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In response to hypoxia, tissues have to implement numerous mechanisms to enhance oxygen delivery, including the
activation of angiogenesis. This work investigates the angiogenic response of the hypoxic caudate putamen after
several recovery times.

Adult Wistar rats were submitted to acute hypoxia and analysed after 0 h, 24 h and 5 days of reoxygenation.
Expression of hypoxia-inducible factor-1 alfa (HIF-1α) and angiogenesis-related genes including vascular endothelial
growth factor (VEGF), adrenomedullin (ADM) and transforming growth factor-beta 1 (TGF-β1) was determined by
both RT-PCR and ELISA. For vessel labelling, lectin location and expression were analysed using histochemical and
image processing techniques (fractal dimension).

Expression of Hif-1α, Vegf, Adm and Tgf-β1 mRNA rose immediately after hypoxia and this increase persisted in
some cases after 5 days post-hypoxia. While VEGF and TGF-β1 protein levels increased parallel to mRNA
expression, ADM remained unaltered. The quantification of the striatal vessel network showed a significant augmen-
tation at 24 h of reoxygenation.

These results reveal that not only short-term hypoxia, but also the subsequent reoxygenation period, up-regulate the
angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia that seeks to maintain a
proper blood supply to the hypoxic tissue, thereby minimizing the adverse effects of oxygen deprivation.

[Molina F, Rus A, Peinado MA and del Moral ML 2013 Short-term hypoxia/reoxygenation activates the angiogenic pathway in rat caudate putamen.
J. Biosci. 38 363–371] DOI 10.1007/s12038-013-9327-6

1. Introduction

Diminished oxygen delivery and tissue oxygen deprivation
are the consequence as well as the cause of many neurolog-
ical, cardiovascular, and respiratory disorders (Mathur et al.
1999; Janssens et al. 2000). To overcome such situations of
hypoxia, cells express a variety of genes which allow adap-
tation to decreased oxygen availability. Hypoxia-inducible
factor-1 (HIF-1) is a transcription factor that regulates the
adaptive response to hypoxia. HIF-1 is a basic helix-loop-
helix/PAS protein consisting of the constitutively expressed
β-subunit (HIF-1β) and one of two oxygen-regulated α-
subunits (HIF-1α or HIF-2α) (Wenger 2002). In hypoxia,
the α/β heterodimeric HIF complex regulates a great number

of target genes involved in angiogenesis, vasodilation, eryth-
ropoiesis, and glycolysis by binding to hypoxia response
elements (HREs) in the promoter regions of such genes
(Singh et al. 2012). The HIF-1-dependent target genes in-
clude vascular endothelial growth factor (VEGF),
adrenomedullin (ADM), transforming growth factor-beta 1
(TGF-β1), inducible nitric oxide synthase (iNOS) and eryth-
ropoietin (EPO) (Bani Hashemi et al. 2008).

One potential mechanism to counterbalance tissue hypox-
ia is the induction of angiogenesis. Hypoxia stimulates ves-
sel growth through the up-regulation of numerous
proangiogenic pathways. In this sense, hypoxia has been
shown to affect vessel patterning, maturation, and function
(Cassavaugh and Lounsbury 2011; Krock et al. 2011). The
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most potent proangiogenic factor is VEGF, a selective
endothelial mitogen and vascular permeability factor,
which is generally inducible by hypoxia (Ferrara and
Davis-Srnyth 1997). There are at least five different
VEGF homodimeric isoforms of 206, 189, 165, 145 and
121 amino acids, termed VEGF-A206, 189, 165, 145 and 121,
which are produced by alternative splicing (Jussila and
Alitalo 2002). VEGF is a direct target of HIF-1 as well
as other factors related to cell division and migration, such
as TGF-β. The TGF-β family of growth factors mediates
vascular development and regulates endothelial responses
to mechanical, inflammatory and hypoxic stress. The
important role of TGF-β in vascular physiology is indicated
by defective vasculogenesis and striking vascular inflamma-
tion, leading to death in mice null for TGF-β receptors
(Dickson et al. 1995; Sanford et al. 1997). Particularly,
TGF-β1 has been reported to modulate the activity of VEGF
(Berse et al. 1999; Chávez et al. 2000; Renner et al. 2002).
ADM is another HIF-1-dependent vasoactive target gene with
an angiogenic effect, in part mediated by promoting VEGF
expression. As a regulatory peptide, ADM has the capacity to
dilate cerebral vessels and increase vascular permeability
(Withers et al. 1996). ADM is up-regulated under hypoxic
conditions and influences the recovery of blood flow in ische-
mic tissues (Iimuro et al. 2004; Knowles et al. 2004).

