vitreous humour in the
patients of diabetic retinopathy when compared to the mac-
ular hole. The pigment epithelium-derived factor was clearly
detected in the vitreous humour patients with diabetes
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(Nakanishi et al. 2002). In the urine samples of patients of
type 2 diabetes with nephropathy, seven proteins such as a1-
B glycoprotein, zinc-a2-glycoprotein, a2-HS-glycoprotein,
vitamin D binding protein, calgranulin B, a1-antitrypsin, and
hemopexin were found to be upregulated (Rao et al. 2007). In
the saliva of type 2 diabetes patients, 487 unique proteins
were identified out of which 65 showed two-fold difference
with the controls. Majority of the identified proteins are
related to pathways regulating metabolism of trypsin and
immune response (Rao et al. 2009). In the plasma samples of
type 2 diabetes patients, plasma prolactin-induced protein
(PIP), thrombospondin-2 (THBS2), L1 cell adhesion mole-
cule (L1CAM) and neutrophil gelatinase-associated lipocalin
(NGAL) levels were upregulated. Similarly, the PIP, THBS2
and NGAL in the type 2 diabetes patients with nephropathy
(albuminuria) and L1CAM levels in those with retinopathy
were also upregulated (Yeh et al. 2016). In the urine samples
of the diabetics with normal albumin excretion, diabetic
pattern of polypeptide excretion was observed whereas in
diabetics with high albumin excretion, polypeptide pattern
indicating renal damage was observed (Mischak et al. 2004).
Another study comparing type 2 diabetes with normal and/or
macroalbuminuria showed difference of 113 polypeptides
suggesting renal damage pattern (Rossing et al. 2005). Using
the urine samples of microalbuminuria positive type 2 dia-
betes patients, albumin, zinc alpha-2-glycoprotein, alpha-1-
acid glycoprotein, alpha-1-microglobulin and IgG were
identified using mass spectrometry and validated by the
western blot method (Jain et al. 2005).

The limitations of proteomics include complexity in
analysis, lack of standardization in sample processing, risk
of high false positivity and dynamic range of sample limits
the estimation of low abundance of proteins, failure in val-
idation of biomarkers in larger number of patients due to
lack of antibodies, inaccessibility of softwares for analysis
due to their propriety, difficulty in establishing threshold
between signal and noise, low reproducibility, non-applica-
tion of stringent statistics, ignorance of protein hindrance,
failure to homogenize a differentiated tissue, suppression of
signal by expression of specialized tissue, no possibility of
detecting organelle location of proteins and metabolites of
lysate if the sample was homogenized by ante mass spec-
trometric analysis, influence of age, sex, medication and
disease state, failure to extract subcellular organelle from
frozen sample, contamination of subfractions and organelle,
inefficient separation of organelle, gel to gel variation, fail-
ure to detect proteins solubulized in detergent, and acid
proteins with pI values lower than 4 and proteins outside the
range 10 to 120 kDa (Garbis et al. 2005; Sidoli et al. 2017;
Lasonder 2017).

The primary goal of genomics and proteomic studies is to
offer the molecular basis of understanding of the disease,
thereby improving the diagnosis, treatment and prevention
of diseases. Today, genetic testing is widely applied in
medical fields, including newborn screening for highly
penetrant disorders and diagnostic and carrier testing for

