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The human brain and its temporal behavior correlated with development, structure, and function is a complex natural
system even for its own kind. Coding and automation are necessary for modeling, analyzing and understanding the 86.1 ±

8.1 billion neurons, an almost equal number of non-neuronal glial cells, and the neuronal networks of the human brain
comprising about 100 trillion connections. ‘Computational neuroscience’ which is heavily dependent on biology, physics,
mathematics and computation addresses such problems while the archival, retrieval and merging of the huge amount of
generated data in the form of clinical records, scientific literature, and specialized databases are carried out by ‘neuroin-
formatics’ approaches. Neuroinformatics is thus an interface between computer science and experimental neuroscience.
This article provides an introduction to computational neuroscience and neuroinformatics fields along with their state-of-
the-art tools, software, and resources. Furthermore, it describes a few innovative applications of these fields in predicting
and detecting brain network organization, complex brain disorder diagnosis, large-scale 3D simulation of the brain, brain–
computer, and brain-to-brain interfaces. It provides an integrated overview of the fields in a non-technical way, appropriate
for broad general readership. Moreover, the article is an updated unified resource of the existing knowledge and sources for
researchers stepping into these fields.

Keywords. Brain–computer–music interface (BCMI); Brainnet; brain-to-brain interface (B2B); BrainX3; Connectome

1. Introduction

The modern neuroscience discipline academically began
with the ‘Neurosciences Research Program (NRP)’ in 1962
(Adelman 2010) at MIT. The neurological disorders of
human brain constitute 13% of the global disease set. It is a
lot more than the cardiovascular diseases which amount to
5% of the global disease set. Different types of cancers
constitute 10% of the global disease set (Kiernan 2015).
Present day neuroscience researchers are a combination of
physiologists, theoretical and experimental physicists,
mathematicians, computer scientists, engineers, molecular
biologists, doctors, clinicians, bioinformaticians, psycholo-
gists, and philosophers among others. Such a diverse mix of
researchers gives a glimpse of the rich vividness of this field
(figure 1).

The nervous system computes and processes information
(Piccinini and Shagrir 2014) very fast. A precise and pow-
erful mathematical theory with different functions and rela-
tions among different positions of a brain is needed for
computing the activities of the nervous system. However, the
detailed procedures and activities of nervous systems, as

well as their underlying reasons cannot be reflected by
mathematical theories alone. We need hypothetical physical
systems for computing them (Copeland and Shagrir 2017;
Piccinini 2011). Computation of neuronal signal is neither
digital nor analog; rather it is a different kind of computation
(Piccinini and Bahar 2013). There are several levels of
organization in the nervous system, which can be decom-
posed into a number of subsystems, like cortex and brain-
stem (Craver 2007; Bechtel 2008). The subsystems can also
be decomposed into smaller systems. These objectives have
led to the formation of a distinct branch of neuroscience
known as ‘computational neuroscience’. Eric L Schwartz
first introduced the term in 1985. The first part of the review
focuses on the role of computational neuroscience in
research of brain network organization along with the
description of the state-of-the-art tools, software, and
databases.

Computational neuroscience research generates highly
complex data in large volumes. Their proper storage, accu-
rate knowledge extraction, and quick dispersion are a big
challenge. Hence, a computer-based collation, management,
and analysis of neurobiological data is a required step
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towards understanding several areas of neuroscience that
gave rise to a new branch namely, ‘neuroinformatics’
(Young and Scannell 2000). Neuroinformatics research
includes the development of neuroscience data storage
infrastructure, advanced tools for data extraction and dis-
persion, and approaches for analyzing such data which may
facilitate major advancements in understanding the structural
and functional aspects of the human brain (Beltrame et al.
2000). The second part of the review describes scopes and
challenges of neuroinformatics research along with a few
existing languages, data sources, tools and software, simu-
lation platforms, a few innovative applications.

2. Computational neuroscience

By an old definition (1993), ‘The expression Computational
Neuroscience reflects the possibilities of generating theories
of brain function in terms of the information-processing
properties of structures that make up nervous systems
(Schwartz 1993).’ A more recent brief definition (2010) is

‘computational neuroscience is the theoretical study of the
brain used to uncover the principles and mechanisms that
guide the development, organization, information-process-
ing and mental abilities of the nervous system (Trappenberg
2009).’ In the present day scenario, computational neuro-
science can also be defined as the study of brain circuits/
networks to explore how the brain processes various activ-
ities according to specific information and properties of
structural and functional activities with the help of compu-
tational power.

The human brain is composed of 86.1 ± 8.1 billion
neurons (Azevedo et al. 2009) and almost an equal number
of non-neuronal glial cells; the neurons being interconnected
by about a 100 trillion inhibitory and excitatory synapses as
well as above-threshold and sub-threshold synapses, which
in turn constitute large neuronal networks (Goldental et al.
2014). The main motivation of computational neuroscience
since the last four decades has been to explore the process of
representation and manipulation of information in the brain
using electrical and chemical signals. Different activities,
i.e., to hear, to see, to remember and to learn among others

Figure 1. A few branches of Neuroscience with a focus on Computational Neuroscience and Neuroinformatics.
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are controlled by various regions of the brain. There are
different kinds of realistic and simplified models for simu-
lating neuronal systems and large brain networks with the
advancement of computational power (Sejnowski et al.
1988).

Realistic models try to incorporate different available
cellular parameters, and as a result, they become com-
putationally expensive and complex to understand. Such
an example is the Hartline-Ratliff model of the lateral
inhibition and interaction in Limulus eye (Hartline and
Ratcliff 1974) at the network level. But even the most
successful realistic brain models often fail to predict the
tissue functions. The concept of receptive field intro-
duced first by Sherrington (Sherrington 1906) as a basic
functional unit of neurons and later by Hartline (Hart-
line 1938) led to the classical receptive field models
developed in cat and primate visual systems. These, in
turn, led to the explanation of a few psychophysics
based experimental results, while at the same time also
failing in some (Gregory 1981, 2009). Thus it is nec-
essary to develop simple models that can capture
important principles. Though these models fail to pre-
dict the complete functional and structural features of
brain circuits due to incomplete information on different
parameters, they can shape future research directions
with the help of experimental data and programs (Se-
jnowski et al. 1988).