The caudate putamen is a basal ganglion of the brain
that is particularly vulnerable to the hypoxic damage
(Erecinska and Silver 1996). It contains a high density of
dopaminergic nerve terminals and neuronal connections
from the glutamatergic corticostriatal pathway. However,
little is known about the angiogenic response of this brain
ganglion under hypoxic conditions. In this light, the
present study seeks to elucidate the effect of hypoxic
challenge on the angiogenic pathway in the rat caudate
putamen. It bears mentioning that this is the first time-course
study which examines the behaviour of angiogenesis-related
genes, as well as the vessel network in the adult rat striatum
submitted to hypoxia and analysed after several reoxygenation
times.

2. Methods

2.1 Animals

The study was performed on mature adult (4–5 months old)
male albino Wistar rats kept under standard conditions of
light and temperature and allowed ad libitum access to food
and water. All the experiments were conducted according to
E.U. guidelines on the use of animals for biochemical
research (86/609/EU), as well as to the Guiding Principles
in the Care and Use of Laboratory Animals, endorsed by the
American Physiological Society.

2.2 Experimental procedure

The acute hypobaric hypoxia was carried out as previously
published by our group (Lopez-Ramos et al. 2005; Rus et al.
2010a). Briefly, animals were placed in a chamber connected
to a vacumm pump with a controlled air inflow and outflow.
The acute hypobaric hypoxia was induced by reducing the
barometric pressure to 225 mm Hg, resulting in a 48 mm Hg
oxygen partial pressure. These conditions were maintained
for 20 min. The ascent and descent speeds were kept at less
than 1.000 feet/min. After the hypoxia period, animals were
kept under normobaric normoxic conditions for different
reoxygenation times (0 h, 24 h and 5 days), and then were
sacrificed. Control animals were sacrificed after being
maintained for 20 min in the chamber under normobaric
normoxic conditions.

A total of 20 albino Wistar rats were used for the bio-
chemical experiments (5 animals per experimental group).
After the corresponding reoxygenation times, the rats were
killed by cervical dislocation and the striatum was immedi-
ately removed, rinsed in saline solution, and stored at −80°C
until used. For histochemistry, 20 rats (5 animals per exper-
imental group) were anaesthetized with Ketolar (15 mg/
100 g BW; Parke Davis, Madrid, Spain) and Rompun
(1:5 v/v diluted in Ketolar; Bayer, Leverkusen, Germany),
and then perfused in each reoxygenation time. The caudate
putamen was removed, rinsed in saline solution, and fixated.

2.3 Quantitative Real-Time Polymerase Chain Reaction
(RT-PCR) for Hif-1α (hypoxia-inducible factor-1 alfa), Vegf
(vascular endothelial growth factor), Adm (adrenomedullin)

and Tgf-β1 (transforming growth factor-beta 1)

The caudate putamen was homogenized in sterile PBS buffer
(1:3 w/v) with a homogenator (Pellet Pestle Motor Cordless,
Kontes, USA), and total RNA was directly isolated using
PeqGold Microspin Total RNA kit (PeqLab, Erlangen,
Germany) according to the manufacturer’s protocol. cDNA
was synthesized from 1.5 μg total RNA using iScript cDNA
Synthesis Kit (Bio-Rad), also following the manufacturer’s
instructions.

FAM-labelled rat Hif-1α (Assay ID: Rn00577560_m1),
Vegf-a (Assay ID: Rn00582935_m1), Adm (Assay ID:
Rn00562327_m1), and Tgf-β1 (Assay ID: Rn99999016_m1)
TaqMan gene expression assays were purchased from Applied
Biosystems. VIC labelled endogenous reference gene 18S
ribosomal RNA (Assay ID: Hs99999901_s1) TaqMan gene
expression assay was also purchased from Applied
Biosystems. 18S ribosomal RNA has been reported to be the
most appropriate housekeeping gene for hypoxia experiments
(Nagelkerke et al. 2010).

RT-PCR reactions were carried out in the CFX-96™
thermal cycler (Bio-Rad) according to Applied Biosystems
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amplification conditions, and following the manufacturer’s
protocol for absolute quantification. For each sample, ex-
pression levels for the transcripts of interest were normalized
to that of the endogenous 18S ribosomal RNA, and data were
calculated as fold expression relative to the average of the
control group. The relative expression of Hif-1α, Vegf-a,
Adm, and Tgf-β1 was calculated by the 2[–ΔΔC(T)] method
(Li et al. 2006).

