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Hypertension is one of the leading causes of disability or death due to stroke, heart attack and kidney failure. Because
the etiology of essential hypertension is not known and may be multifactorial, the use of experimental animal models
has provided valuable information regarding many aspects of the disease, which include etiology, pathophysiology,
complications and treatment. The models of hypertension are various, and in this review, we provide a brief overview
of the most widely used animal models, their features and their importance.
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1. Introduction

Owing to the high occurrence of hypertension and problems
originating from this disease over the years, a series of
experimental models have been developed (Doggrell and
Brown 1998). The use of relevant models to mimic human
cardiovascular disease may offer useful information by
allowing an understanding of the cause and progression of
the disease status as well as potential therapeutic interven-
tions (Badyal et al. 2003). However, an effective study of
particular cardiovascular alterations emerging in the course
of the developmental process requires the use of adequate
animal models. Accordingly, it should be mentioned that
each one of the studied models involves a different role in
the development of the disease (Fazan et al. 2001).

2. Genetic hypertension

2.1 Spontaneously hypertensive rat

Spontaneously hypertensive rats (SHRs) were originally
inbred from Wistar rats and their Wistar–Kyoto (WKY)

inbred non-hypertensive controls (Okamoto and Aoki
1963). These rats develop hypertension at about 4–6 weeks
of age without physiological, pharmacological or surgical
intervention (Zicha and Kunes 1999); however, environ-
mental factors affect the development of hypertension, and
the importance of this model has been attributed to the
similarity of its pathophysiology with essential hypertension
in humans (Trippodo and Frohlic 1981).

In vivo studies have shown that in the early stages of
hypertension, SHRs have an increased cardiac output with
normal total peripheral resistance. As the SHR progresses
into the established hypertension state, the cardiac output
returns to normal values and the hypertrophied blood
vessels produce an increase in the total peripheral
resistance (Smith and Hutchins 1979). With the advance
of hypertension, the SHR progressively develops (between
6 and 24 months of age) structural alterations in the heart,
which are associated with progressive cardiac hypertrophy
(Engelmann et al. 1987). As this is not a strictly inbred
strain, individual variations in the genetic background of
both SHR and particularly of their control strain may
significantly influence the resulting end-organ changes,
what can be seen in figure 1.
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Stroke-prone spontaneously hypertensive rats (SHRSP),
bred from SHR developed with even higher levels of BP
and a strong tendency to die from stroke, are extreme
examples of cerebrovascular lesions developing spontane-
ously in animal models (Okamoto et al. 1974). It is the most
utilized animal model of spontaneous stroke and is regarded
as a unique animal model in which prevention of stroke can
be studied experimentally as the incidence of spontaneous
occurrence of stroke lesions in these models reach 80% in
males and 60% in females, with extensive cerebral arterio-
sclerosis (Yamori 1989).

Because of the high mortality rate of stroke in humans,
and of the similarity of stroke in SHRSP to that observed in
human essential hypertension, this model has been applied
to studies of stroke in human beings (Yamori et al. 1976).
Hypertrophy leads to increased vascular resistance (figure 1)
and wall sheer rates. As blood vessels become less
functionally responsive and more extensively filled with
atherosclerotic plaques, there is a risk for complications
such as cerebral hemorrhage, thrombosis, nephrosclerosis
and myocardial lesions in SHRs and especially cerebral
lesions in SHRSPs (Henning et al. 2010). Therefore, these
models can be used to study not only the pathogenesis and
therapy but also prophylaxis in essential hypertension and
its complications.

2.2 Dahl salt-sensitive rats

Another model is the Dahl salt-sensitive rat (DS), originally
derived by Dahl from the Sprague–Dawley stock on the
basis of developing hypertension with a high NaCl diet.
When fed normal salt diet, these rats become hypertensive,
indicating that this is a genetic model of hypertension with
the feature of salt sensitivity. On the basis of these
considerations, Dahl et al. (1962) selected from endo-
crossings of Sprague–Dawley rats and, on the basis of
pressure levels associated with a diet high in salt (8% NaCl),

two strains of animals: the Dahl salt-sensitive rats (DS) and
the Dahl salt-resistant ones (DR).