3. Computational neuroscience and brain network
organization

The scope of computation in neuroscience is enormous. One
of the research areas coming under this scope is ‘brain net-
work organization’, both structural and functional (Zhou
et al. 2006; Bassett and Bullmore 2009; Achard and Bull-
more 2007; Bullmore and Sporns 2012; Goñi et al. 2014).
Significant progress can be found in the field of studying
microscopic brain dynamics (i.e., at the level of single-
neuron, single-synapse, and single-molecule) over the last 50
years. However, many research issues are yet to be addres-
sed regarding the understanding of macroscopic/mesoscopic
brain dynamics, often recorded by EEG (electroen-
cephalography), ERPs (event related potentials), MEG
(MAGNETOENCEPHALOGRAPHY), and LFPs (local
field potentials) among other methods. Coherent dynamic
phenomena of local brain networks (thousands of neurons)
as well as the entire brain regions (millions of neurons) can
be understood from electrical recordings of brain activity.
There are close ties between blood flow signals measured
with fMRI (functional magnetic resonance imaging) and
local field potentials recorded in the cortex. Any form of
synchrony, stationary/traveling, oscillatory activity can be

associated with the coherent brain dynamics. It is an open
problem to understand how the brain dynamics at different
spatial scales are functionally interrelated. Moreover, it is
quite challenging to establish a connection between the
dynamics of single neurons monitored by intracellular
recordings and the local or distant brain regions observed
using EEG, ERPs, MEG, LFPs, and fMRI among other
techniques. For the very reason, we have mentioned briefly
about microscopic brain dynamics and mostly concentrated
on the study of macroscopic/mesoscopic brain dynamics in
the following discussion.

3.1 Microscopic brain dynamics: Single neurons
and synapses

It is very difficult to form an anatomical connection matrix
of human brain (connectome) at the level of single neuron
because of its larger magnitude. For example, cortex alone
contains 1010 neurons and 1013 connections approximately
(Murre and Sturdy 1995; Braitenberg and Schuz 1991;
Sporns et al. 2005). Alterations of single synapses do not
reflect traceable macroscopic effects. Moreover, individual
neurons and connections undergo rapid plastic changes
(Mountcastle 1998). The huge number and high variability
of individual neurons and synapses restrict us to include the
microscopic studies as basic elements of brain network
organization in this section.

3.2 Macroscopic/mesoscopic brain dynamics:
Networks among brain regions as well as elementary
processing units

It is a hard task to delineate brain areas and neuronal pop-
ulations. There is no unique rule for parcellation of human
brain regions. A previous investigation (Van Essen et al.
1998) has shown that neurons are arranged in the order of
100 or more number of anatomically distinct regions and
areas in the human cerebral cortex. Different criteria for
parcellation may be needed for different parts of the human
brain (e.g., cerebellum, brain stem, cortex or thalamus).
Thus, brain network organization among anatomically dis-
tinct brain regions and interregional pathways are most
feasible to form a human neuronal matrix. However, the
corticothalamic matrix at the macro scale does not provide
functional informative subdivisions or segregated subcircuits
within each brain region. Thus, macroscopic brain network
organization is often insufficient to understand human
brain’s functional dynamics and information processing
capacities. Hence, mesoscopic brain network organization,
i.e., the characterization of connection patterns among ele-
mentary processing units is crucial. Here, we have covered a
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few studies that analyze brain network organization at
macro/meso scale.

Just as real-world complex systems may mathematically
be modeled as graphs, in the same way, both structural (e.g.
anatomical) as well as functional properties of a brain may
be revealed. Identification of relations for a structural net-
work is quite challenging. Several methods for imaging and
recording from various regions of the brain have been
developed for such challenges (Sporns and Kötter 2004;
Bressler and Menon 2010; Sompolinsky 2014). We can
predict types of possible interactions among different areas
of a brain by finding out the pattern of structural network
connectivity. For example, small world structure of cortical
networks suggests that there are many short-range functional
interactions but a few long-range interactions (Bassett et al.
2006).

Brain functional networks reflect coordination between
segregation and integration, which is established by various
factors, i.e., structural nodes, path length, divergence and
convergence among others (Rubinov and Sporns 2010).
They are often scale-free, and have small world properties
along with short path length and high clustering coefficient.
There is a compromised balance between network efficiency
and wiring cost (Achard and Bullmore 2007). It is a chal-
lenge to predict the functional network connectivity of a
brain from its corresponding structural connectivity. Often
these predictions are based on analytical measurements and
network communications (Goñi et al. 2014), but work has
already been done with cat (Zhou et al. 2006) and monkey
brain (Achard et al. 2006). Such kinds of studies help in
analyzing the underlying anatomical connectivity of differ-
ent portions of a brain. A normal brain functional network
has been correlated with age (Chen et al. 2013), sex (Chen
et al. 2013), memory (Burianova et al. 2010), education and
intelligence (Bassett et al. 2011; Langer et al. 2012; Muller
and Meyer 2014), occupation, environment and stress (de
Quervain et al. 2000) among other factors by a stream of
individual investigations. Often, more complexity arises
from the fact that two hemispheres of a brain are different in
terms of anatomical and functional behaviors (Chen et al.
2013; Muller and Meyer 2014).

Brain networks have a tendency to maximize functional
motifs as well as minimize structural motifs (Sporns and
Kötter 2004). By definition, a functional network is a set of
interactions among brain regions to perform specific func-
tions (Bressler and Menon 2010). The topology and con-
nectivity matrix of large-scale functional networks changes
through a person’s lifespan according to maturity and
learning process (Bressler and Tognoli 2006). Different
components of large-scale brain functional networks execute
different activities with the help of other components (Miller
and Cohen 2001). For example, coordination between pre-
frontal and posterior parietal control areas allows activities
among motor and sensory areas that help in perceptuomotor

processing (Corbetta and Shulman 2002; Armstrong et al.
2006; Ruff et al. 2006; Bressler et al. 2008). It explains how
different parts of the brain communicate with each other due
to various perceptions. There is no proper definition avail-
able for brain functional nodes (Bressler and Menon 2010).
However, now-a-days, brain functional nodes can be iden-
tified by elevated metabolism in PET (Positron Emission
Tomography), blood perfusion in fMRI, synchronized
oscillatory activity in LFP recordings (Bressler and Menon
2010) and also by fNIRS (Functional Near Infrared
Spectroscopy).