inherited disorders. On the other hand, the technological
improvements have led to the development of methods for
predictive and pre-symptomatic testing for the adult-onset
complex genetic disorders and pharmacogenetic testing to
guide individuals’ drug dosage, selection and response
(www.acpm.org). The genetic testing registry is the central-
ized database that provides information on about 49509
tests, 10734 conditions, and 16223 genes with 492 labs
offering these tests (www.ncbi.nlm.nih.gov/gtr/). Recently, a
workgroup consisting of American college of Medical
Genetics and Genomics (ACMG), Association for Molecular
Pathology (AMP), and College of American Pathologists
(CAP) and the members representing clinical laboratory
directors and clinicians provided recommendations and
guidelines for interpretative classification of genetic variants,
albeit are applicable only in the case of variants that belong
to monogenic/polygenic conditions and follow the Men-
delian inheritance pattern. Even though genomics is a
powerful means of identifying hereditary elements which
interact with environmental factors leading to diseases, there
is no appropriate regulatory agency that recommends the
clinical utility and validity of genetic testing. Moreover,
there is a need for training of clinical and genetic profes-
sionals in the proper understanding and usage of the terms,
definitions and criteria made by ACMG (Richards et al.
2015). There is a slow and steady progress in this science
pertaining to complex genetic diseases and might take some
time to develop such guidelines for determining the causes
of these diseases.

4.4 Metabolomics

Metabolome deals with small molecules of less than 1500
Da in cells or body fluids (Abu Bakar et al. 2015) and
represents the metabolite constituents that include proteins
along with other biomolecules of the organism. The
metabolite composition of a cell type, tissue or biological
fluid are influenced by genetic variants, epigenetic factors,
changes in the gene expression and environmental factors
and therefore are the most informative molecules of bio-
chemical activity of an organism (Kretowski et al. 2016).
Nuclear magnetic resonance (NMR) and mass spectrometry
(MS) are the two well-known approaches used in generating
metabolomics data (Alonso et al. 2015). The NMR detects
the metabolites based on chemical shift in the resonance
spectrum of protons whereas MS characterizes metabolites
by retention time and mass–charge ratio. Compared to
NMR, MS is more sensitive, cost-effective and has wider
availability. Two approaches are employed in both the
techniques and they are the untargeted and targeted meta-
bolomics. While the former emphasizes on the unknown and
global profiling of metabolites (Zheng and Hu 2015), the
latter approach focuses on the quantification of selective
known metabolites. Isoleucine, leucine, valine, tyrosine and
phenylalanine were found to be the predictors of future
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diabetes (Lu et al.2013). Increased serum levels of acylcar-
nitine and decreased levels of glycine and lysophosphatidyl
choline were found to predict the development of impaired
glucose tolerance (Wang-Sattler et al. 2012). The plasma
glutamine, glutamate and glutamine to glutamate ratio were
found to be associated with insulin resistance and elevated
levels of plasma 2-aminoadipic acid with increased risk of
type 2 diabetes (Cheng et al. 2012; Wang et al. 2013). Ha
et al. in 2012 have identified significant differences in cir-
culating levels of glucose, triglyceride, oxidized low-density
lipoprotein (LDL), high-sensitivity C-reactive protein,
interleukin-6, tumor necrosis factor-alpha and urinary 8-epi-
prostaglandin F2a between diabetic and nondiabetic men.
Further, a recent study suggested 39 metabolites that belong
to amino acid, lipoprotein, carbohydrate and nucleotide
metabolisms as commonly associated with diabetes and high
body mass index (BMI) providing metabolomic evidence of
link between these conditions (Park et al. 2015). Reduced
levels of organic anion transporters, OAT1 and OAT3, were
observed in the renal biopsies of patients with diabetes
(Guan et al. 2013). Seventeen biomarkers such as Isoleucine,
valine, isopropanol, alanine, leucine, acetate, proline, glu-
tamine, arginine, trans-aconitate, creatine, creatinine, glu-
cose, glycine, threonine, tyrosine and 3-methylhistidine were
identified in the plasma samples of type 2 diabetes patients
with CHD which showed sensitivity and specificity of
92.9% and 93.3%, suggesting high predictive value for type
2 diabetes-CHD (Liu et al. 2016). Increased levels of plasma
branched chain amino acids, aromatic amino acids and a-
hydroxybutyrate and decreased levels of glycine and
lysophosphatidylcholine were found to be the predictive
markers for the development of type 2 diabetes (Klein and
Shearer 2016). In another study, plasma sorbitol, galacticol,
mannose, galactose, uric acid, oxalic acid, glucaric acid-1,4-
lactone, 3-methyl-2-oxopentanoic acid and 2-hydroxybu-
tyric acid were found to be positively associated with IGT
and T2D (Savolainen et al.2017). In the Chinese population
plasma alanine, phenylalanine, tyrosine and palmitoylcar-
nitine were found to be predictive biomarkers of type 2
diabetes (Qiu et al. 2016).

