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Protein oxidation, the process caused especially by reactive oxygen and nitrogen species, is thought to play a major
role in various oxidative processes within cells and is implicated in the development of many human diseases. This
review provides a brief overview of the protein oxidation with the emphasis on the types of oxidation (oxidation of
protein backbone and amino acid residues side chains, site-specific metal-catalysed protein oxidation), oxidation-
dependent generation of protein hydroperoxides, carbonyl derivatives and protein–protein cross-linkages. Non-
enzymatic glycoxidation (also known as Maillard reaction) as an important factor of protein damage, consequences
of oxidative protein impairment and related diseases as well as means of monitoring and assessment of protein
modifications are discussed.
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1. Introduction

Proteins are the most abundant and functionally diverse
biological macromolecules in living organisms. Most of
them spontaneously fold to a unique three-dimensional ‘na-
tive’ conformation, which is a prerequisite for their proper
function (e.g. transport, enzymatic activity). This conforma-
tion can be changed or disturbed by various processes, such
as non-covalent or covalent modifications (Bousova et al.
2011; Trnkova et al. 2011), denaturation or peptide bond
cleavage, often resulting in various catastrophic conse-
quences for organisms (Herges et al. 2002).

One of the most deleterious factors leading to the serious
damage of proteins is oxidation, which is very often related to
oxidative stress. The oxidative stress represents an imbalance
between the excessive production of reactive oxygen and
nitrogen species (RONS) and their elimination by protective
antioxidant systems (Halliwell and Gutteridge 2007). RONS,
coming from various exogenous (e.g. environmental factors)

and endogenous (e.g. normal metabolic processes,
glycoxidation reactions) systems (Finkel and Holbrook 2000;
Kelly 2004; Schröder and Krutmann 2005), react promptly
with various biologically important biomolecules, including
proteins and enzymes, in the reactions often catalysed by the
transition metals (e.g. Cu, Fe) (Avery 2011). Under certain
circumstances, they are required for the proper physiological
functions of some systems (e.g. cell signalling, immune de-
fense, gene expression) (Forman et al. 2004; Halliwell and
Gutteridge 2007; Forman 2010; Finkel 2011). In contrast, if
RONS are produced in large quantities, they can become
harmful with the potential to damage or even kill the organism
(Droge 2002; Pan et al. 2009). The oxidative stress has been
implicated in the pathogenesis of many human age-related
disorders and diseases (Elahi et al. 2009; Gella and Durany
2009; Pan et al. 2009; Ferguson 2010; Jomova et al. 2010;
Klaunig et al. 2010; Whaley-Connell et al. 2011) and also
plays an important role in the physiological process of aging
(Stadtman 2004; Romano et al. 2010).

http://www.ias.ac.in/jbiosci J. Biosci. 40(2), June 2015, 419–439, * Indian Academy of Sciences 419

Keywords. Advanced glycation end products; diseases; oxidative stress; protein carbonylation; proteins

Review

Published online: 20 April 2015

http://dx.doi.org/10.1007/s12038-015-9523-7


To fight an excessive production of RONS, the organism
has developed protective systems and mechanisms against
their toxic effects. These protective mechanisms include the
systems preventing RONS formation or trapping transition
metal ions by chelating agents, scavengers and trappers of
RONS (i.e. high and low molecular weight antioxidants),
and the repair systems (Halliwell and Gutteridge 2007;
Durackova 2010). In last two decades, great attention has
been focused on dietary plant flavonoids as effective antiox-
idants. However, under certain circumstances these com-
pounds can act as pro-oxidants and thus participate in
tissue impairments and consequently in the development of
various diseases (Prochazkova et al. 2011).

Detailed information regarding the protein oxidation can
be found in several excellent reviews (Stadtman and Levine
2003; Stadtman 2006; Rees et al. 2008; Cadet and Di Mascio
2009; Bachi et al. 2013) and in the most authoritative sum-
mary of this area up to the year 2012 (Davies 2012). The aim
of this review is to provide brief overview of protein oxida-
tion focused on the oxidation, including non-enzymatic
glycoxidation, as an important factor of protein damage.

2. Protein oxidation

Oxidative damage to proteins may be important in vivo both
in its own right (affecting the function of enzymes, receptors,
transport proteins etc. and perhaps generating new antigens
that can provoke immune response) and because it can
contribute to the secondary damage to other biomolecules
(e.g. inactivation of DNA repair enzymes and loss of fidelity
of DNA polymerases in replicating DNA) (Halliwell 2001).
Chemical reactions resulting from RONS attack to proteins
are complex since there are 20 amino acid residues in their
molecules and each of them can give rise to multiple prod-
ucts upon oxidation (Davies and Dean 1997). The RONS
can cause oxidation of the protein backbone resulting in the
protein fragmentation, oxidation of amino acid residue side
chains, and formation of protein–protein cross-linkages
(Miller and Shaklai 1994; Shacter 2000; Avery 2011).
Moreover, radical-mediated attack on proteins can generate
amino acid radicals reacting with O2 to give peroxyl radicals
and then protein peroxides, which can decompose in a num-
ber of ways, promoted by transition metal ions or heat (Cadet
and Di Mascio 2009; Davies and Dean 1997). The oxida-
tively modified proteins are not mostly repaired and must be
removed from the organism by proteolytic degradation.
Decrease in the efficiency of proteolysis causes their accu-
mulation in the cellular content, which can lead to disruption
of the cellular functions either by loss of catalytic and struc-
tural integrity or by interruption of regulatory pathways
(Shacter 2000; Avery 2011). The amount of oxidatively
modified proteins in cells reflects the balance between pro-
oxidant and antioxidant activities of the organism and is

dictated by prevailing environmental, genetic and dietary
factors.

2.1 Oxidation of protein backbone

Reactive oxygen species (ROS) can directly attack protein
polypeptide backbone. Reaction of protein with hydroxyl
radical (•OH), which can be formed by ionizing radiation
or by transition metals-catalysed decomposition of hydrogen
peroxide, leads to the abstraction of a hydrogen atom from
the protein polypeptide backbone to form a carbon-centered
radical (~NHC•RCO~), which can either react with another
carbon-centered protein derivative to form a –C–C– cross-
linked protein derivative, or yield a peroxyl radical
(~NHCOO•RCO~) under aerobic conditions. The peroxyl
radical can further abstract a hydrogen atom from another
amino acid residue in the same or another protein molecule
to form another carbon-centered radical derivative, or can be
gradually converted to an alkyl peroxide derivative
(~NHCOOHRCO~), an alkoxyl radical (~NHCO•RCO~),
or a hydroxyl derivative (~NHCOHRCO~) in the presence
of protonated form of superoxide (HO2•) or transition metal
ions (Dean et al. 1997; Hawkins and Davies 2001).
However, HO2•-mediated protein oxidation seems irrelevant
for biological systems due to its low pKa. The alkoxyl
radical can also undergo a peptide bond splitting either
through the α-amidation or diamide pathways, both involv-
ing β-scission cleavage mechanism (Cadet and Di Mascio
2009). Protein hydroperoxides may be important propagat-
ing species in the protein oxidation as they can initiate
further oxidation via both radical and non-radical reactions
(Hampton et al. 2002; Morgan et al. 2002). Protein bond
cleavage can occur also by hydroxyl radical-initiated attack
of the glutamic acid and proline residues of proteins
(Stadtman 2004). Figure 1 depicts the scheme of protein
backbone oxidation. The protein fragmentation is connected
with the loss of its enzymatic, signal or transport function
(Stadtman and Levine 2000).