A normal brain functional network also alters with respect
to body disorders and diseases, i.e., type 2 diabetes (Reijmer
et al. 2013), Alzheimer’s disease (Tijms et al. 2014),
attention-deficit hyperactivity disorder (ADHD) (Lee et al.
2011), autism (Lee et al. 2011), Parkinson’s disease (Feigin
et al. 2007) and bipolar disorder (Leow et al. 2013) among
others. Type 2 diabetic patients process information slowly
due to the alteration or disruption in the white matter region
(Reijmer et al. 2013). Alzheimer’s patients with more severe
cognitive impairment have increased topology randomness
in gray matter (Tijms et al. 2014). Bipolar patients have been
characterized by impaired inter-hemispheric but relatively
preserved intra-hemispheric integration. Moreover, low
white matter integrity at the corpus callosum has been found
in bipolar disorder patients (Leow et al. 2013).

It has also been found that lesions of many brain disor-
ders including Alzheimer’s disease and schizophrenia are
remarkably more plausible to be located in hub nodes of
their respective brain networks (Crossley et al. 2014).
Moreover, some previous investigations have studied var-
ious stages of different neurological disorders including
autism, Alzheimer’s and epilepsy using graph theory
(Bartolomei et al. 2013; Peters et al. 2013; Seo et al. 2013).
Different stages of these disorders have been compared
with each other and with reference normal graphs obtained
from the healthy volunteers. The comparisons highlighted
that the increase of local clustering index and average path
length as the severity of the disease increases. There are
different kind of models to determine the abnormalities in
brain circuits during different psychiatric and neurological
diseases, like epilepsy, Parkinson’s disease, autism,
schizophrenia and disorders of consciousness (Schiff et al.
2014; Ching and Brown 2014; McCarthy et al. 2012). They
consider different factors for analysis, like altered gains of
neurons and synapses, abnormal oscillations, excitation-
inhibition imbalance, pattern change of large-scale brain
dynamics and resting state networks (Moussa et al. 2012).
These kinds of relation provide the conceptual framework
for the graph-theoretic analysis of large scale brain network
(Smith et al. 2013; Bullmore and Sporns 2009; Battaglia
et al. 2012).

Analysis of resting-state fMRI functional connectivity by
graph theoretic studies (Astolfi, de Vico Fallani et al. 2007;
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Dosenbach et al. 2007) of large-scale human brain networks
often highlights small-world network properties (Bullmore
and Sporns 2009; Supekar et al. 2009). The topology of sub-
networks can be described using different graph theoretic
matrices (Müller-Linow et al. 2008). The analysis of resting
and specific task related connectivity patterns (Smith et al.
2009) indicated that functional networks inherit small sys-
temic change during cognition. As discussed earlier there are
different models to identify the altered patterns of functional
networks during various psychiatric and neurological dis-
orders (Bhattacharya 2001; Murias et al. 2007; Seeley et al.
2009; Uhlhaas and Singer 2007; Timmermann et al. 2003;
Stam et al. 2007; Ford and Mathalon 2008). However, a lot
has to be done in order to explore the hierarchy of human
brain networks. Thus, the field of brain network analysis
explores different aspects of brain functions and aims at
finding new fundamental insights during normal and
abnormal cognitive states.

3.3 Existing tools, software and databases

Different tools and software are available to analyze com-
putational neuroscience data and neuroimages. They are
maintained by The Source for NeuroInformatics Tools and
Resources (NITRC)1. A few of them are discussed here.
These tools and resources are freely available. Mostly, the
kind of data used, other specific requirements and their
sources are discussed here.

• FSL2: It is a library of tools for analyzing the EEG, MRI
and fMRI data (freely available).

• SPM3: It deals with EEG, fMRI, MEG, PET and SPECT
brain imaging data sequences, and their analyses (freely
available).

• BrainVoyagerQX4: It can handle MRI, EEG and MEG
data. This software incorporates statistical, numerical
and image processing tools. It requires HASP license
(freely available).

• Turbo BrainVoyager5: It is online real-time processing
software to handle fMRI data. It requires HASP license
(freely available).

• MRIcron6: It is an image viewing toolbox to deal with
MRI data. It also supports some in-built statistical
functions (freely available).

• itk-SNAP7: This is a 3D medical image segmentation
software. It handles MRI and CT scan data (freely
available).

• EEGLAB8: It is an open source environment for
electrophysiological signal processing. It has interactive
MATLAB toolbox for visualization, artifact removal and
analysis of EEG, MEG and ECoG (ElectroCorticoGra-
phy) data (freely available).

• Chronux77: The current release can be implemented as a
MATLAB library. It preprocesses, explores, and analy-
ses neural data, i.e., point process and continuous data
(freely available).

• FreeSurfer9: It reconstructs the brain surface from MRI
data, and overlays fMRI data on the reconstructed
surface (freely available).

• BrainNet Viewer10: It is a visualization tool and
constructs structural and functional networks from
filtered or processed data (freely available).

• eConnectome11: It is a MATLAB package for imaging
brain functional connectivity. It deals with EEG, MEG
and ECoG data (freely available).

• MNE12: It has pre-processing tools and data condition-
ing utilities. It is a Linux based software. It deals with
MEG and EEG data (freely available).

• CONN13: It is a MATLAB toolbox for computation,
display and fMRI data analysis (freely available).

• BSMac14: It is a MATLAB based statistical and
graphical visualization toolbox for fMRI data (freely
available).

• Bioelectromagnetism MATLAB Toolbox15: It helps in
visualization and measurement of Event Related Potential
(ERP). It accepts EEG and MRI data (freely available).

• The Virtual Brain76: It simulates brain behavior by
manipulating brain connectivity and some associated
network parameters (freely available).

Table 1 lists a few computational neuroscience databases.
It lists different types of data (image/network; EEG/MRI/
fMRI; normal/diseased; real/simulated), the source of data,
access type (freely available/paid), a brief description of the
data source and sample properties of each listed database.