One the other hand, nutritional systems biology deals with
the interaction between endogenous molecular entities and
dietary nutrients to focus on the disease modifying effect of
nutritional molecules (Zhao et al. 2015). In addition to the
diet, smoking, alcohol intake, physical inactivity and obesity
are significant risk factors for type 2 diabetes (Chen et al.
2012). Diet has been shown to influence insulin sensitivity
and other glycemic traits (Zhao et al. 2015). Most of the
studies were primarily based on animal models, which need
to be validated in humans. Studies involving the effect of
dietary components are limited by complex diet composi-
tion, tissue specific response and dynamic dietary response
(Zhao et al. 2015). Synder group at Harvard University has
developed integrated personal omic profiling system (iPOP)
to study the molecular changes under the influence of life
style and diet to predict the health consequences. Integration

of nutritional system biology with iPOP can provide insights
on the role of diet in progressing or reversing the disease
condition (Zhao et al. 2015). Further, nutrimicrobiomics
studies revealed low abundance of butyrate-producing bac-
teria (Clostridiales sp. SS3/4, Eubacteriumrectale, Faecal-
ibacterium prausnitzii, Roseburia intestinalis, and Roseburia
inulinivorans) and high abundance of opportunistic patho-
gens (Bacteroides caccae, Clostridium hathewayi,
Clostridium ramosum, Clostridium symbiosum, Eggerthella
lenta, and Escherichia coli) in type 2 diabetes patients
(Hartstra et al. 2015).

The limitations of metabolomics/nutritional systems
biology are the heterogeneity of compounds, dynamic range
in concentrations, influence of medications, food and gut
microbiota, metabolites involved in multiple pathways and
depiction of metabolite levels by quartiles, lack of feasibility
to analyze all metabolites simultaneously, an incomplete
metabolome, lack of metabolite annotations in the search
databases and the low statistical power for enrichment
analysis. The limitations with reference to 1.Gas Chro-
matography-MS: Need for proper derivatization method for
analysis of analytes of interest, limited mass range and
instrument based variability, 2. Liquid Chromatography-MS:
the ion trap used for analysis of ions unable to perform
multiple reaction monitoring measurements, 3. MS: avail-
ability of only proprietary standalone software, lack of
standards for characterization of metabolome due to its
diversity, variation in the concentration and lack of software
tools to translate the data into biologically meaningful evi-
dence and 4.NMR: which can only measure low abundant
metabolites (Sas et al. 2015; Aretz and Meierhofer 2016;
Scalbert et al. 2009).

In a nutshell, genomic and post-genomic approaches
identified a large number of biomarkers to ponder over
and explore further but we are yet to identify universally
accepted biomarker which can be used for the successful
management and prevention of type 2 diabetes. In order to
understand environment related modifications of genetic
susceptibility, it may be prudent to conduct studies with
integrated genomic-metabolomic approach. It is also
imperative to gather existing molecular genetic data and
curate it into uniform format and analyze the same for
understanding the present status of research. A few
attempts were, however, made to develop type 2 diabetes
informative databases. While the databases T2DGADB
and T2D-DB are only a collection of publications related
to type 2 diabetes genetic association studies, protein-
protein interactions and expression studies, T2D@ZJU is
a comprehensive collection of pathway databases, pro-
tein–protein interaction databases, and literature (Yang
et al. 2013). Further, T2D@ZJU is a user-friendly inter-
face database that provides graphical output of informa-
tion organized in networks. These attempts may provide
basis for studying type 2 diabetes utilizing systems biol-
ogy, which is a better approach for understanding complex
genetic diseases.
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5. Indian scenario