2.2 Oxidation of amino acid residue side chains

The side chains of amino acid residues in proteins are also
susceptible to the oxidation by reactive oxygen species
resulting often ingeneration of irreversibly oxidatively mod-
ified proteins (table 1), which must be removed from the
organism by proteolytic degradation.

The sulphur-containing amino acid residues (i.e. cysteine
and methionine) are the most sensitive residues to the oxi-
dation by almost all kinds of ROS. In contrast to other ROS-
mediated oxidations, their oxidation is mostly reversible
process. The oxidation of cysteinethiol groups of proteins
leads mainly to the production of disulphide derivatives, i.e.
intra-molecular (R1-S-S-R1) and inter-molecular disulphides
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(R1-S-S-R2) or mixed disulphides with oxidized form of
glutathione (R1-S-S-G), which can be regenerated by di-
sulphide exchange reactions of the glutathione system

catalysed by thiol-transferases or thioredoxin (Stadtman
2004; Biswas et al. 2006). In addition, cysteine residues
can be also converted into nitroso adducts (RS-NO) or oxy

Figure 1. Scheme of protein backbone oxidation.

Table 1. Oxidative modifications of amino acid residues side chains

Amino acid residue Product

Arg Glutamic semialdehyde (carbonyls), AGEsa

Cys Sulphenic acid, sulphinic acid, sulphonic acid, disulphides, nitroso-Cys

Glu Oxalic acid, pyruvate adducts, hydroperoxides

His 2-Oxohistine, 4-hydroxy-Glu, hydroperoxides

Ile Hydroperoxides

Leu 3-Hydroxy-Leu, 4-hydroxy-Leu, 5-hydroxy-Leu, hydroperoxides

Lys α-Aminoadipicsemialdehyde (carbonyls), AGEsa, hydroperoxides

Met Met-sulphoxide, Met-sulphone

Phe 2-, 3-, and 4-Hydroxy-Phe, DOPAb

Pro Glutamic semialdehyde (carbonyls), 2-pyrrolidone (carbonyls), 4- and
5-hydroxy-Pro, pyroglutamic acid, hydroperoxides

Thr 2-Amino-3-ketobutyric acid (carbonyls)

Trp 2-, 4-, 5-, 6-, and 7-Hydroxy-Trp, N-formylkynurenin, kynurenin, 3-hydroxykinurenin,
6-nitro-Trp, bi-Trpc, hydroperoxides

Tyr DOPAb, bi-Tyr, 3-chloro-Tyr, 3,5-dichloro-Tyr, 3-nitro-Tyr, hydroperoxides

Val Hydroperoxides

a Advanced glycation end products, b 2,3-dihydroxyphenylalanine,c tryptophan dimmers.
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acids (sulphenic acid, RSOH; sulphinic acid, RSO2H; or
sulphonic acid, RSO3H) (Biswas et al. 2006; Turell et al.
2009). Methionine residues in proteins are oxidized to me-
thionine sulphoxide (Met-SO), which can be converted back
to methionine residues by methionine sulphoxide reductases
(Vogt 1995; Stadtman et al. 2005).

Aromatic and heterocyclic amino acid residues are also
prime targets for the oxidation by various ROS. Tryptophan
res idues are readi ly oxid ized to kynurenine or
formylkynurenine, to various hydroxyl derivatives
(Kikugawa et al. 1994; Stadtman 2004) and tryptophan
dimers (Silva et al. 1994; Vaz et al. 2009; Arenas et al.
2013), or they can be nitrated by peroxynitrite to 6-
nitrotryptophan (Ducrocq et al. 1999; Ferrer-Sueta and
Radi 2009). Phenylalanine and tyrosine residues yield a
number of hydroxyl derivatives (Maskos et al. 1992), while
histidine residues are converted mainly to 2-oxohistidine and
in some cases also to asparagine and aspartic acid (Uchida
and Kawakishi 1993). Tyrosine residues can be also con-
verted to tyrosyl radicals that can interact with one another to
form dityrosine inter- or intra-protein cross-linked deriva-
tives (Huggins et al. 1993; Miller and Shaklai 1994).
Tyrosine residue can be also chlorinated by hypochlorous
acid (HOCl) to 3-chlorotyrosine derivative (Stadtman and
Levine 2000) or nitrate by peroxynitrite to 3-nitrotyrosine
(Alvarez and Radi 2003; Ferrer-Sueta and Radi 2009).

Other amino acid residues such as those of leucine and
valine are converted into hydroxyl derivatives. Lysine and
both arginine and proline residues are oxidized into
amidoadipic and glutamic semialdehydes, respectively,
resulting in peptide bond cleavage (Stadtman 2004).
Hypochlorite can oxidize lysine amino groups to carbonyl
orchloramine derivatives (Stadtman and Levine 2000).

Some amino acid side chains can also interact with
alkoxyl (LO•) or peroxylradicals (LOO•), which are formed
during lipid peroxidation, and in addition with the lipid
peroxidation end products, such as 4-hydroxy-2-nonenal
(HNE) or malondialdehyde (MDA), that are covalently
bound to ε-amino group of lysine, histidine imidazole group,
or cysteine thiol group leading to protein aggregation and
cross-linking (Shacter 2000; Stadtman 2001; Fritz and
Petersen 2011; Ullery and Marnett 2012).