2.4 Enzyme-linked immunosorbent assay (ELISA)
for VEGF (vascular endothelial growth factor), ADM
(adrenomedullin) and TGF-β1 (transforming growth

factor-beta 1)

The caudate putamen was homogenized in PBS buffer
(1:3 w/v) with a homogenator (Pellet Pestle Motor
Cordless, Kontes, USA). Homogenates were centrifuged at
40.000 rpm during 30 min and the supernatant was collected.
VEGF, TGF-β1, and ADM protein concentration was deter-
mined using Rat VEGF-A ELISA kit (Ab Frontier, Cat. No.
LF-EK50417), Rat TGF-β1 ELISA kit (Ab Frontier, Cat.
No. LF-EK50357) and ELISA kit for rat Adrenomedullin
(Uscn Life, Cat. No. E90220Ra) respectively, according to
the manufacturer’s protocol. Total protein concentrations
were determined by the Bradford method (Bradford 1976),
using bovine serum albumin as the standard. Final VEGF,
ADM and TGF-β1 values were referred to the total protein
concentration in the initial extracts.

2.5 Histological procedures for vessel labelling

Biotinylated lectin from Lycopersicon esculentum specific
for N-acetyl-glucosamine and N-acetyl-polylactosamine
oligomers is used as the best marker for brain endothelium
(Mazzetti et al. 2004). Deeply anaesthetized animals were
perfused through the left ventricle with 50 mL of 0.01 M
phosphate-buffered saline (PBS; pH 7.4), and then with
250 mL of 4% paraformaldehyde in 0.1 M phosphate buffer
(PB). The caudate putamen was removed and then post-fixed
for a further 4 h in the same fixative at room temperature.
Each sample was then cryoprotected by immersion overnight
at 4°C in 0.1 M PB containing 30% sucrose. After that, the
caudate putamen was embedded in O.C.T medium and frozen
in 2-methylbutane pre-chilled in liquid nitrogen. Serial rostro-
caudal sections (15 μm) were cut using a cryostat (Leica
CM1950, Germany).

Free-floating sections were washed in Tris-HCl (1 M) and
incubated in 1:100 Lycopersicon esculentum Lectin (10 μg/
mL, Sigma-Aldrich, Ref. L0651) diluted in Tris-HCl buffer
(1 M) overnight at 4°C. After the incubation, sections were
washed in PBS buffer (0.01 M, pH 7.4), and then incubated

in Cy3-Streptavidin (Sigma-Aldrich, Ref. S6402) solution
diluted in PBS buffer (1:50) for 30 min.

2.6 Quantification of fractal dimension of vascular surface
area

Vascular surface area was quantified by computerized-
assisted image analysis using ImageJ (an NIH image analy-
sis and processing software downloaded free from http://
rsbweb.nih.gov/ij/). One random 1.56 mm2 field (image
10×) on each section, and five random sections (from rostral
to caudal striatum) for each rat, were digitally captured from
a fluorescence microscope (Olympus BX51). The fractal
dimension was estimated using the box-counting method as
previously described (Di Ieva et al. 2007), since it makes it
possible to estimate the global complexity of a set of irreg-
ularly shaped objects, like two-dimensional vascularity
(Abu-Eid and Landini 2003).

2.7 Statistical analysis

Data were expressed as mean±SD (standard deviation). The
statistical treatment to evaluate significant differences be-
tween groups was performed with SPSS 17.0 software. The
data followed neither a normal distribution (tested with
Kolmogorov-Smirnov test; α-value00.05), nor the principle
of homoscedasticity (tested with Levene test; α-value00.05);
therefore they were tested using the Kruskal Wallis test. The
degree of statistical significance was established by applying
the U Mann Whitney test to compare differences between
means. The statistically significant differences vs. the control
group were expressed as *p<0.05; **p<0.001.