1 https://www.nitrc.org/
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3 http://www.fil.ion.ucl.ac.uk/spm/
4 http://www.brainvoyager.com/products/brainvoyagerqx.html
5 http://www.brainvoyager.com/products/turbobrainvoyager.html
6 http://neuro.debian.net/pkgs/mricron.html

7 http://www.itksnap.org/pmwiki/pmwiki.php
8 http://sccn.ucsd.edu/eeglab/
77 http://chronux.org/
9 http://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall
10 https://www.nitrc.org/projects/bnv/
11 http://econnectome.umn.edu/
12 http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_
register/
13 https://www.nitrc.org/projects/conn/
14 http://web1.sph.emory.edu/bios/CBIS/software.html
15 http://eeg.sourceforge.net/
76 http://www.thevirtualbrain.org/tvb/zwei/brainsimulator-software
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Table 1. A few databases for computational neuroscience research

Resource name Resource description Sample properties Access

Brain-image-related resources
Allen Brain Atlas16 Multimodal atlas of the human brain, integrates

anatomical and genetic in-formation (Lein et al.
2007; Hawrylycz et al. 2012)

Healthy volunteer Free

Brain Maps17 High-resolution scanned images of
brain sections of

various species (da Fontoura
Costa and Bollt 2006;
Mikula et al. 2007)

Healthy human
volunteers, primates, and

non-primates

Free

OASIS18 Cross-sectional/longitudinal images (Marcus et al.
2007; Marcus et al. 2010)

Healthy volunteers and
Alzheimer’s disease

patients

Free

Brain Development
(Imperial College)19

Images of 600 patients (adults and neonates)
(Robinson et al. 2010; Kuklisova-Murgasova

et al. 2011)

Fetuses, healthy and
prematurely born

neonates

Free

Whole Brain Atlas20 Images of various parts of the brain (Sutton 1999) Healthy and various
diseased patients

Free

StarPlus fMRI data21 Data, software, and documentation of the StarPlus
fMRI dataset (Birn et al. 2002)

Healthy volunteers Free

COBRE Database22 fMRI and phenotypic data of 72 patients and 75
healthy volunteers (Hanlon et al. 2011)

Healthy volunteers and
schizophrenia patients

Registration
required

IBSR Database23 MRI data and Eco scans of adults, child, normal
volunteers and tumor patients (Wang et al. 2013;

Mason et al. 1997)

Healthy and diseased
individuals

Free

The ADHD-200 Sample24 Resting state fMRI scans along with phenotypic
information of Attention Deficit Hyperactivity
Disorder (ADHD) patients (Brown et al. 2012)

ADHD patients and
developing individuals

Registration
required

Descriptive resources
Brain Architecture
Management System25

Part-wise human brain description and rat
connectomics study data (Bota et al. 2003;

MacKenzie-Graham et al. 2003)

Healthy rat, mouse and
human

Free

Bipolar Disorder
Neuroimaging Database26

Raw and interpreted MRI data
(Kempton et al. 2008)

Human bipolar disorder
patients

Free

Biomarker-related resources
ADNI27 Biomarker samples of Alzheimer’s disease

patients and healthy volunteers (Mueller et al.
2005)

Healthy volunteers and
Alzheimer’s disease

patients

Written
request
required

Simulated resources
Brain Web28 Simulated MRI data (Cocosco et al. 1997) Healthy human brain Free

16 http://human.brain-map.org/
17 http://brainmaps.org/index.php?p=about
18 http://www.oasis-brains.org/app/template/Tools.vm;jsessionid=
F64E1937A76C41CAAB06BCB516EA4A1C
19 http://brain-development.org/
20 http://www.med.harvard.edu/aanlib/home.html
21 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
22 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
23 https://www.nitrc.org/frs/?group_id=48
24 http://fcon_1000.projects.nitrc.org/indi/adhd200/
25 http://map.loni.usc.edu/data/brain-architecture-management-
system-bams/
26 https://sites.google.com/site/bipolardatabase/
27 http://www.adni-info.org
28 http://brainweb.bic.mni.mcgill.ca/brainweb/
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Table 1. continued

Resource name Resource description Sample properties Access

EEG-related resources
SCCN EEG/ERP Database29 EEG database supporting text, EEG, and

MATLAB file format (Delorme et al. 2002)
Normal and experimental

human psychological
data

Registration
required

PhysioNet30 EEG recordings of 22 individuals with
intractable seizure (Shoeb 2009)

Pediatric subjects with
intractable seizure

Free

Berlin Brain-Computer
Interface Database31

EEG recordings of healthy and psychological
patients (Sajda et al. 2003)

Normal and experimental
human psychological

data

Free

The Bern-Barcelona
EEG Database32

EEG signals of 5 individuals and source
code for data analysis (Andrzejak et al. 2012)

Focal and non-focal EEG
signals

Free

Multiple resources
SchizConnect33 Virtual database for Schizophrenia

neuroimaging (Gollub et al. 2013)
Schizophrenia patients and

healthy individuals
Registration
required

Brainsignals.de34 List of publicly available brain signals data EEG, MEG, MRI, fMRI
and ECoG databases

Free
(registration
required)

LONI Image Data35 Data of medical imaging projects healthy and diseased
individuals

Application
required

COINS36 Offers tools to securely collect, store and share
data and manage different studies (Turner et al.

2011)

Clinical data Registration
required

In order to maintain the huge resources, generated and
used in computational neuroscience, a distinct sub-branch,
called ‘neuroinformatics’ has emerged. The following two
sections cover an introduction; languages, data, tools and
software, simulation platforms used by the neuroinformatics
community; a few new approaches; and resources.

4. Neuroinformatics

The field of neuroinformatics is an extended and elaborated
application of tools and databases applied to broader, hetero-
geneous types of neuroscience data, which come in a wide
range of spatial scales (Morse 2008). For example, a human
brain must be represented at multiple levels and resolutions by
properties of its neuronal and non-neuronal cells for detailed

Figure 2. Pondering of the human brain to understand its own
mechanisms has led to the discipline neuroscience and its sub-
disciplines), i.e., computational neuroscience, and neuroinformat-
ics among others.

29 http://sccn.ucsd.edu/*arno/fam2data/publicly_available_EEG_
data.html
30 http://www.physionet.org/pn6/chbmit/
31 http://www.bbci.de/activities/
32 http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-
2012-nonrandomness-nonlinear-dependence-and
33 http://www.schizconnect.org/
34 http://brainsignals.de/
35 https://ida.loni.usc.edu/services/Menu/IdaData.jsp?project=
36 http://coins.mrn.org/
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modeling and simulation. Neuronal properties include mor-
phology, subcellular and molecular architecture, and physi-
ology of *1011 neurons. Properties of an equal number of
non-neuronal cells (astrocytes, oligodendrocytes, and micro-
glia among others) must also be considered. Moreover, the
behavior of*1014–1015 synapsesmust be included in an ideal
holistic brain model. Each synapse is a complex molecular
machine at the sub-micron level. In addition to that neuronal
modulation, the activity of glia and synaptic activity by pep-
tides, neurotransmitters, hormones and other molecules
should be accounted for in such amodel. Further complexities
arise in terms of the temporal (structural and functional)
variations in individual brains (environmental conditions,
health, maturity and developmental stage), individualistic
variations (gender and experience) and species variations
(homology) (Frackowiak and Markram 2015). The size and
complexity of data make it difficult to believe that a single
mind or a single supercomputer or even a single country’s
neuroscientists can shoulder a problem of such size without
the help of neuroinformatics.