With greater than 69 million of its adult population being
diabetic (figure 1), India is considered to be the second dia-
betic capital of the world (IDF 2015); although China was
leading in terms of the absolute number of adults with type 2
diabetes (20–79 years) in 2015, the projections are that India
would be doubling its diabetic population in 2040 and out-
number the Chinese by the year 2045. There is a dramatic
change in the dietary patterns of Indians over the past dec-
ades, which resulted in their unique Asian Indian phenotype,
characterized by relatively low BMI, greater abdominal fat,
high insulin resistance and high CRP levels, low levels of
adiponectin and atherogenic dyslipidemia. Given the char-
acteristic Asian Indian phenotype of the Indian populations,
several candidate gene and GWAS variants were studied
among them for their association patterns with the disease in
the genomic era. The salient features of the results of these
studies are presented in table 1. Chandak et al. (2007) have
studied three SNPs (rs7903146, rs12255372 and rs4506565)
of TCF7L2 and suggested their risk conferring nature in a
sample of western Indians. Subsequently, rs7903146 and
rs12255372 of the same gene were observed to show similar
association in two independent studies among south Indians
(Bodhini et al. 2007; Uma Jyothi et al. 2013). In a sample of
Punjabi Sikhs, Sanghera et al. (2008a, b) have identified
polymorphisms that belong to TCF7L2, IGF2BP2and FTO
genes to be significantly risk conferring and PPARG2 risk
reducing in nature towards type 2 diabetes. In another study
of 45 most replicated variants of GWAS (Chidambaram et al.
2010) has identified rs7756992, rs7754840 and rs6931514 of
CDKAL1 and rs7923837 of HHEX to confer risk towards the
disease, while rs7020996 and rs12056034 of CDKN2A/2B
and BAZ1B, respectively, to be protective in nature among the
south Indians. Similarly, Ali et al. (2013) studied 91 most
replicated variants of GWAS that belong to 55 genes and
identified eight SNPs from five genes (TCF7L2, HHEX,
ENPP1, IDE and FTO) as susceptible genetic factors of type
2 diabetes among three different ethnic groups- Kashmiris,
Punjabis and Oriyas. While Chauhan et al. (2010) have
identified eight most replicated variants from GWAS that
belong to PPARG, KCNJ11, TCF7L2,SLC30A8, HHEX,
CDKN2A, IGF2BP2, and CDKAL1 genes as risk conferring
among the northern and western Indian cohorts, Uma Jyothi
et al. (2013); Uma Jyothi and Reddy (2015); Kommoju et al.
(2014 and 2016) have studied fifteen SNPs that belong to the
nine genes (above eight genes and IRS1) and identified only 6
SNPs, two each from TCF7L2 (rs7903146, rs12255372) and
CDKAL1(rs7754840, rs7756992) and one each from
CAPN10 (rs3792267) and IRS-1 (rs1801278) genes as sig-
nificantly associated with type 2 diabetes in the population of
Hyderabad. Besides suggesting cumulative effect of the risk
variants and the high discriminative power of the risk scores,
these studies have identified IGF2BP2, SLC30A8, HHEX,
CDKN2A/B, PPARG genes as significantly interacting among
them. These studies also suggested environmental factors