2.3 Site-specific metal-catalysed protein oxidation

The side chains of amino acid residues, mainly lysine, argi-
nine, proline, threonine, and histidine residues, are readily
oxidized by metal ion-catalysed oxidation with a site-specif-
ic mechanism, which can be briefly described as follows.
Superoxide anion radical, which is formed by several pro-
oxidant systems, is readily converted to hydrogen peroxide
by the action of superoxide dismutase, one of the antioxidant
enzymes. The chelate complex, which is formed by the

binding of reduced form of metal ion (predominantly Fe(II)
or Cu(I)) to the amino acid residue in a metal binding site of
the protein/enzyme, can react with hydrogen peroxide to
generate a highly reactive hydroxyl radical that will prefer-
entially attack just the amino acid moiety in the metal bind-
ing site leading to generation of carbonyl derivatives. This
site-specific mechanism is supported by the demonstration
that the metal-catalysed reactions are inhibited by catalase
but not by •OH scavengers, presumably because the scaven-
gers cannot compete with the ‘caged’ reaction of •OH with
amino acids at the metal binding site. On the other hand,
other bivalent cations such as Mg(II), Mn(II), or Zn(II) may
compete with Fe(II) or Cu(I) for binding to the metal binding
sites on proteins and thereby prevent site-specific generation
of hydroxyl radical to suppress protein damage (Stadtman
and Levine 2003). The mechanism of the site-specific iron-
catalysed protein oxidation of a lysine residue is illustrated in
figure 2. Briefly, the reduction of Fe(III) (step 1) is followed
by the binding of Fe(II) to the protein (step 2) to form a
coordination complex. The H2O2, produced by the reduction
of O2 (step 3) may react with Fe(II) in the complex to form
•OH, OH–, and a Fe(III)–protein complex (step 4). The
hydroxyl radical abstracts a hydrogen atom from the carbon
atom bearing the ε-amino group to form a carbon-centered
radical (step 5) that then donates its unpaired electron to
Fe(III) in the complex to regenerate Fe(II) and converts the
ε-amino group to an imino derivative (step 6). Finally, the
imino derivative undergoes spontaneous hydrolysis whereby
NH3and Fe(II) are released and an aldehyde derivative of the
lysyl residue is generated (step 7), which tends to proteolytic
degradation (step 8) (Stadtman and Oliver 1991). However,
the above mentioned reactions can proceed only in the
presence of free transition metal ions, which are rarely de-
tected in the system. Therefore, catalysis of these steps by
some heme-containing proteins seems to be the probable
mechanism (Bamm et al. 2003; Grinshtein et al. 2003).

2.4 Generation of protein hydroperoxides

Several amino acid residues (e.g. Tyr, Trp, His, Val and Pro)
in the proteins have been reported to undergo oxidation in
the presence of RONS (e.g. •OH, superoxide radical, singlet
oxygen) to form corresponding hydroperoxide as the major
product (Wright et al. 2002; Winterbourn et al. 2004;
Gracanin et al. 2009; Das et al. 2014). Amino acid hydro-
peroxides are stable in vitro in the absence of exogenous
catalysts (e.g. heat, light, redox-active transition metal ions)
but decompose rapidly in the presence of these agents to give
a variety of radicals including alkoxyl, peroxyl and carbon-
centered species (Luxford et al. 2002). The protein hydro-
peroxides can further propagate oxidative damage to other
biomolecules including lipids, proteins, and DNA (Luxford
et al. 1999; Luxford et al. 2000; Rahmanto et al. 2010;
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Lopez-Alarcon et al. 2014). They have been demonstrated to
consume important cellular reductants (such as ascorbate or
glutathione) via redox reactions (Simpson et al. 1992). These
species are able to generate radicals in the presence of metal
ions andto oxidize thiols essential to cellular function via
non-radical reactions (Rahmanto et al. 2010; Michalski et al.
2014).The protein hydroperoxides can be quantified using
the oxidation of ferrous ion monitored with xylenol orange
(FOX assay) (Morgan et al. 2008, 2012) and iodometric
assays (Thomas et al. 1989), which cannot be used in real
time measurements. For the real-time measurement of these
compounds, the boronate-based assay has been recently
introduced (Michalski et al. 2014).

2.5 Generation of protein carbonyl derivatives

Protein carbonyl derivatives (ketones and aldehydes) are
highly reactive compounds produced by different mecha-
nisms such as direct metal-catalysed oxidation of lysine,
arginine, proline, and threonine residues (Requena et al.
2003), or oxidative cleavage of the peptide backbone via
the α-amidation and glutamic acid oxidation pathways
(Berlett and Stadtman 1997). Furthermore, carbonyl deriva-
tives of proteins can be also formed by the interaction of
protein amino acid side chains (i.e. histidine imidazole
groups, lysine amino groups, and cysteine thiol groups) with
lipid peroxidation products (e.g. HNE, MDA), or with

reactive carbonyl derivatives (ketoamines, ketoaldehydes,
deoxyosones) generated as a consequence of the reaction
of reducing sugars and their oxidation products with lysine
residues of proteins (glycation and glycoxidation reactions)
(Stadtman 2004). In addition, interactions of protein lysine
residues with lipid peroxidation and glycation/glycoxidation
products can lead to the formation of N-ε-carboxymethyl-
lysine (CML) derivatives, which possess strong chelating
ability and thus are able to promote the generation of car-
bonyl groups by metal-catalysed reactions (Requena and
Stadtman 1999; Saxena et al. 1999). As carbonylation results
in the introduction of reactive aldehyde or ketone groups in
the protein, they are easily quantifiable and are indeed con-
sidered in practice as reliable markers of oxidative stress,
aging, and age-related diseases (Dalle-Donne et al. 2005,
2006; Akagawa et al. 2009; Madian and Regnier 2010;
Baraibar et al. 2013; Fedorova et al. 2014).

2.6 Oxidation-dependent generation of protein–protein
cross-linkages

Protein oxidation is implicated in the generation of many
various kinds of inter- and intra-protein cross-linked deriva-
tives by several different mechanisms such as the direct
interaction of two carbon-centered radicals to form –C–C–
protein cross-links, the oxidation of protein thiol groups to
form disulphide –S–S– cross-linked proteins, the oxidation

Figure 2. Mechanism of site-specific iron-catalysed oxidation of protein amino acid residues. R stands for the protein molecule.
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of tyrosine residues to form –Tyr–Tyr– (bityrosine) cross-
linked derivatives (Miller and Shaklai 1994), the interaction
of carbonyl groups obtained in direct oxidation of amino
acid side chains with lysine amino groups to form Schiff-
based cross-linked products, the interaction of glycation/
glycoxidation derived protein carbonyls with either a lysine
or an arginine residue of the same or a different protein
molecule to form Schiff-based cross-linked products
(Thorpe and Baynes 2003; Ansari et al. 2011), and the
Michael addition reaction of either cysteine thiol groups,
lysine amino groups, or histidine imidazole groups of pro-
teins with the double bonds of aldehydes obtained by the
lipid peroxidation (e.g. HNE, MDA) to form Schiff-based
cross-linked derivatives (Grune and Davies 2003). Some
cross-linked derivatives are not only resistant to proteolytic
degradation by the proteasome but in addition they are
potent inhibitors of the proteolytic degradation of other
oxidatively modified proteins. Therefore, they may contrib-
ute to the accumulation of oxidized forms of proteins during
aging and age-related diseases (Grune and Davies 2003;
Agou et al. 2004; Stadtman 2004).