Neuroinformatics is thus becoming an integral part of neuro-
science and clinical research for conducting scientific inquiry and
practicing medicine (Morse 2008). Figure 2 schematically
depicts the interdependence of this field with that of the neuro-
science and computational neuroscience. Dedicated databases
and tools of this field are required for understanding the normal as
well as disordered nervous system states and clinical applications
(Morse 2008). Neuroinformatics facilitates the maintenance of
neuroscience databases. The field is associated with the devel-
opment of analytical tools and computationalmodels for the data
sharing, knowledge integration, and analysis of big data of
neuroscience (Bjaalie and Grillner 2007). It acts as a unifying
framework for neuroscience towards new discoveries in human
brain organization (Frackowiak and Markram 2015).

According to the International Neuroinformatics Coordi-
nating Facility37 (INCF), the challenge in neuroscience is
that data is generated in individual laboratories and get
collected in huge volume all over the world. Neither the
state-of-the-art tools/infrastructure, standard, culture, nor a
community to actually bring these pieces together is still
available. Neuroinformatics is about data organization,
annotation, integration into atlases and models, and simu-
lations of such knowledge in order to better understand the
human brain and nervous system.

Millions of people around the globe suffer from brain dis-
eases and disorders. New investments in neuroscience are
scarce as it is too risky, complex, and highly expensive. When
it comes to scientific data, data tend to be very precise.
Implementing a universal standard for such precise multi-scale
data is a major problem. A super data infrastructure is very
much needed to address this kind of multiscale data. Brain
disorders are complicated and heterogeneous. Attempting to

understand a brain disorder with all its variables [genetics,
imaging, clinical profiles (proteins and other blood variables)]
is difficult and time-consuming. Then the prediction of next
course or what happens to patients over time is the demand of
the present decade. Neuroinformatics is a whole endeavor in
response to such a demand which supports neuroscientists in
bringing together, sharing and integrating their data to accel-
erate humankind’s understanding of the brain.

5. Advances in neuroinformatics

In this section, the languages, data, tools, software, and simu-
lation platforms used by the neuroinformatics community are
discussed along with a few new approaches to the field.

5.1 Languages for data storage and exchange

Generally, BrainML (Gardner et al. 2002, 2003), NeuroML
(Gleeson et al. 2010), and PyNN (Davison 2015) are used
for exchanging neuroscience data. Here we briefly discuss
them. Moreover, PyNN being a simulator-independent lan-
guage allows model comparison among multiple simulators.

BrainML provides a standard XML metaformat for neu-
roscience data exchange. Description formats for different
biological objects (animal model/cortex/neuron) are avail-
able (Le Novère 2006) in it. BrainML is being built on the
BrainMetaL metalanguage. It uses hierarchical trees of
controlled-vocabulary descriptors linked to specific attri-
butes (lexicons) (Gardner et al. 2002, 2003).

NeuroML38 focuses on developing an XML based language
for the neuronal system models. The project provides a com-
mon data format for defining neuronal cells and network
models. It is a simulator-independent neuronal model descrip-
tion language. It can define data-driven models of neurons as
well as their networks with high degrees of biological details.
This language allows the description of the complex branching
structures of dendritic trees and axonal projections, and their
biophysical properties. It allows the description of chemical
synapses with short-term synaptic plasticity, electrical synapses,
voltage and calcium gated ion channels, and both large and
small scale network structure (Gleeson et al. 2010).

PyNN39 is a simulator-independent language to build
models of neuronal networks. PyNN API facilitates modeling
at the level of a neuron population as well as layers, columns
and the connections among them. It has a standard model
library of neurons, synapses, and synaptic plasticity. A code
written with PyNNAPI using Python can be run on any PyNN
supported simulator, i.e., NEURON (Carnevale and Hines
2006), NEST (Plesser et al. 2015), PCSIM (Pecevski et al.

37 http://www.incf.org/

38 https://neuroml.org/
39 http://neuralensemble.org/PyNN/
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2009), and Brian (Goodman and Brette 2009) among others.
PyNN imparts validity tomodeling studies by checking results
of multiple simulators (Davison et al. 2008; Davison 2015).

5.2 Data

Here we discuss a few of the data sources used by the
neuroinformaticians. Brede Database (Nielsen 2014) lists
186 published neuroimaging articles and 586 experiments.
Human Connectome Project (Van Essen et al. 2012) aims at
identifying group differences across the lifespan by com-
paring imaging data in 6 age groups (4–6, 8–9, 14–15,
25–35, 45–55, 65–75 years). Brainnetome (Jiang 2013)
deals with identification, characterization, network mani-
festation and genetic basis of brain networks.

Brede40 lists data from functional neuroimaging related
research articles with Talairach coordinates. The database has a
program package written in MATLAB, called as Brede Tool-
box. It structures data from each article into one or multiple
experiments which are supported by simple ontologies for brain
regions, journals, persons and topics (Nielsen 2014).

Human Connectome Project41 (HCP) characterizes brain
connectivity, function, and variability in normal human
beings. It aims to build a network map among the functional
and anatomical connectivity of normal and disordered
brains. It has multiple imaging modalities (diffusion-
weighted MRI, resting-state fMRI, task-based fMRI, T1-
and T2- weighted MRI for structural and myelin mapping
and combined MEG and EEG). It is acquiring and sharing
pilot multimodal imaging data collected across different age
range of human lifespan42 (in 6 age groups, i.e., 4–6, 8–9,
14–15, 25–35, 45–55, 65–75 years) for identifying group
differences across the lifespan and compare data across
scanner platforms (Van Essen et al. 2012).

Brainnetome43 investigates human brain hierarchy from
genetics and neuronal circuits point-of-view. It aims at identi-
fication, study of dynamics and characteristics, network mani-
festation of functions and malfunctions, analysis of genetic
basis, simulation and modeling of brain networks (Jiang 2013).