3. Results

3.1 mRNA expression of hypoxia-inducible genes

The expression of Hif-1α, Vegf, Adm and Tgf-β1 was deter-
mined by RT-PCR using TaqMan technology. The mRNA
expression of these hypoxia-inducible genes was significant-
ly increased immediately after the hypoxic stimuli.
Particularly, Hif-1α mRNA expression (figure 1) augmented
at 0 h (p<0.05) and 5 days post-hypoxia (p<0.05) in com-
parison to the control group. The quantitative analysis of
Vegf mRNA expression (figure 2) showed a statistically
significant increase throughout the reoxygenation period
(0 h, 24 h and 5 days: p<0.05). Finally, while Adm mRNA
levels (figure 3) followed the same pattern as Hif-1α mRNA
(0 h, 5 days: p<0.05), Tgf-β1 (figure 4) only rose immedi-
ately after hypoxia (0 h: p<0.05).
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Figure 2. Vascular endothelial growth factor (Vegf) mRNA ex-
pression in the rat caudate putamen. Experimental groups: Control
and 0 h, 24 h and 5 days post-hypoxia. Results were expressed as
arbitrary units. Results are mean values of three independent exper-
iments and five animals per group. All experiments were performed
in triplicates, and the values were used to calculate the ratio of Vegf
to 18S ribosomal RNA, with a value of 1 used as the control. The
statistically significant differences vs. the control group were
expressed as *p<0.05.

Figure 1. Hypoxia-inducible factor-1 alfa (Hif-1α) mRNA ex-
pression in the rat caudate putamen. Experimental groups: Control
and 0 h, 24 h and 5 days post-hypoxia. Results were expressed as
arbitrary units. Results are mean values of three independent
experiments and five animals per group. All experiments were
performed in triplicates, and the values were used to calculate the
ratio of Hif-1α to 18S ribosomal RNA, with a value of 1 used as the
control. The statistically significant differences vs. the control group
were expressed as *p<0.05.

Figure 4. Transforming growth factor-beta 1 (Tgf-β1) mRNA
expression in the rat caudate putamen. Experimental groups: Control
and 0 h, 24 h and 5 days post-hypoxia. Results were expressed as
arbitrary units. Results are mean values of three independent
experiments and five animals per group. All experiments were
performed in triplicates, and the values were used to calculate the
ratio of Tgf-β1 to 18S ribosomal RNA, with a value of 1 used as the
control. The statistically significant differences vs. the control group
were expressed as *p<0.05.

Figure 3. Adrenomedullin (Adm) mRNA expression in the rat
caudate putamen. Experimental groups: Control and 0 h, 24 h and
5 days post-hypoxia. Results were expressed as arbitrary units.
Results are mean values of three independent experiments and five
animals per group. All experiments were performed in triplicates,
and the values were used to calculate the ratio of Adm to 18S
ribosomal RNA, with a value of 1 used as the control. The statis-
tically significant differences vs. the control group were expressed
as *p<0.05.
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3.2 Protein expression of proangiogenic genes

The VEGF protein level (figure 5) significantly rose from 0 h
to 5 days of reoxygenation (p<0.001), showing a trend
similar to that of Vegf mRNA expression. However, ADM
protein expression remained unaltered in the hypoxic groups
vs. control (figure 6). In parallel with the greater Tgf-β1
mRNA expression, the TGF-β1 protein level (figure 7)
increased just after the hypoxic insult (0 h: p<0.05).

3.3 Location and quantification of vascular surface area

For vessel labelling, lectin location and expression were
analysed using both histochemical and image processing
techniques, including the box-counting method for estimat-
ing the fractal dimension. No labelling was detected in the
negative controls when lectin was omitted. The microphoto-
graphs showed that the blood vessels were homogeneously
distributed throughout the rat caudate putamen (figure 8).
The cylindrical shape of the vessels is visible, as is the
circular or elliptical lumen. The quantification of the vessel
network in this brain ganglion (figure 9) showed a signifi-
cant increase at 24 h post-hypoxia (p<0.05).

4. Discussion

Hypoxia is a common cause of cell death and is involved in
many disease processes. The activation of angiogenesis is a

potential mechanism to counterbalance tissue hypoxia. Striatal
neurons are highly vulnerable to hypoxia (Erecinska and Silver
1996), but few works have investigated the response of this
brain ganglion to situations of oxygen deficiency. Therefore,
the angiogenic response of the hypoxic caudate putamen
remains unknown, despite the importance of these situations,
which we have formerly investigated in several vital organs
(central nervous system, CNS: Martínez-Romero et al. 2006;

Figure 6. Adrenomedullin (ADM) protein expression (ELISA) in
the rat caudate putamen. Experimental groups: Control and 0 h,
24 h and 5 days post-hypoxia. Results are mean values of three
independent experiments with five animals per group. There were
no statistically significant differences vs. the control group.

Figure 5. Vascular endothelial growth factor (VEGF) protein
expression (ELISA) in the rat caudate putamen. Experimental
groups: Control and 0 h, 24 h and 5 days post-hypoxia. Results
are mean values of three independent experiments with five animals
per group. The statistically significant differences vs. the control
group were expressed as **p<0.001.