such as BMI, alcohol and smoking to be significantly inter-
acting with TCF7L2, CDKAL1 and CAPN10 genes, provid-
ing support for gene–gene and gene–environment
interactions in the manifestation of type 2 diabetes in this
population. Overall, while the most prominent genes of
GWAS such as TCF7L2 and CDKN2A/CDKN2B were vali-
dated across the ethnic groups of India, genes such as
IGF2BP2 and SLC30A8 were found to be associated only
among the north Indians (Uma Jyothi et al. 2013; Kommoju
et al. 2013). On the other hand, couple of GWAS on Indians
identified novel type 2 diabetes susceptible variants that
belong to SCGC and TMEM163 genes (Saxena et al. 2013;
Tabassum et al. 2013).Further, Indian genetic association
studies suggest that there is a genetic predisposition of these
populations to diabetes under certain environmental triggers
(Uma Jyothi and Reddy 2015; Reddy 2013). Particularly,
adoption of high fat rich and high carbohydrate diet might be
triggering the molecular mechanisms leading to their char-
acteristic Asian Indian phenotype. Unnikrishnan et al. (2014)
have hypothesized that mechanisms such as impaired non-
oxidative glucose disposal and nutrient-sensing mammalian
target of rapamycin pathway might be leading to the
increasing prevalence of diabetes among Indians. However,
these molecular mechanisms need to be elucidated through
more extensive studies with appropriate frameworks. Further,
studies on post-genomic strategies such as transcriptomics,
proteomics, metabolomics and systems biology on type 2
diabetes patients in the Indian context are limited and further
studies are needed to understand the disease better for
effective management and/or prevention. The hitherto
undertaken trascriptomics analysis of visceral adipose tissue
of obese diabetics and healthy controls, matched for age and
BMI, revealed decreased biosynthesis of unsaturated fatty
acids and increased natural killer cell mediated cytoxicity in
obese type 2 diabetes. Proteomic studies carried out in India
dealt with saliva and urinary proteome and found that in
saliva, 65 proteins showed two fold increase in patients when
compared to controls (Rao et al. 2009) and in urine samples,
albumin, zinc alpha-2-glycoprotein, alpha-1-acid glycopro-
tein, alpha-1-microglobulin and IgG in microalbuminuria
positive type 2 diabetes (Jain et al. 2005) and in type 2 dia-
betes with nephropathy, a1-B glycoprotein, zinc-a2-glyco-
protein, a2-HS-glycoprotein, vitamin D binding protein,
calgranulin B, a1-antitrypsin and hemopexin proteins were
detected (Rao et al. 2007). Metabolomic study showed that
elevated levels of saturated fatty acids and amino acids
(leucine, isoleucine, lysine, proline, threonine, valine, glu-
tamine, phenylalanine and histidine), lactic acid, 3-hydrox-
ybutyric acid, choline, 3,7-dimethyluric acid, pantothenic
acid, myoinositol, sorbitol, glycerol, and glucose were
observed in type 2 diabetes with high BMI when compared to
the healthy control with low BMI (Gogna et al. 2015). Sys-
tems biology approach revealed that genes identified for type
2 diabetes through GWAS correlate with insulin secretion
and by interacting with other genes, are related to insulin
resistance (Jain et al. 2013).
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Table 1. Salient features of type 2 diabetes genetic association studies in India during the genomic era

Study

Geographical
location of the
Population(s)

No. of
Cases

No. of
Controls No of SNPs/genes studied

SNPs
associated

Gene
Associated

Nature of
Association

Chandak et al.
(2007)

Pune, Western India 955 399 3 (TCF7L2) rs7903146 TCF7L2 Risk
rs12255372 Risk
rs4506565 Risk

Bodhini et al.
(2007)

Chennai, Southern
India

1031 1038 2 (TCF7L2) rs7903146 TCF7L2 Risk
rs12255372 Risk

Sanghera et al.
(2008a)

Khatri Sikhs,
Northern India

556 537 6 (TCF7L2) rs7903146 TCF7L2 Risk
rs11196205 Risk
rs10885409 Risk
rs4918789 Risk

Sanghera et al.
(2008b)

Khatri Sikhs,
Northern India

532 386 9 (PPARG2, IGF2BP2, CDK5,
SLC30A8,CDKN2A, HHEX,
TCF7L2, KCNJ11, FTO)

rs1801282 PPARG2 Protective
rs4402960 IGF2BP2 Risk
rs10885409 TCF7L2 Risk
rs9939609 FTO Risk