The DS animals develop a systemic arterial hypertension
after ingesting a high-salt diet, while the DR animals can
maintain BP within normal limits even with the same diet.
The mechanisms of genetic salt-sensitive hypertension of
the Dahl strain rats are not yet fully known. In addition, DS
rats are possibly insulin resistant even before hypertension
is fully established, and salt-sensitive models of hyperten-
sion manifest a decrease in afferent arteriolar resistance and
a rise in glomerular pressure in response to an increase in
BP (Campese 1994). This could indicate that insulin
resistance and hypertension may be inherited as separate
traits that develop in a parallel but independent manner
(Channa et al. 2004).

Dahl salt-hypertensive rats are prone to hypertensive
nephropathy (figure 1). Hypertensive glomerular lesions
were conventionally characterized by mesangial prolifera-
tion, matrix accumulation and glomerulosclerosis, in addi-
tion to endothelial dysfunction (Nagase et al. 2006).

2.3 Transgenic hypertension models

Transgenic hypertension models can be generated by over-
expression of a specific gene. This is an excellent model to
study the role of a specific gene in the pathogenesis of
hypertension. A representative of this type of hypertension is
the TGR(mREN2)27 transgenic rat developed by Mullins
et al. (1990), which suppresses endogenous renal renin
(Bader et al. 1992). TGR develops fulminant hypertension
(200 to 260 mmHg mean systolic BP) beginning at the 5th
week of age, exhibits more myocyte hypertrophy and, only to
a small extent, hyperplasia, and more endothelial dysfunction
than age- and BP-matched SHR (Mullins et al. 1990).

Structural lesions of the nephron in TGR are moderate in
both sexes at an age of 4 months, except for an overall
increase in wall thickness of the larger arterioles and arteries
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Figure 1. End-organ damage as affected by different experimental genetic models of hypertension: Cerebral blood flow (CBF);
endothelium-derived relaxing factor (EDRF) and endothelium-derived constricting factor (EDCF).
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(Bachmann et al. 1992). Although the model is not
representative of human hypertension, it does allow in vivo
analysis of the consequences of severe, monogenetic
activation of the Ras and allows identification of the types
of hypertensive damage that can be expected from an
activated Ras (figure 1).

2.4 Borderline hypertensive rat

Investigations using the borderline hypertensive rat (BHR)
have demonstrated the important role genetic factors can
play in mediating both the behavioural and cardiovascular
responses to environmental stressors.

BHR is a genetic model of environmentally induced
hypertension and it is the first filial offspring of the SHR
and the normotensive WKY rat, possessing genetic infor-
mation from both parents (Sanders and Lawler 1992). The
mechanisms by which environmental stress produces hy-
pertension in BHR have not been identified. However, the
sympathetic nervous system has been implicated. Increases
in plasma norepinephrine concentration during acute envi-
ronmental stress have been observed in BHR, and changes
in vascular reactivity induced by stress may contribute to the
differential hemodynamic adaptations to stress observed in
WKY rats and BHR (Fuchs et al. 1998). BHR are
characterized by a high plasma concentration of vasopres-
sin, exogenous vasopressin-induced hyperpressor action and
cardiac hypertrophy (figure 1).

3. Renal hypertension

3.1 Renovascular hypertension

Since 1934, when Goldblatt and his coworkers induced an
elevation of BP by partial constriction of the renal artery of
dog, many renal-induced models of hypertension have been
successfully established. Goldblatt’s technique consists of
constricting one or both renal arteries by use of a small
adjustable silver clamp (Goldblatt et al. 1934). Generally,
renal-induced experimental hypertension includes two-
kidney one-clip hypertension (2K1C; constriction of one
renal artery while the contralateral kidney is left intact), one-
kidney one-clip hypertension (1K1C; one renal artery is
constricted and the contralateral kidney is removed), and
two-kidney two-clip hypertension (2K2C; constriction of
aorta or both renal arteries).