Figure 7. Transforming growth factor-beta 1 (TGF-β1) protein
expression (ELISA) in the rat caudate putamen. Experimental
groups: Control and 0 h, 24 h and 5 days post-hypoxia. Results
are mean values of three independent experiments with five animals
per group. The statistically significant differences vs. the control
group were expressed as *p<0.05.
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Cañuelo et al. 2007; lung: Rus et al. 2010b; heart: Rus et al.
2011).

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional
regulator of oxygen homeostasis and a key factor to generate
adaptive responses through the up-regulation of various

target genes involved in angiogenesis, including vascular
endothelial growth factor (VEGF), adrenomedullin (ADM)
and transforming growth factor-beta 1 (TGF-β1). Our results
show an increase in Hif-1α expression in the caudate puta-
men of rats submitted to acute hypoxia/reoxygenation,
suggesting that such situations may induce the implementa-
tion of a number of cellular mechanisms to boost oxygen
delivery to the hypoxic striatum. Similar results have previ-
ously been described in the hypoxic brain (Wiener et al.
1996) and cerebellum (Kaur et al. 2006).

Regarding the proangiogenic genes, the expression of
Vegf, Adm and Tgf-β1 followed the same pattern of Hif-1α
and increased after short-term hypoxia. In this sense, the up-
regulation of these vasoactive target genes may indicate the
functional activation of HIF-1. Particularly, Vegf mRNA
expression significantly rose throughout the reoxygenation
period until 5 days post-hypoxia, suggesting that this HIF-1-
target gene may play an important role in the response of the
striatum to acute hypoxia. The upregulation of Vegf under
hypoxic conditions agrees with other works performed in rat
brain (Bani Hashemi et al. 2008), rat cerebellum (Kaur et al.
2006), and mouse brain (Kuo, et al. 1999). Furthermore,
VEGF protein expression increased parallel to Vegf gene
expression, implying an effective coordination between
transcription and translation in order to develop a suc-
cessful angiogenic response in the hypoxic caudate puta-
men. In this context, increased VEGF protein expression
has previously been reported after hypoxia in the striatum
(Mammen et al. 2011), brain (Kuo et al. 1999), and
cerebellum (Kaur et al. 2006).

Similarly, Adm gene expression was significantly activat-
ed in the rat caudate putamen at 0 h and 5 days post-hypoxia.
Previous studies confirm the induction of Adm in the CNS
after hypoxia (Serrano et al. 2008; Bani Hashemi et al.
2008). However, this greater mRNA expression did not
correspond to a higher ADM protein level. In agreement,
Peebles et al. did not detect enhanced ADM protein expres-
sion in the CNS after hypoxia (Peebles et al. 2008).
Nevertheless, increases in both ADM gene and protein ex-
pression have been reported in the hypoxic CNS (Nakanishi
et al. 2004; Serrano et al. 2008). This discrepancy may be
due to the different hypoxia models used, as well as to the
organs or tissues studied. Based on these results, we propose
that the stress induced by our hypoxia/reoxygenation model
is not sufficiently strong or prolonged to cause the transla-
tion of the Adm mRNA. This hypothesis may be confirmed
by previous results, which corroborated that the activation of
ADM gene and protein depends on the time of exposure to
hypoxia, so that the greatest increases occur after long ex-
posure to hypoxia (Kitamuro et al. 2000). Furthermore, it
has been suggested that hypoxia may decrease the percent-
age of translatable Adm mRNA (Hwang et al. 2007). In this
context, the lack of a change in ADM level despite an

Figure 8. Representative microphotographs of histological sec-
tions of rat caudate putamen stained for lectin histochemistry.
Experimental groups: Control and 0 h, 24 h and 5 days post-
hypoxia. The blood vessels are homogeneously distributed through-
out the rat caudate putamen in all the experimental groups. The
cylindrical shape of the vessels is visible, as is the circular or
elliptical lumen.