Chauhan et al.
(2010)**

Pooled 2486 2678 8 (PPARG, KCNJ11, TCF7L2,
SLC30A8, HHEX, CDKN2A,

IGF2BP2, CDKAL1)

rs1801282 PPARG Risk
rs5219 KCNJ11 Risk
rs7903146 TCF7L2 RiskDelhi, North India 1019 1006
rs13266634 SLC30A8 Risk
rs1111875 HHEX RiskPune, Western

India
1467 1672

rs10811661 CDKN2A Risk
rs4402960 IGF2BP2 Risk
rs10946398* CDKAL1 Risk

Chidambaram
et al. (2010)

Chennai, southern
India

926 812 45 (AHI1, BAZ1B, CDKAL1, EXT2,
HHEX, IGF2BP2, LOC387761,
LOC441171, MC4R, MLXIPL,
SLC30A8, STK32C, PPARG,

WFS1, and 12unannotated loci)

rs7756992 CDKAL1 Risk
rs7754840 CDKAL1 Risk
rs6931514 CDKAL1 Risk
rs7020996 CDKN2A/

2B
Protective

rs7923837 HHEX Risk
rs12056034 BAZ1B Protective

Umajyothi
et al. (2013)

Hyderabad,
Southern India

758 621 3 (TCF7L2) rs7903146 TCF7L2 Risk
rs11196205 Risk
rs12255372 Risk

Umajyothi
et al. (2015)

Hyderabad,
Southern India

758 621 3 (IGF2BP2, SLC30A8) rs4402960
(NS)

NS NS

rs1470579
(NS)

NS NS

rs13266634
(NS)

NS NS

Ali et al.
(2013)**

Pooled 1583 1317 91 SNPs belong to 55 genes,
identified through GWAS mostly

in European population and
replicated in other populations

rs7903146 TCF7L2 Risk
Kashmir 507 600 rs12255372 TCF7L2 Risk

rs1887922} IDE RiskPunjab 649 300
rs1111875} HHEX Risk
rs5015480} HHEX RiskOrissa 427 417
rs1044498} ENPP1 Risk
rs9939609# FTO Risk
rs3751812# FTO Risk

Kommoju
et al. (2014)

4 (IRS1, CAPN10, PPARG) rs1801278 IRS1 Risk
rs3792267 CAPN10 Risk
rs5030952 CAPN10 NS
rs1801282 PPARG2 NS

Kommoju
et al. (2016)

Hyderabad,
Southern India

758 621 5 (CDKAL1, CDKN2A/2B, HHEX) rs7754840 CDKAL1 Risk
rs7756992 CDKAL1 Risk
rs10811661 CDKN2A/

2B
Risk

rs1111875 HHEX NS
rs7923837 HHEX NS

**Results presented for pooled cohort; *Not significant in the Pune cohort when two cohorts were analyzed separately; #Not significant in Kashmir
cohort, }Not Significant in Orissa cohort; NS – Not significant.
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6. A framework for future Indian studies

To gauge the gene–environment interactions, several statis-
tical methods have been developed where statistical software
packages of R-program, PLINK (Purcell et al. 2007) and
GMDR (Chen et al. 2011) are widely used for this purpose
in the genetic association studies. Kaput and Dawson (2007)
suggested a nutri-genomics approach which is a study of
how food affects the gene expression and how genetic
makeup affects the metabolism in response to nutrients.
However, in order to ascertain that the manifestation of
complex diseases is a result of changed food habits and
urbanized life styles, it is apt to study groups of individuals
that represent the transitional food habits but with genetic
homogeneity (Reddy 2013). Indian population structure is
unique and characterized by the division of its population
into strictly defined hierarchical castes, tribes and religious
groups of diverse ethnic and cultural backgrounds, which
practice strict endogamy and therefore highly substructured.
Each of these hierarchical castes, tribes and religious groups
are known to be subdivided into number of endogamous
subunits.