2.7 Non-enzymatic glycoxidation of proteins as a complex
protein damage

Non-enzymatic glycation/glycoxidation (also known as
Maillard reaction), which leads to the onset and progression
of many human diseases (e.g. diabetes mellitus and its relat-
ed complications, atherosclerosis, and Alzheimer’s disease)
(Sell et al. 2005; Goh and Cooper 2008; Monnier et al. 2013;
Ramos-Fernandez et al. 2014; Tajes et al. 2014; Genuth et
al. 2015), is an elaborate process of covalent damage of
proteins usually accompanied by oxidative steps (West
2000). It is initiated as the non-enzymatic reaction between
amino groups of proteins and carbonyl groups of reducing
sugars (e.g. glucose), their reactive metabolites (e.g. α-
oxoaldehydes), or other carbohydrate relatives (e.g. ascorbic
acid) leading to generation of advanced glycation end prod-
ucts (AGEs) via early (Schiff bases) and intermediate
(Amadori or Heyns products) glycation products
(Schalkwijk et al. 2004). The AGEs represent complex and
heterogeneous molecules (figure 3) that cause significant
changes in physico-chemical properties of proteins, e.g. a
considerable increase in their molecular weight, an ability of
aggregation and cross-links formation, a yellow-brown pig-
mentation, or a fluorescence generation (Ulrich and Cerami
2001; Nass et al. 2007).

Due to the complexity of non-enzymatic glycoxidation,
no universal method exists for its powerful monitoring and
assessment which would help in finding of convenient strat-
egy for its suppression. One of the possibilities for its mon-
itoring is application of methods which study changes in
structural and catalytic properties of proteins and enzymes

(Gugliucci et al. 2009; Bousova et al. 2011). Powerful
approach for monitoring of glycoxidation process includes
identification and quantification of arising metabolic inter-
mediates (e.g. α-oxoaldehydes) and AGEs mostly by immu-
nochemical (Nagai et al. 2008), spectrofluorimetric (Wu and
Yen 2005), or chromatographic (Wu et al. 2008; Zmatlikova
et al. 2010) methods. Pentosidine and CML are used as good
biomarkers of glycoxidation as well as oxidative stress,
respectively (Moreira et al. 2005; Kuang et al. 2014).

Several strategies for inhibition of the protein glycation
and AGE-mediated damage have been developed: inhibition
of AGEs formation by carbonyl-blocking agents or by anti-
oxidants, reducing AGEs deposition using cross-link brea-
kers or by enhancing cellular uptake and degradation, and
finally inhibition of the receptors for AGEs (RAGE) by
neutralizing antibodies or suppression of post-receptor sig-
nalling using antioxidants (Ahmed 2005; Bousova et al.
2012). Numerous compounds have been investigated in vitro
and in vivo for anti-glycation activity but their use in humans
is still debatable (Kaushik et al. 2010; Martini et al. 2010).
Among compounds with antioxidant activity, which have
received interest, are, for example, aminoguanidine
(Thornalley 2003), curcumin (Hu et al. 2012; Fleenor et al.
2013), and various plant-derived flavonoids (e.g. quercetin)
(Matsuda et al. 2003). The effects of these compounds on the
disease onset/progression are ambiguous and require further
studies.

2.7.1 Role of AGEs formation in the development of diabetic
microvascular complications: Diabetes mellitus is commonly
associated with both microvascular and macrovascular
complications. Diabetic macroangiopathy is a collective term
for all atherosclerotic manifestations in main arteries of
diabetics, while microvascular complications are represented
by diabetic neuropathy, nephropathy and retinopathy. All
these complications are caused by glycation of various
proteins including proteins of extracellular matrix. Moreover,
AGEs can contribute to the development of diabetic
complications also via their interaction with specific
receptors on the cell surface (Singh et al. 2014). The role of
AGEs formation and protein oxidation in the development of
diabetic microvascular complications is discussed in the
following text.

Diabetic nephropathy Diabetic nephropathy is the most com-
mon cause of end-stage renal disease in the world, and could
account for disability and high mortality rate in patients with
diabetes. Various hyperglycaemia-induced metabolic and he-
modynamic imbalances (e.g. increased AGEs formation, oxi-
dative stress, activation of protein kinase C, polyol pathway
and renin-angiotensin system) are considered to contribute to
the development and progression of diabetic nephropathy
(Yamagishi and Matsui 2010). Various structural

424 Trnková L, Dršata J and Boušová I

J. Biosci. 40(2), June 2015



abnormalities in glomeruli including basement membrane
thickening, mesangial expansion and hypertrophy as well as
podocyte loss have been observed (Teng et al. 2014).

Advanced glycation end-products pentosidine
(Beisswenger et al. 1993; Tanji et al. 2000), CML (Tanji
et al. 2000; Lieuw et al. 2004), N-ε-carboxyethyl-lysine

(CEL) (Lieuw et al. 2004; Beisswenger et al. 2013) and
methylglyoxal-derived hydroimidazolones (Beisswenger
et al. 2013) have been reported in diabetic patients suffer-
ing from nephropathy. In diabetic kidneys, CML was the
major AGE detected in mesangium, glomerular basement
membranes, tubular basement membranes, and vessel

Figure 3. Classification of AGEs formed under physiological conditions including severalexamples to each group. [Lys] represents a
desamino-lysine residue; [Arg] stands for adesguanidino-arginine residue; R represents either hydrogen atom (GOLD, CML), methyl
group(MOLD, CEL), 1,2,3-trihydroxypropyl (DOLD) or 2,3,4-trihydroxybutyl group (imidazolone A).
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walls, while pentosidine was preferentially located in intersti-
tial collagen (Tanji et al. 2000). Due to the slow turnover,
proteins of extracellular matrix are highly susceptible to AGEs
formation, which causes changes in their structure and func-
tion. Structural alterations observed in diabetic nephropathy
comprise changes in packing density and surface charge, man-
ifested by increased stiffness, reduced thermal stability, and
resistance to proteolytic digestion (Forbes et al. 2003).
Glycation of laminin and fibronectin, the key components of
extracellular matrix, have been reported in diabetic animals
(Thallas-Bonke et al. 2004). This process causes reduction in
polymer self-assembly and decrease in binding of type IV
collagen and heparan sulphate proteoglycan, other major com-
ponents of the basement membrane (Goode et al. 1995).
Glycated proteins of extracellular matrix may have decreased
susceptibility to enzymatic hydrolysis by matrix metallopro-
teinases, which would allow them to accumulate in the extra-
cellular space. Moreover, glycation of heparan sulphate
proteoglycans reduces their electronegativity and thus mod-
ifies the charge-selective filtration properties of the basement
membrane, resulting in microalbuminuria (Kanwar et al.
2011). Heparan sulphate proteoglycan is a strong inhibitor of
mesangial growth and its reduced content in glomerular base-
ment membrane was found to be associated with mesangial
expansion due to the overproduction of other matrix compo-
nents (Vernier et al. 1992; Deyneli et al. 2006). Moreover,
interaction of AGEs with RAGE localized on the mesangial
cells stimulates platelet-derived growth factor secretion, which
in turn mediates mesangial expansion (Lu et al. 2011).
Moreover, hyperglycaemia induces intracellular formation of
ROS in mesangial cells leading to the increased expression of
extracellular matrix proteins (Ha and Lee 2000; Iglesias-De La
Cruz et al. 2001; Ha et al. 2002).