As the clip is not severe enough to cause ischaemia in
the 2K1C Goldblatt model, hypertension is induced by
unilateral stenosis of the renal artery. However, the
reduced renal perfusion pressure stimulates increased
renin synthesis and angiotensin II (ANG II), via its direct
vascular effects, acutely increases total peripheral resis-

tance and raises BP and also has actions on almost every
organ system (Guyton 1991).

Constricting the renal artery of the remaining kidney in
uninephrectomized rats produces 1K1C Goldblatt hyperten-
sion. This hypertensive model has been generally consid-
ered to be sodium-fluid volume-dependent, and is an ideal
model for studying the role of volume expansion in the
development of hypertension; owing to the absence of the
other normal kidney, no compensatory increase in sodium
and water excretion can occur, and hence, fluid volume is
retained (Liard et al. 1974).

When of the aorta or both renal arteries are constricted, there
is severe renal ischaemia caused by renal clipping, occasioning
the activation of renin-angiotensin and the sympathetic
nervous system and the elevation of serum vasopressin,
leading to increased BP (Suzuki et al. 1987). The 2K2C, with
a high incidence of spontaneous stroke, can be used as
SHRSP independent of a genetic deficiency. The lesioned
small artery or arteriole with thrombotic occlusion is the main
cause of cerebral infarction in 2K2C, and this may be similar
to lacunar infarction in the human brain (Zeng et al. 1998).

3.2 Renoprival hypertension

Significant reduction of nephron mass by subtotal nephrec-
tomy in experimental animals or by various diseases in
humans triggers a chain of events that lead to glomerulo-
sclerosis, tubulointerstitial injury, proteinuria and progres-
sion to end-stage renal disease (Quiroz et al. 2008).

Unilateral nephrectomy causes neither hypertension nor
cardiovascular lesions. However, hypertension caused by
renal arterial stenosis, exacerbated by high amounts of
protein and salt in the diet and/or by high volumes of water
consumed, as well as removal or not of the adrenal gland,
can affect the severity of renoprival hypertension. Removal
of one kidney and approximately two-thirds of the other is
followed by a slow increase in BP. In these animals,
intravascular volume increases and the resulting hyperten-
sion may have the same pathogenesis as renoprival
hypertension (Ledingham and Pelling 1970). Since a
bilateral nephrectomy leads to hypertension with vascular
lesions, especially if the animal’s life is prolonged after the
complete removal of the kidneys (Ferrario et al. 2009).

4. Endocrine hypertension

4.1 Salt and mineralocorticoids

Mineralocorticoids cause retention of sodium and water in
the body until escape diuresis occurs due to increased
pressure on the kidneys and suppression of renin secretion.
The renal effects of this model are similar to hyperaldoster-

Animal models in hypertension 733

J. Biosci. 36(4), September 2011



onism in humans. 11-desoxycorticosterone acetate (DOCA)
and a high-salt diet cause increase of BP within 3 weeks in
isolated perfused cortical collecting ducts, and can cause a
30-fold increase in sodium absorption (Garwitz and Jones
1982). Moreover, there is a reduced plasma rennin activity
(PRA), which is expected in a model of volume-dependent
hypertension, and oxidative stress also may be involved in
DOCA salt hypertension by the increase of superoxide
formation (Ortiz and Garvin 2001).

DOCA salt models progress quickly to severe hypertension
and hypertrophy and are therefore not suited for long-term
studies in chronic, stable disease; there should be minimal
mortality due to the procedures alone. Thereby, the major
limitations of the DOCA salt model are: (1) the pharmacolog-
ical (large) doses of drug required, (2) the requirement for
surgical reduction of renal mass and (3) the ingestion of a
large amount of NaCl required. Moreover, it is not a very
realistic model for many human hypertensive patients
(Doggrell and Brown 1998).

4.2 Psychosocial and environment-induced hypertension

It has been reported that elevation of BP resulting from
repeated exposure to stressful situations may lead to a state
of persistent hypertension (Smith and Hutchins 1979).

Several mechanisms such as the resetting of the barore-
ceptor reflexes and structural autoregulation in the periph-
eral vasculature may operate to sustain BP at a high level
once it is raised, but these account less convincingly for the
initial elevation. However, if psychosocial factors are
involved in the development of hypertension, they are likely
to be linked with the early, triggering stages of the
pathophysiological sequence (Steptoe 1986).