The impact of urbanization is fast spreading across all the
social and economic strata of the Indian population and has
even percolated into remotest of the tribal areas of the
country. Consequently, the tribal populations are also
affected by the urbanization to varying degrees resulting in
certain proportion of their population moving to nearby
towns and cities. This process has created many experi-
mental situations in which a single genetically homogenous
tribe presents its population into transitional groups – urban,
semi-urban and rural – with different degrees of urbanization
and graded life styles, which may provide excellent study
frame to assess the role of specific environmental factors in
the manifestation of complex diseases, particularly type 2

diabetes (Reddy 2013). In this context, as discussed in the
previous section, metabolomics and systems biology
approaches would be the right way forward to get appro-
priate understanding of these mechanisms.

The present scenario of at least urban India is such that
almost every second adult person in the 40? year’s age
group seems to be reporting as diabetic and the rural pop-
ulation may not be lagging far behind. This prompts one to
surmise if we would not find diabetic population to out-
number the normal adult population in the foreseeable near
future, qualifying type 2 diabetes as the ‘normal phenotype’!
Given this scenario, Reddy (2013) has hypothesized that the
putative genetic variants would be uniformly prevalent
across the populations and it is the environmental triggers
that make the difference between those who are affected
(cases) and those who are not (controls). This could be more
aptly reflected in the tribal populations of India with tran-
sitional groups, which may reflect genetic homogeneity by
presenting similar frequencies of susceptible/protective
genetic variants among them but with environmental
heterogeneity as reflected in the increasing urbanization and
graded lifestyles, hence increased prevalence of type 2 dia-
betes, from rural to urban areas (figure 2).The outcome of
testing this hypothesis among the genetically homogenous
and environmentally graded subunits of a single caste/tribe
in India would naturally nullify the problems of confounding
factors in the association studies and help in precisely
identifying the role of changing lifestyles/urbanization in the
manifestation of complex diseases and their increasing
prevalence. We have initiated such a study among the three
transitional tribes of undivided AP with a considerable
proportion of their population settled in semi-urban and
urban locales. Such an effort among ethnically and geo-
graphical heterogeneous populations across India would help
comprehensive understanding of the genetic and environ-

Figure 2. Schematic representation of the transitional groups within genetically homogenous castes/tribes during the process of
urbanization leading to increasing prevalence of complex diseases.

21 Page 8 of 11 Battini Mohan Reddy et al.



mental triggers behind the fast emerging epidemic of dia-
betes and other common diseases such as CVDs, cancers and
obesity in India.

7. Conclusions

In view of the overwhelming inconsistency observed in the
results of genetic association studies of type 2 diabetes
across the globe, it is pertinent to design the future studies in
a way that neutralizes the confounding factors and provides
useful results. It is equally important to curate the existing
data and reanalyze it through advanced computational
methods in the era of systems biology. Further, we need
functional studies that complement the pace of genomic
research. The post-genomic strategies are perplexed with
practical difficulties; yet it is imperative to overcome those
and conduct integrated genomic-metabolomic studies to
derive meaningful outcomes of practical utility. These
approaches may provide better insights into understanding
the molecular mechanisms operating in the manifestation of
the disease and may help in devising methods for prevention
and/or treatment.

Given the geographical and ethnic variability in the
prevalence of type 2 diabetes, prior knowledge on eth-
nic/cultural background of the study population may help in
devising an apt population specific study framework, as for
example, the one proposed by us (Reddy 2013) among the
AP tribes and discussed in the previous section. Particularly,
a detailed survey of the dietary intake and physical activity
patterns that play a major role in manifestation of type 2
diabetes needs to be studied in the above frame work and
appropriate quantitative measures/indices of energy intake
and expenditure derived at the individual level before taking
plunge into nutri-genomics and/metabolomics components
of the disease manifestation.
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