Diabetic neuropathy Diabetic neuropathy is a life-threat-
ening complication, and both autonomic and peripheral
nerves are affected. The clinical symptoms of diabetic
neuropathy manifest in a time-dependent manner as a
positive symptoms (i.e. pain, hypersensitivity, tingling,
cramps, cold feet, etc.) during its early stages and by a
loss of function (i.e. loss of sensory perception, delayed
wound healing, etc.) predominating in the later stages
(Hidmark et al. 2014). Although the pathogenesis of
diabetic neuropathy remains unclear, hyperglycaemia-in-
duced formation of AGEs as well as other mechanisms
(e.g. activation of protein kinase C, polyol pathway, ox-
idative stress, excessive release of cytokines) play a key
role in its pathogenesis (Yagihashi et al. 2011). Oxidative
stress in turn increases formation of glycoxidation AGEs
such as CML and pentosidine (Ryle et al. 1997; Haslbeck
et al. 2002).

Peripheral nerves of diabetic rats contained significantly
elevated levels of CML, CEL, fructosyl-lysine, methylglyoxal-

and 3-deoxyglucosone-derived hydroimidazolones compared
to controls (Thornalley et al. 2003). The perineurium, axons,
endothelial cells and pericytes of endoneurial microvessels as
well as myelinated and unmyelinated nerve fibres of diabetic
patients contained AGEs (Sugimoto et al. 1997; Misur et al.
2004). Modification of several neural proteins, including my-
elin, cytoskeletal proteins and protein components of extracel-
lular matrix by non-enzymatic glycation has been reported.
Glycation of myelin protein alters its antigenicity, rendering it
vulnerable to the phagocytic attack of monocytes, macro-
phages, and neutrophils from blood circulation and tissue,
and of glial cells from nervous system. In addition, the acti-
vated immune cells secrete the pro-inflammatory cytokines
and various proteases contributing to demyelination
(Vlassara et al. 1985; Shi et al. 2013). Formation of AGEs
on major axonal cytoskeletal proteins (e.g. actin, tubulin, neu-
rofilament), which are central to the maintenance of axonal
function and structure, may cause alteration of the structural
and functional properties of the axon, thereby contributing to
the axonal atrophy, degeneration, and impairment of axonal
transport (McLean et al. 1992; Juranek et al. 2013). AGEs in
extracellular matrix proteins (e.g. laminin, collagen), the major
constituents of basal lamina, impair peripheral nerve regener-
ation (Duran-Jimenez et al. 2009). Glycation of laminin, col-
lagen type IV as well as collagen type IV reduces neurite
overgrowth in cell culture (Luo et al. 2002) and experimental
animals (Ozturk et al. 2006). Moreover, it has been demon-
strated that binding of AGEs to RAGE in the perineurium,
epineurial vessels and in part in endoneurial vessels activates
transcription factor NF-κB, which in turn induces expression
of pro-inflammatory cytokines. Activation of AGE/RAGE/
NF-κB pathway contributes to the development of
polyneuropathy in diabetics (Haslbeck et al. 2005).

Diabetic retinopathy Diabetic retinopathy, which is classi-
fied into non-proliferative diabetic retinopathy and prolifer-
ative diabetic retinopathy, is characterized by retinal
neovascularization, vascular occlusion, angiogenesis, loss
of pericytes from retinal capillaries, increased retinal capil-
lary permeability, thickening of the capillary basement mem-
brane and infarction affecting the retina of the eye. This
condition (mainly proliferative diabetic retinopathy) is a
leading cause of blindness in people of the working age. A
number of interconnecting biochemical pathways (e.g. in-
creased polyol pathway flux, accelerated AGEs formation,
oxidative stress, increased expression of various growth
factors, activation of the renin-angiotensin-aldosterone sys-
tem, hemodynamic changes, and activation of diacylglycer-
ol-protein kinase C pathway) have been proposed as
potential links between hyperglycaemia and diabetic retinop-
athy (Tarr et al. 2013).

Increased levels of pentosidine and CML, the
glycoxidation products, have been detected in eyes of patient
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with diabetic retinopathy, suggesting that both glycation and
oxidation may contribute to the onset and progression of
retinopathy (Endo et al. 2001; Nakamura et al. 2003).
Formation of AGEs has been reported in different eye com-
partments such as vitreous, inner retina, retinal pericytes, and
retinal pigment epithelium. Cross-linking of collagen fibrils
by AGE adducts in vitreous leads to their dissociation from
hyaluronan and resulting destabilization of the gel structure.
Moreover, AGEs on vitreous collagen are linked to light
exposure-mediated depolymerization of hyaluronan, which
is a key component of the liquefaction process leading to
proliferative diabetic retinopathy (Katsumura et al. 2004).
Furthermore, increased levels of protein carbonyls have been
found in vitreous of patients suffering proliferative diabetic
retinopathy (Loukovaara et al. 2014). Accumulation of
AGEs in the inner retina of diabetics, mainly within the
collagenous matrix of the lamina cribrosa, has been de-
scribed. AGE-mediated cross-linking of the lamina cribrosa,
which supports ganglion cell axons, may reduce flexibility
and perhaps induce age-related optic nerve damage (Albon
et al. 1995; Albon et al. 2000). AGE-induced cross-linking
of proteins in the vessel wall increases vascular stiffness and
modification of extracellular matrix proteins decreases reti-
nal pericyte adherence. AGEs are toxic to retinal pericytes
possessing AGE receptors, because AGE-RAGE binding
activates a variety of signalling pathways, leading to in-
creased oxidative stress and synthesis of local growth fac-
tors, cytokines and adhesion molecules (Singh et al. 2014).
Retinal pigment epithelium, a highly oxygenated and glu-
cose-enriched region, is highly susceptible to lipid peroxida-
tion due to the high content of polyunsaturated fatty acids.
Lipid peroxidation leads to the formation of reactive alde-
hydes (e.g. acrolein, malondialdehyde, 4-hydroxynonenal),
which are in turn able to interact with proteins to form stable
advanced lipoxidation end-products (Januszewski et al.
2003). Moreover, retinal pericytes accumulate AGEs nega-
tively influencing their cell function and survival during
experimental diabetes in animal models (Yamagishi et al.
2005).