5.3 Tools and software

There exist a lot of tools and software for neuroinformatics
research. A few of them (Gleeson et al. 2007; Glaser and
Glaser 1990; Aguiar et al. 2013; Stalling et al. 2005;
Ermentrout 2002) are discussed here.

neuroConstruct44 is used in developing realistic 3D neu-
ronal networks. It facilitates models to incorporate dendritic
morphologies and realistic cell membrane conductances. It
has been developed in Java. Its script files can be used in
many neuronal simulation platforms. It uses the latest Neu-
roML (Gleeson et al. 2010) specifications (ChannelML,
MorphML and NetworkML). neuroConstruct can create,
visualize, and analyze multi-compartmental neuronal net-
works in 3D space. It allows modeling brain function by
building, visualizing, and analyzing network models in 3D
space using a user-friendly GUI (Gleeson et al. 2007).

Neurolucida45 is used for creating and analyzing neuron
reconstructions from microscope images. It can map and
analyze the distribution of cells in a region of interest along
with quantification of axons, dendrites, nodes, spines and
synapses. It can quantify volume, proximity of one object to
another, and distance between the object and an anatomical
boundary (Glaser and Glaser 1990).

Py3DN46 analyzes 3D data collected with Neurolucida
(Glaser and Glaser 1990) with its in-house tools. It facilitates
mathematical representation of neuronal topology, visual-
ization, and analysis of the neurons. It is a Python-based
application and uses the open-source Blender program to
create 3D representations of raw and processed data. A user
can import Neurolucida reconstruction data, access it using
intuitive data structures and Python, do morphometric
analysis, and construct 3D graphical representations of the
results with Py3DN (Aguiar et al. 2013).

Amira47 is a multifaceted 3D software platform for visu-
alization, manipulation of microscopy, computed tomogra-
phy, MRI and other imaging modality data. It focuses on
visualization and analysis of volumetric data generated in
medicine, biology and microscopy. Amira is designed with
the goals of ease of use, flexibility, interactivity, extensibility,
scripting interface, multi-platform support, and state-of-the-
art algorithms (Stalling et al. 2005).

X Windows Phase Plane plus Auto (XPP-AUT)48 solves
difference, differential, delay, functional and stochastic
equations along with boundary value problems. It has the
code for the popular bifurcation program, called as AUTO49.
It was originally developed for complete numerical analysis
of the dependence of solutions on parameters. However,
later it has been applied in computational and theoretical
neuroscience (Ermentrout 2002). The open source program
has the capabilities for handling up to 590 differential
equations (Brette et al. 2007; Ermentrout 2012).

40 http://www.imm.dtu.dk/*faan/ps/Nielsen2003Brede_abstract/
Nielsen2003Brede_abstract.html
41 http://www.humanconnectomeproject.org/
42 http://lifespan.humanconnectome.org/
43 http://www.brainnetome.org/en/brainnetomeproject.html

44 http://www.neuroconstruct.org/
45 http://www.mbfbioscience.com/neurolucida
46 http://py3dn.sourceforge.net/
47 http://www.fei.com/software/amira-3d-for-life-sciences/
48 http://www.math.pitt.edu/*bard/xpp/xpp.html
49 http://indy.cs.concordia.ca/auto/
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5.4 Simulation platforms

Simulation platforms in general are needed for building
neuronal computational models. They provide tools to build
numerically sound and computationally efficient models.
These platforms help users to solve biological issues rather
than get gimmicked by the related computational difficulties.
Often, these platforms are used for education in neurobiol-
ogy. Some are designed with a focus on dynamics, size, and
structure of large networks of neurons. A few others deal
with heterogeneous network simulations with different
model neurons and their synapses as components.

NEURON50 is a free open source simulation environment.
It is well-suited to problems of complex experimental data
(anatomical and biophysical properties). It has a user-
friendly interface and a library of biophysical mechanisms
that can be extended by a user (Carnevale and Hines 2006).
It facilitates efficient network modeling and offers a user
scope of customizable initialization and simulation flow
control (Brette et al. 2007).

GEneral NEural SImulation System (GENESIS)51 and its
version for parallel and networked computers (PGENESIS)
are the first macro scale modeling systems in computational
neuroscinece. GENESIS can simulate biological neuronal
systems at different levels, i.e., a single neuron, large neu-
ronal network, subcellular components and biochemical
reactions, and system-level models (Bower and Beeman
1998). GENESIS version 3 (development version) will
enable import and export of model descriptions in a common
simulator-independent XML format.

NEural Simulation Tool (NEST)52 can model networks of
spiking neurons of varying size (Plesser et al. 2015). It can
model laminar cortical networks, the auditory or visual
cortex of mammals and models of learning and plasticity
among others (Gewaltig and Diesmann 2007; Brette et al.
2007). NEST can be used with SLI (NEST’s native simu-
lation language interpreter), PyNEST (Eppler et al. 2008)
and PyNN (Davison 2015).

PyNEST53 is a user interface to NEST. It combines the
simulation kernel of NEST with Python. PyNEST facilitates
easy set up for simulations than SLI (Eppler et al. 2008;
Plesser et al. 2015).

CSIM: A neural Circuit SIMulator54 simulates heteroge-
neous networks with neurons and synapses as components.
It can simulate up to a few thousand neurons with 1,000,000
synapses. A parallel (distributed) version of CSIM is also
available for researchers (Pecevski et al. 2009).

Parallel Circuit SIMulator (PCSIM)55 is the successor of
CSIM. It simulates networks containing up to millions of
neurons with billions of synapses. It allows distributed (via
MPI) and multithreaded simulation of large neuronal net-
works (Pecevski et al. 2009).

NeoCortical Simulator (NCS)56 is a parallel (MPI-based)
spiking neuronal network simulator capable of large discrete-
time simulations (million neurons with billion synapses). The
simulator is well versed with cell membrane voltage dynamics
and customizable ion channels of neuron models. It supports
multi-compartment cells (Drewes et al. 2009). Currently, a
web-based application, known as ‘Neocortical Builder (NCB)’,
is also available (Berlinski et al. 2014). NCB is used for cre-
ating simulation input, building brain models, and output
parameters with NCS. It provides a graphical interface for
streamlining the brain simulations. It also provides real-time
applications for neurobotics along with the integrate-and-fire
neurons and conductance-based synapses.