Figure 9. Quantitative data from image analysis (fractal dimen-
sion of vascular surface area) of histological sections of rat caudate
putamen stained for lectin histochemistry. Experimental groups:
Control and 0 h, 24 h and 5 days post-hypoxia. Results are mean
values of 25 microphotographs (five microphotographs per animal
and five animals per group). The statistically significant differences
vs. the control group were expressed as *p<0.05.
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increase in Adm mRNA has been shown after blockade of
glycolysis with 2-deoxyglucose (Autelitano et al. 1999).
This metabolic alteration has been proposed to mimic several
features of hypoxia (Yuan et al. 1994; Bright et al. 1995).
The 2-deoxyglucose mediated inhibition of ADM secretion
most likely results in reduced ADM receptor activation,
which might lead to stimulation of Adm gene expression
(Autelitano et al. 1999). Both hypoxia and 2-deoxyglucose
have been reported to increase intracellular Ca2+ levels, which
may ultimately lead to vasoconstriction (Yuan et al. 1994;
Bright et al. 1995). However, whether the hypoxia or
2-deoxyglucose mediated activation of Adm gene expression
without greater ADM level is directly dependent on intracellular
Ca2+ concentrations is yet to be established.

TGF-β1 is another hypoxia-inducible gene, which is
involved in stabilizing HIF-1α (McMahon et al. 2006).
Parallel to Hif-1α, Vegf and Adm expression, Tgf-β1
mRNA was induced immediately after the hypoxic insult
in the rat caudate putamen. Similar results were found in
the brain after hypoxia (Klempt et al. 1992; Huang et
al. 2010). In addition, TGF-β1 protein expression also
increased at 0 h of reoxygenation, suggesting a role for
this transcription factor in the angiogenic response of the
caudate putamen to hypoxia.

Finally, to test whether the upregulation of the angiogenesis-
related genes led to an effective physiological change in the
vasculature of the hypoxic caudate putamen, we analysed the
vessel network in this brain ganglion using the glycoprotein
lectin, an effective endothelial marker (Mazzetti et al. 2004).
Our data reflected a significantly denser striatal vessel network
at 24 h of reoxygenation, implying vascular adaptation after
short-term hypoxia in the rat caudate putamen. In this context,
brain vessel density has been reported to increase in the stria-
tum after chronic hypoxia, leading to greater regional blood
flow (LaManna et al. 1992; Patt et al. 1997). On the other hand,
all the angiogenic factors analysed augmented immediately after
the hypoxic episode, while the increase in the vessel network
was noted at 24 h post-hypoxia. This lack of correlation
may have occurred because the process of creation of blood
vessels is long and complex and can last from hours to days,
depending on the tissue and physiological state (Krupinski et al.
1994; Pettersson et al. 2000). On the other hand, our results also
show that the blood vessel density returned to basal values
5 days after the hypoxic stimulus, althoughVEGF protein levels
remained increased. In this sense, once the vessel network has
expanded enough to re-establish the blood flow to the hypoxic
tissues (24 h post-hypoxia), it may return to the baseline level.
Similar data were reported by Pichiule and LaManna (2002),
showing that the capillary density in the rat cerebral cortex was
increased by chronic hypoxia and fell to basal levels
after 7 days of normoxic recovery. Moreover, other
pro-angiogenic factor, TGF-β1, was not increased from
24 h post-hypoxia in the hypoxic striatum, which may

contribute partly to the regression of the vessel network
thereafter.

These results may imply that striatal cells can detect
situations of oxygen deficiency and respond to acute hypox-
ia by activating Hif-1α, which might initiate the angiogenic
pathway by activating Vegf, Adm and Tgf-β1. As mentioned
above, mRNA expression of these hypoxia-inducible genes
immediately rose after hypoxia and returned to basal levels
at 24 h of reoxygenation. In consequence, VEGF and TGF-
β1 protein expression augmented in the rat striatum, leading
to greater vessel density at 24 h post-hypoxia. Nevertheless,
a VEGF-induced increase in the vessel network can generate
the haemodynamic steal phenomena (Wang et al. 2005).
That is, an increase in the vessel density without an augmen-
tation in the blood supply can lead to reduced blood flow.
Accordingly, the significant proangiogenic response detected
immediately after acute hypoxia in the rat striatum may have
led to a profuse vessel network capable of inducing the
haemodynamic steal phenomena during the post-hypoxia
period. This phenomena may thereby provoke transient
hypoxia with the subsequent re-activation of the hypoxia-
inducible genes (Hif-1α, Vegf and Adm), as revealed by our
data at 5 days of reoxygenation.

In short, endogenous acute hypoxia-inducible mecha-
nisms in the rat caudate putamen include the activation of
the angiogenic pathway. Our results reveal that the
proangiogenic factors, especially VEGF, were induced by
both short-term hypoxia and the following reoxygenation
period. As a result of this induction, a significant increase
in the striatal vessel network was detected in this brain
ganglion, in order to reduce the negative consequences of
oxygen deprivation.
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