Diabetic cataract Cataract, a major cause of blindness in the
world, is characterized by the loss of lens transparency.
Progression of this disease is increased diabetic patients
and hyperglycaemia leading to the formation of coloured
AGEs is thus one of the risk factors for cataract develop-
ment. Also sunlight (mainly UVA-visible light) constitutes a
risk factor for cataract development, underlying the impor-
tance of photo-processes that take place in the eye (Avila et
al. 2012). Post-translational modifications that occur with
aging are thought to be one of the causative factors in human
cataract development because of their effects on crystallin
structure and interactions. Several post-translational modifi-
cations altering crystallin stability, solubility, and function

have already been identified in human lenses, including
glycation, deamidation, oxidation of Met, Trp, and Tyr,
disulphide bonding formation, transglutaminase-mediated
cross-linking, methylation, phosphorylation, and truncation
of crystallins (Fan et al. 2006; Hains and Truscott 2007;
Asomugha et al. 2010). Among other mechanisms signifi-
cantly contributing to the cataract development are the
polyol pathway (increased activity of aldose reductase), ox-
idative-nitrosative stress, poly(ADP-ribose) polymerase ac-
tivation, and protein kinase C activation (Obrosova et al.
2010).

A wide range of AGEs including pentosidine (Kessel et al.
2002), glucosepane (Biemel et al. 2002), argpyrimidine
(Padayatti et al. 2001; Kessel et al. 2002), methylglyoxal-
lysine dimer (Degenhardt et al. 1998), and CML (Franke et
al. 2003) has been reported in human eye lens. AGEs induce
irreversible changes in lens proteins such as protein aggrega-
tion and conformational changes ultimately leading to the light
scattering, decrease in eye lens transparency and vision loss
(Nagaraj et al. 2012). Moreover, AGEs have been described as
photosensitizers when they are exposed to UVA-visible light
at low oxygen concentration (5%), which is the physiological
condition of the eye lens (Avila et al. 2010). In the case of the
protein-bound AGEs, the sensitizing damage is circumscribed
to the nearby space surrounding the sensitizer (Avila et al.
2008). Generation of ROS during photoxidation reactions
proceeds via two mechanisms, known as type I and type II.
In the type I mechanism, the excited photosensitizer can inter-
act directly with the substrate and/or solvent via an electron
transfer reaction or hydrogen transfer generating radicals,
which rapidly react with oxygen molecules producing ROS
(e.g. superoxide radical, hydrogen peroxide, hydroxyl radical),
capable of oxidizing a variety of biomolecules. In the type II,
the excited photosensitizer interacts with oxygen molecules
generating singlet oxygen (1O2) through an energy transfer
process. The singlet oxygen-mediated photooxidative process-
es are often more efficient than radical processes due to the
higher diffusibility of 1O2 and the higher reaction rate con-
stants with substrates (Ochsner 1997). Several studies have
supported the idea that type I photosensitizing mechanism is
predominant for AGEs at the low oxygen concentration found
in the lens, in which the main process is the direct interaction
between triplet AGEs and reactive amino acids within the
proteins. This photo-process leads to the cross-linking of lens
proteins mainly through radical reactions (Avila et al. 2008,
2012; Fuentealba et al. 2009). The amino acids more prone to
generate radical species by a type I mechanism, giving rise to
protein dimers, are tryptophan and tyrosine (Avila et al. 2008).
Simultaneously with protein cross-linking, oxidation of amino
acids residues (assessed as protein carbonyl content) and per-
oxide formation proceed (Fuentealba et al. 2009). However,
production of 1O2, which can cause depletion of antioxidant
defence of the eye lens (Argirova and Breipohl 2002) as well
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as impairment in proteasome activity, has been reported
(Zetterberg et al. 2003).

2.8 Consequences of oxidative protein damage
and related diseases

A protein radical can: (1) be immediately and fully repaired
by direct reaction with an antioxidant; (2) react with oxygen
molecule to form the corresponding peroxyl radical; or (3)
undergo intramolecular long-range electron transfer to relo-
cate the free electron to another amino acid residue (Gebicki
et al. 2010). Oxidized derivatives of sulphur-containing ami-
no acid residues can be reduced (Vogt 1995; Stadtman
2004), while repair of carbon-centered amino acid radicals
carried out by ascorbate, urate and to a lesser extent also by
glutathione can be accompanied by alterations in the stereo-
chemistry of the intermediate amino acid(s) radical (Gebicki
et al. 2010; Domazou et al. 2012). Instead, the damaged
proteins are targeted to degradation to amino acid constitu-
ents by the action of various endogenous proteases, includ-
ing cathepsin C, calpain, trypsin, and especially the 20S
proteasomes (Jung et al. 2013), whose activity is also under
metabolic control by diverse regulatory factors, including the
concentrations of enzyme substrates, ubiquitinylation and
various inhibitors (e.g. cross-linked proteins, glycation/
glycoxidation protein conjugates) (Davies 2001; Grune and
Davies 2003). Decrease in the efficiency of proteolysis
causes their accumulation in the cellular content, which can
lead to disruption of cellular function either by loss of
catalytic and structural integrity or by interruption of regu-
latory pathways. The intracellular accumulation of oxidized
forms of proteins is a complex function of pro-oxidants (e.g.
ROS generation, metals), antioxidant activities (i.e. protec-
tive antioxidant system), and the concentrations and activi-
ties of the proteases that degrade the oxidized proteins and is
dictated by prevailing environmental, genetic, and dietary
factors (Berlett and Stadtman 1997; Davies 2001). For ex-
ample, as stated above, some oxidized proteins (e.g. cross-
linked proteins) can become more resistant to proteolysis and
thus can contribute to their accumulation in the organism.
Moreover, they can also inhibit the ability of proteases to
degrade the oxidized forms of other proteins (Friguet et al.
1994; Grune and Davies 2003). Generally, biochemical con-
sequences of protein oxidative modifications, which may
play a key role in the pathogenesis of various diseases,
include the loss/gain of enzymatic activity (e.g.
isocitratelyase, creatine kinase BB, superoxide dismutase,
carbonic anhydrase III vs. protein kinase C), loss of protein
function (e.g. fibrinogen/fibrin clotting), loss of protease
inhibitor activity (e.g. α1-antitrypsin, α2-macroglobulin),
protein aggregation (e.g. α-synuclein, prion protein, α-

crystalline, LDL, immunoglobulin G, amyloid protein), en-
hanced susceptibility to proteolysis (e.g. iron-responsive el-
ement-binding protein 2, glutamine synthetase, hypoxia-
induced factor 1α), diminished susceptibility to proteolysis,
abnormal cellular uptake (e.g. LDL), modified gene tran-
scription (e.g. SoxR protein, IκB), and increased immuno-
genicity (e.g. 4-hydroxynonenal- and acrolein-LDL,
ovalbumin) (Shacter 2000; Balafanova et al. 2002; Nguyen
and Donaldson 2005; Nagaraj et al. 2012).