Multiscale Object-Oriented Simulation Environment
(MOOSE)57 simulates neuronal systems at multiple levels
(Ray et al. 2008). It operates at many levels of detail, i.e.,
stochastic chemical computations, a single neuron, spiking
neuron network and multi-compartment single-neuron
models (Dudani et al. 2013). It supports many model for-
mats including SBML58, NeuroML (Gleeson et al. 2010),
HDF559, GENESIS Kinetikit60 and Neuroscience Simula-
tion Data Format (NSDF) for writing data.

Parallel Stochastic Ion Channel Simulator (PSICS)61 com-
putes the behavior of neurons with ion channel position and
stochasticity. It uses population statistics for electrically compact
homogeneous channel populations. Input models to PSICS can
be createdwith anyXML-aware text editor (Cannon et al. 2010).
Specification of channel distributions and the positioning of
stimuli and recorders are achieved with ICING62.

Mvaspike63 is involved with event-based modeling and
simulation. It handles the events with an event-driven sim-
ulation algorithm which sorts the events, updates the neurons
and propagates the spikes. The tool maintains a good

50 http://www.neuron.yale.edu/neuron/
51 http://www.genesis-sim.org/GENESIS/
52 http://www.nest-simulator.org/
53 http://www.nest-simulator.org/introduction-to-pynest/
54 http://www.lsm.tugraz.at/csim/

55 http://www.lsm.tugraz.at/pcsim/
56 http://www.cse.unr.edu/brain/ncs
57 http://moose.ncbs.res.in/
58 http://sbml.org/Main_Page [Systems Biology Markup Language
(SBML) is a representation format, based on XML, for communicating
and storing computational models of biological processes.]
59 https://support.hdfgroup.org/HDF5/ [Hierarchical Data Format,
version 5.]
60 http://genesis-sim.org/ [GENESIS version 2.3 and higher contain
Kinetikit. Kinetikit is an interface and utility for developing simulations
of chemical kinetics.]
61 http://www.psics.org/
62 http://www.psics.org/icing/index.html [A stand-alone graphical tool
for creating and visualizing ion channel distributions.]
63 http://mvaspike.gforge.inria.fr/
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balance between modeling freedom and simulation effi-
ciency (Kaabi et al. 2011).

Brian spiking neuronal network simulator (Brian)64 is a
simulator for spiking neuronal networks. It defines neuronal
models by differential equations. It is a Python-based simulator
and uses vector-based computation (Goodman and Brette
2009). It is currently available in two versions, i.e., Brian 1.x
and Brian 2.x (Stimberg et al. 2014).

5.5 A few innovative applications

Here we discuss a few interesting and innovative neuroinfor-
matics applications like BrainX3 (Arsiwalla et al. 2015), Brain-
Gene Ontology (Kasabov et al. 2008), Brain Cartography
(Frackowiak and Markram 2015), and Brain Cartography and
Connectomics (Sporns 2015). These applications use computa-
tion to explore and analyze various behaviors of human brain
networks. They hold greater scope of upliftment for humanhealth
and life, albeitwith a need formore improvement andfine-tuning.

BrainX3 (Arsiwalla et al. 2015) is a 3D simulation of the
human cerebral neuronal matrix. It uses biophysical
dynamics and anatomical structure for activity reconstruc-
tion and function prediction. Interestingly, it can be used in a
virtual reality chamber for real-time interactions using nat-
ural gestures (figure 3). Presently, it can process networks of
up to 4000 nodes. A laptop version of BrainX3 is under
development. This technology has many future applications.
One among them is the virtual brain surgery. A surgeon can

access several virtual surgical procedures along with their
pros and cons on models based on the patients’ data via
BrainX3. However, such an application requires optimization
of BrainX3 with parallel computing.

Brain-Gene Ontology (BGO) includes data (animations,
concepts, experimental publications, genetic, knowledge, facts,
graphs, software simulations, theories, and visualizations among
others) of mammalian brain functions, diseases, and their inter-
relationships. It also lists brain organization, gene regulatory
networks, and simulation models (Kasabov et al. 2006, 2008).

Brain Cartography (Frackowiak and Markram 2015) repre-
sents the science or practice of drawing maps for the brain. It
identifies brain regions and localizes them for neurosurgical
uses. It provides an anatomical framework for the brain’s
structural and functional architecture. The future endeavors aim
for inter- and intra-individual variability and representation of
brain organization across different spatial and temporal scales.

Brain Cartography and Connectomics (Sporns 2015) repre-
sents a brain as a complex network of neurons and their inter-
connecting synapses. A connectome is simply a wiring diagram
of neuronal connections in the brain. However, cartographists
face many tough challenges while representing a connectome,
because varieties of data at different scales of resolution have to
be associatedwith it. They have to incorporate and arrangemulti-
level information (temporal, dynamic, definition, hierarchical
organization, structure, function, relational, and models among
others) at one go for construction of a connectome. For building a
human connectome, these challenges have to be overcome.
Table 2 lists a few worldwide databases in the area of
neuroinformatics.

Figure 3. BrainX3 (Arsiwalla et al. 2015), a 3D simulation of the human cerebral connectome.

64 http://www.briansimulator.org
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Table 2. Some worldwide databases in the area of neuroinformatics

Resource name Resource type Source

INDI65 Neuroimaging database of resting state fMRI data Free, registration required
Philadelphia
Neurodevelopmental
Cohort66

[ 9500 Individuals (8–21 yrs) from the greater
Philadelphia area

Free, available through the database of Genotypes
and Phenotypes (dbGaP67)

GSP68 Collection of neuroimaging, behavior, cognitive, and
personality data for 1,500 human participants

Free, delivered on a single USB drive upon request
(Holmes et al, 2015)

NDAR69 Contains 117,573 subjects by age; 80,578 individuals Free
Enhanced Nathan Kline
Institute-Rockland
Sample70

Ongoing,[ 1000 participants Free, requires a data usage
agreement

OpenfMRI71 Number of currently available datasets is 37 and
number of subjects across all datasets is 1411

Free

PCP72 ABIDE73 (539 individuals suffering from Autism
Spectrum Disorder (ASD) and 573 typical controls);

The ADHD-200 Sample (374 children and
adolescents suffering from ADHD and 598 typically

developing controls [7–21 years old]); Beijing
Normal University Enhanced Sample (180 healthy

college students)

Free

6. Discussion and conclusions

This review along with its compilation of research resources
tries to encompass the journey of neuroscience towards tech-
nology. Neuroscientists are always up against the task of
understanding the function of human brain. It is a very
daunting task with billions of brain cells and approximately 100
trillion connections among them. Leave alone the overall view;
some believe we are still scratching the surface of this enigma
called a brain. Recently the contents of three cylindrical chunks
of mouse brain tissue, each of the size of a grain of salt are

analyzed by VAST74. VAST is a manual computer program
that can automatically label neuronal structures by space-filling
segmentation and annotation. It labels individual dendrites,
glia, mitochondria, neurons, and blood vessels with different
colors. The researchers (Kasthuri et al. 2015) created an
inventory of 1700 annotated synapses. The data refuted ‘the
Peters’ rule’ that physical proximity is enough to predict
synaptic connectivity. Thus the very basis of estimation of
neuronal connectivity is shaken now. This is just one facet of
neuroscience that deals with small-scale neuroscience and
advanced imaging technology.