In addition, the generation of protein oxidation products
in the organism and consequently their accumulation and
action is closely connected with the development of many
age-related diseases including atherosclerosis and cardiovas-
cular diseases (Elahi et al. 2009), neurodegenerative diseases
such as Parkinson’s, Alzheimer’s and Huntington’s diseases
(Gella and Durany 2009; Jomova et al. 2010; Martinez et al.
2010; Sorolla et al. 2010; Tunez et al. 2011; Miotto et al.
2014), amyotrophic lateral sclerosis (Niebroj-Dobosz et al.
2004), diabetes mellitus and metabolic syndrome (Lyons
1995; Cohen and Tong 2010; Whaley-Connell et al. 2011),
rheuma to id a r th r i t i s (Ge lde rman e t a l . 2007) ,
cataractogenesis (Yanshole et al. 2013; Linetsky et al.
2014), progeria (Trigueros-Motos et al. 2011), Werner’s
syndrome (Harrigan et al. 2007), carcinogenesis (Pan et al.
2009; Klaunig et al. 2010), acute respiratory distress syn-
drome (Manzanares et al. 2007; Sarker et al. 2011), muscu-
lar dystrophy (Tidball and Wehling-Henricks 2007; Iwasaki
et al. 2013), cystic fibrosis (Kettle et al. 2004; Starosta et al.
2006; Thomson et al. 2010), essential hypertension (Simic et
al. 2006), and many others. In some of these diseases, more
than one kind of oxidative protein modification has been
demonstrated. A causative link between oxidative damage
and aging is almost universally accepted (Stadtman 2004;
Romano et al. 2010). However, serious doubts concerning
the oxidative stress theory of aging have been recently raised
(Gems and Doonan 2009; Perez et al. 2009; Blagosklonny
2010; Lapointe and Hekimi 2010; Pun et al. 2010).

Description of the mechanisms involved in the pathogen-
esis of all the above-mentioned diseases as a result of the
protein oxidation modifications would highly exceed the
extent of this review. Therefore, a causative role of protein
oxidation in the development of Huntington’s disease is
described in detail as an example of such modification. Till
date, 18 carbonylated and oxidized proteins have been iden-
tified in human striatum of patients suffering from
Huntington’s disease (Sorolla et al. 2008; Sorolla et al.
2010; Fox et al. 2011). Oxidation and the resulting inactiva-
tion and/or degradation of important proteins can explain the
impairment of several metabolic pathways observed in
Huntington’s disease (Sorolla et al. 2012). Energy deficien-
cy described in this disease can be explained by oxidative
damage of enzymes involved in energy metabolism and ATP
synthesis (e.g. enolase, glyceraldehyde-3-phosphate
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dehydrogenase, pyruvate kinase, citrate synthase, aconitase,
creatine kinase, subunit 2 of cytochrome b-c1-complex III,
and the alpha subunit of ATP synthase). Oxidation of several
heat shock proteins (e.g. HSP90, HSC71 and TCP-1) and
transitional endoplasmic reticulum ATPase can account for
the impairment of protein folding and degradation.
Oxidation of two enzymes involved in the vitamin B6 me-
tabolism (i.e. pyridoxal kinase and antiquitin 1) could result
in decreased availability of pyridoxal phosphate, a necessary
cofactor in transamination reactions, the kynurenine pathway
and the synthesis of glutathione, GABA, dopamine and
serotonin, all of which have a key role in the pathology of
this disease (Sorolla et al. 2008, 2010). Moreover, oxidation
products of N-terminal fragments from mutant huntingtin are
more prone to form soluble oligomeric species that are
potentially more toxic than aggregates or inclusion bodies
(Sanchez et al. 2003; Arrasate et al. 2004). This idea may
also apply to other neurodegenerative diseases (such as
Alzheimer’s disease), where there is evidence that soluble
oligomers may be particularly important for toxicity
(Shankar et al. 2008; Sanchez et al. 2003).

2.9 Determination of protein oxidative modifications

Due to a complexity of the protein oxidation process there is
no universal method for its powerful monitoring and assess-
ment. A wide range of techniques is available to investigate
oxidative posttranslational modifications including gel-
based and non-gel-based separation approaches to be com-
bined with sophisticated methods of detection, identification,
and quantification of these modifications (Charles et al.
2014; Ckless 2014). Each method of investigation provides
different information and possesses its advantages as well as
disadvantages. The identification and mapping of the post-
translational modifications in proteins have been dramatical-
ly improved during the last decade due to increases in the
sensitivity, speed, accuracy and resolution of mass spectrom-
etry (MS) (Cerny et al. 2013; Tveen-Jensen et al. 2013;
Ghesquiere and Gevaert 2014; Raftery 2014; Thornalley
and Rabbani 2014; Vasil'ev et al. 2014). A great attention
has been also dedicated to enrichment and separation of
post-translationally modified proteins (Cerny et al. 2013).
The methodological approaches can be divided to those
measuring the levels of reactive species and those measuring
the damage that they cause (Halliwell 2001; Hawkins et al.
2009).

The first approach includes methods for detection and/or
quantification of radical and non-radical intermediates.
However, these methods are of limited applicability to cells
and organisms and therefore most clinical studies focus on
the measurement of the end products of damage (Halliwell
2001). Free radicals can be detected either by direct methods

based on detection techniques such as UV/visible spectros-
copy, resonance Raman spectroscopy, conductivity, and
electron paramagnetic resonance (EPR) spectroscopy (Irwin
et al. 1999; Hawkins et al. 2009). Indirect methods such as
EPR spin trapping (Kleschyov et al. 2007; Lardinois et al.
2008; Hawkins and Davies 2014) and immuno-spin trapping
(Hawkins et al. 2009; Gomez-Mejiba et al. 2014) are also
applicable. Spectroscopic detection of protein radicals is only
usable for some amino acids and requires the use of fast kinetic
techniques. For instance, radiolysis technique can be success-
fully used to explore the mechanisms of free radical modifica-
tions in proteins (Houee-Levin and Bobrowski 2013). At
present, various commercial kits to measure protein radicals
generated by the presence of RONS are readily available, e.g.
those combining the EPR technology with the enzyme-linked
immunosorbent assay (ELISA) as detection. Also non-radical
intermediates can be used as biomarkers of oxidative protein
modifications, e.g. quantification of the hydroperoxides using
several separation and detection techniques (Bou et al. 2008;
Morgan et al. 2008; Grintzalis et al. 2013; Santas et al. 2013),
chloramines by high-performance liquid chromatography with
electrospray ionization detection (HPLC-ESI-MS) (Raftery
2007), or sulphenic acid using Western blotting with chemilu-
minescence detection (Saurin et al. 2004).Various strategies for
the detection of protein sulphenic acid are described in recent
reviews (Kettenhofen and Wood 2010; Burgoyne and Eaton
2011; Charles et al. 2014; Gupta and Carroll 2014).

The second approach involves determination of changes
in parent amino acid residues by quantification of the loss of
specific amino acids. Hawkins et al. have described various
methods of standard amino acid analysis by HPLC with
spectrophotometric, fluorimetric, or mass spectrometry
(MS) detectionin detail (Hawkins et al. 2009). Various de-
terminations of thiols and disulphides are summarized in
recent reviews (Burgoyne and Eaton 2011; Winther and
Thorpe 2014). The other possibility is to detect and quantify
specific oxidation products. Modification of aromatic side
chains can be used as a sensitive marker of protein oxidation
and cellular oxidative damage, as these moieties are readily
oxidized and often yield stable products (mentioned above)
that are readily quantified (Dalle-Donne et al. 2006). Three
major methods involving gas chromatography with MS de-
tection, HPLC with different types of detection, and immu-
nological methods (Western blotting/ELISA) have been
developed to quantify these products (Hawkins et al.
2009). One of the most harmful irreversible oxidative protein
modifications is protein carbonylation. Protein carbonyls are
formed not only by ROS-mediated protein damage but also
by lipid peroxidation (i.e. covalent binding of aldehyde end
products of lipid peroxidation such as malondialdehyde and
4-hydroxynonenal) (Yarian et al. 2005; Grintzalis et al.
2013; Li et al. 2013; Spickett 2013; Zhang et al. 2013;
Vasil'ev et al. 2014) and by glycation/glycoxidation
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(Akagawa et al. 2005; Villaverde and Estevez 2013;
Fedorova et al. 2014; Thornalley and Rabbani 2014). Their
measurements are often performed to assess the extent of
oxidative stress in the context of cellular damage, aging and
different age-related disorders (Madian and Regnier 2010;
Baraibar et al. 2013; Fedorova et al. 2014; Thornalley and
Rabbani 2014). Various analytical techniques are available
to detect and quantify protein-bound carbonyls. Several
current reviews are dedicated to this actual topic (Madian
and Regnier 2010; Yan and Forster 2011; Baraibar et al.
2013; Cerny et al. 2013; Fedorova et al. 2014). Briefly,
there are three categories of methods to determine reac-
tive carbonyls: biochemical and immunological techniques
such as immunoblotting and ELISA to provide global
information on the modified proteins and carbonylation
levels, spectrophotometric and chromatographic assays to
determine the total protein carbonyl content, and MS for
identification of the modified proteins (Madian and
Regnier 2010; Baraibar et al. 2013; Fedorova et al.
2014). In addition, other types of ROS-mediated damage
protein products are used for assessment of post-transla-
tional protein modifications, e.g. the determination of
methionine sulphoxide (Ghesquiere and Gevaert 2014),
dityrosine (DiMarco and Giulivi 2007), 3-nitrotyrosine
(Nuriel et al. 2008; Sharov et al. 2008; Diaz-Moreno
et al. 2013; Feeney and Schoneich 2013;), chloramine
derivatives (Mouls et al. 2009), various mono- or di-
hydroxyphenylalanine (DOPA) derivatives (Sharov et al.
2008), or cross-links and aggregates and their degraded
products (Leavell et al. 2004; Lee 2008; Leitner et al.
2010), advanced glycation end products such as

determination of pentosidine and argpyrimidine by
HPLC with fluorimetric detection (Slowik-Zylka et al.
2004; Gomes et al. 2005; Scheijen et al. 2009), CEL
and CML by liquid chromatography–tandem mass spectrom-
etry (LC-MS/MS) (Sternberg et al. 2010; Kuang et al. 2014),
or precursors of AGEs such as 3-deoxyglucosone, glyoxal, or
methylglyoxal that can be quantified by HPLC method with
fluorimetric detection (Hurtado-Sanchez Mdel et al. 2012) or
by ultra-performance liquid chromatographywith electrospray
ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-
MS) (Min et al. 2012). In addition, there are various commer-
cial kits available to quantify different stable biomarkers of
oxidative posttranslational modifications, e.g. determination of
protein carbonyls, using different types of detection (i.e. spec-
trophotometric, fluorimetric, immunoblotting, or ELISA), de-
tection of 3-nitrotyrosine, total AGEs and specific AGEs
formation such as CEL, CML and methylglyoxal using
ELISA, or 3-nitrotyrosine and CML by immunoblotting.

2.10 Inter-relationships in oxidative damage of organism

As it has been described above, RONS at high concentra-
tions are able to attack and damage virtually all important
biomolecules. The inter-relationship among oxidative dam-
age of proteins and other important biomolecules such as
lipids and nucleic acid is displayed in figure 4. Proteins may
not be attacked directly by RONS but they can be damaged
by lipid peroxidation products (e.g. HNE, MDA). If
unrepaired, also the oxidized forms of DNA and RNA can
lead to transcription/translation errors, and therefore to the

Figure 4. Interrelationships among RONS-dependent modifications of lipids, nucleic acids and proteins in protein degradation.
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synthesis of abnormal proteins that are prone to RONS-
mediated oxidation (Stadtman 2004). Two cellular proteo-
lytic systems are responsible for the removal of oxidized and
modified proteins, especially those of the proteasome and
organelles, mainly the autophagy-lysosomal systems (Sitte et
al. 1998; Jung et al. 2006). However, protein aggregates of
highly oxidized and cross-linked proteins (such as
lipofuscin) are able to inhibit the proteasomal degradation
of oxidized proteins. Thus, increased protein oxidation and
oxidation-dependent impairment of proteolytic systems lead
to an accumulation of oxidized proteins and finally to the
formation of non-degradable protein aggregates (Sitte et al.
2000; Hohn et al. 2011). Accordingly, the cellular homeo-
stasis cannot be maintained and the cellular metabolism is
negatively affected (Jung et al. 2006; Hohn et al. 2014).For
example, oxidized apoprotein B100, the only apoprotein of
low density lipoprotein particles (LDL), is no longer recog-
nized by LDL receptor and is removed from the circulation
via phagocytosis mediated by scavenger receptors present on
monocytes and macrophages. The oxidized LDL then medi-
ates transformation of these macrophages to lipid-laden foam
cells, which is the beginning of atherosclerotic process
(Lusis 2000).

3. Conclusions

The oxidative modification of proteins caused especially by
RONS is very complicated process, which plays not only a
key role in numerous physiological processes within cells
but is also implicated in the development/progression of
many human diseases as well as physiological process of
aging. The protein oxidation and its impact on living organ-
isms including the human body is extensively studied from
different perspectives in order to reduce generation of oxi-
datively modified proteins and to moderate their deleterious
manifestation. This review brought a brief overview of the
protein oxidation focused on the oxidation, including the
non-enzymatic glycoxidation, as an important factor of pro-
tein damage.
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