Another experiment compared the way monkey and
human brains respond to abstract information. According
to it, monkeys recognize a pattern but do not realize it and
take it no further. However, humans take it on to the next
level of analysis collectively. The researchers (Wang et al.
2015) found that inferior frontal gyrus of the cortex was
intensely activated only in human brains for such kind of
analysis that made them unique in processing abstract
information analysis. A reader cannot refrain from self-
wonder with such kind of precise discoveries. There are
many other equally astounding facets of neuroscience,
which remain to be solved/refuted with coming age
technology. Many-a-times computational neuroscience
comes to aid in these scenarios.

Computational neuroscience approaches further our
understanding of brain function, and help in translating the
acquired knowledge into technological applications. Be it
cellular and synaptic dynamics or biophysical basis of

65 http://fcon_1000.projects.nitrc.org/ [International Neuroimaging
Data-sharing Initiative.]

66 https://www.med.upenn.edu/bbl/
philadelphianeurodevelopmentalcohort.html
67 http://www.ncbi.nlm.nih.gov/gap
68 https://dataverse.harvard.edu/dataverse/GSP [Brain Genomics
Superstruct Project.]
69 https://ndar.nih.gov/ [National Database for Autism Research.]
70 http://fcon_1000.projects.nitrc.org/indi/enhanced/
71 https://openfmri.org/
72 https://preprocessed-connectomes-project.github.io/ [Preprocessed
Connectomes Project.]
73 http://fcon_1000.projects.nitrc.org/indi/abide/ [Autism Brain Imag-
ing Data Exchange.] 74 http://openconnecto.me/Kasthurietal2014/Code/VAST/
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neuronal computation or algorithms for the analysis of
neuronal data, the field has provided analytical and com-
putational skills for understanding the neuronal systems. Let
us take two instances of research where computational
neuroscience plays an upper hand for extraordinary devel-
opments. It gives power to a disabled musician to control a
musical performance via a Brain Computer Music Interface
(BCMI)75. A BCMI system (figure 4) detects brainwave

signals of a disabled musician and allows him to control
musical systems.

On a very different note of computational neuroscience
related development, Brainnets, (Pais-Vieira et al. 2015;
Ramakrishnan et al. 2015) have emerged as an alternative to
super-computation and hyper-performance. A Brainnet is a
system of multiple interconnected animal brains. It has a
distributed and parallel computing architecture. Brainnets
add an immense opportunity for the upliftment of human
life. How good it will be if a crucial surgery can be

Figure 4. Brain-Computer Music Interface (BCMI) that detects brainwave signals of a disabled person and allows him to control musical
systems.

Figure 5. Brainnet is an organic computing device created with multiple interconnected brains. It has emerged as an alternative to super-
computation and hyper-performance.

75 http://neurosciencenews.com/bcmi-paramusical-ensemble-2269/
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performed by a Brainnet of multiple eminent surgeons
around the world (figure 5). Some non-invasive ethically
approved first steps have already been taken in this direction.
A few researchers of University of Washington, USA first
reported about the direct human brain-to-brain interface. It
records EEG signals of one human brain and uses tran-
scranial magnetic stimulation (TMS) to deliver information
to another human brain. Some researchers of Starlab Bar-
celona, Spain (Grau et al. 2014) have used brain-computer
interfaces (BCI) and non-invasive computer-brain interfaces
(CBI) to achieve B2B (computer-assisted brain-to-brain)
communication between human subjects (hyperinteraction)
(Rao et al. 2014). These are a few of the wonders made
possible by computational neuroscience.

With the advent of computational neuroscience, genera-
tion and analysis of the enormous amount of data became
easy. On the other hand, such kind of big data need proper
handling, a common standard/protocol of data generation,
storage, appropriate retrieval and requirement-specific
merging for rich analysis. The field of Neuroinformatics
handles such kind of requirements. A few hand-picked
recent developments in the field of Neuroinformatics can
help a reader to get a grasp of its power. BrainBrowser
(Sherif et al. 2014) is a visualization library which provides
on-demand visualization of remote datasets. It enables a user
to visualize volumetric neuroimaging data and 3D surface in
any modern web browser without any further requirements.
The Brain Genomics Superstruct Project (GSP) (Holmes
et al. 2015) enables exploration of inter-links among
behavior, brain function, and genetic variation.

Functional analysis of human brain invariably leads
towards creation and analysis of connectomes, a rela-
tively new term researchers started using from 2005
(Sporns 2015). A connectome is simply a wiring diagram
of neuronal connections in the brain. Generating con-
nectomes even in part is complex, assembling them is
tough, and analyzing them is yet new to the research
fraternity. It is a good thing that the projects dedicated to
connectomics of human brain follow open data policies
which generate scope for many future discoveries. A
disorder-specific human connectome holds new hope for
solving the complex brain disorders. Computing tech-
niques like probabilistic clustering can identify commu-
nities and hubs in the human connectome (Hinne et al.
2015). Such methods can be used to study the connec-
tomics of brain disorders, and generate predictive models
for disease spread pattern and consequences (Fornito
et al. 2015). Function-specific connectomes, i.e., ‘func-
tional connectome of speech control’ has already been
discovered (Fuertinger et al. 2015). The connectome of
the human brain is getting constructed even as we are
writing this review, which can revolutionize the whole
human perception regarding behavior, intelligence,
memory, and diseases.

Advanced experimental methods, imaging techniques and
support from neuroinformatics infrastructure have illumi-
nated many areas of neuroscience, and yet many other
questions lay unanswered. This article is an introductory
guide to a few of the already existing knowledge bases and
research in computational neuroscience and neuroinformat-
ics. It aims to help many of the scientific fraternity who put
their nascent steps into these fields to solve these unan-
swered questions.
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