Chronic social stress in a modern world represents an
important risk factor for the development of cardiovascular
disease. Its deleterious effects depend on the critical period
of exposure, duration and type, as all these factors may alter
functions of the basic autoregulatory stress response
components in the hypothalamic–pituitary–adrenal axis,
sympathoadrenal medullar system, rennin–angiotensin–
aldosterone system (RAAS) and sympathetic nervous system
(Zimmerman and Frohlich 1990; McCarty and Gold 1996;
Esch et al. 2002).

Different types of stress have been applied, such as
emotional stimuli, psychosocial stress, immobilization
stress, food deprivation and electric stimuli, air jet noise,
flashing lights, cold, and interaction of members of a social
group as they compete for food and water (Henry 1975;
Friedman and Dahl 1975; Papanek et al. 1991; Henry et al.
1993; Tucker and Hunt 1993; Bechtold et al. 2009).

5. Neurogenic hypertension

Evidence suggests that the central nervous system partic-
ipates in the genesis of hypertension. Neurogenic hyperten-
sion can be defined as a permanent increase in BP resulting
from a primarily neural change. Denervation of sinoaortic
baroreceptors (SAD) is the neurogenic model of hyperten-
sion most often used. The details of these control mecha-
nisms have been studied by observing steady state changes
in mean arterial pressure (MAP), heart rate (HR) and renal
sympathetic nerve activity (RSNA) at various times after
complete disruption of these reflexes (DiBona and Jones
2001), and in association with other models to obtain a
global analysis of the baroreceptor-sympathetic reflex
(table 1).

Table 1. Association of baroreceptor denervation and other models of experimental hypertension

Baroreceptor denervation and angiotensin-II-induced hypertension
Sustained decrease in RSNA during angiotensin II infusion is baroreflex mediated (Barrett et al. 2005).

Sinoaortic denervation and administration L-NAME
Baroreflexes play an important role in the long-term control of BP, and one mediator of this control is nitric oxide (Ramchandra et al. 2003).

Sinoaortic denervation in chronic one-kidney, one-clip hypertensive
Central and peripheral components of the baroreflex are acting efficiently at higher BP when the aortic nerve is maximally stimulated or
the activity is abolished, suggesting that baroreceptor resetting may not be complete in chronic hypertension (Trindade et al. 2009).

Sinoaortic denervation and stress in BHR
Baroreflex resetting prevents a fall in BP when cardiac output is reduced during stress (Hatton et al. 1997).

Sinoaortic denervation with unilateral nephrectomy and administered NaCl
Vasopressin and neurogenic stimuli work together in somemanner to elevate vascular resistance in salt-induced hypertension (Ryuzaki et al. 1991).

Sinoaortic denervation and administered NaCl
Baroreceptor reflex is required to prevent chronic salt-induced increases in arterial pressure (Osborn and Provo 1992).
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In rats, SAD leads to marked and sustained increase in
BP, and the increase of BP in rat is not accompanied by as
marked a tachycardia as that observed in dog (Krieger
1964). Thus, an increase in MAP stimulates baroreceptors
and causes a reciprocal reduction in sympathetic outflow to
resistance vessels and the heart so as to restore MAP to the
normal level and, therefore, cause neurogenic hypertension
(Thrasher 2002).

6. Hypertension by chronic inhibition of nitric oxide

Nitric oxide (NO) plays an important role in regulating
systemic vascular resistance by exerting a tonic vasodilator
effect (Török 2008).

Chronic oral administration of an inhibitor of NO synthase,
L-NAME, promoted a persistent hypertension associated with
renal injury, characterized by glomerulosclerosis, glomerular
ischaemia and interstitial infiltration in the kidney (Baylis et al.
1992; Ribeiro et al. 1992). This hypertension is associated
with intense peripheral vasoconstriction and the consequent
increase in peripheral vascular resistance. As for the cardiac
output, some evidence seems to indicate a reduction even
during chronic inhibition of NO synthase. A likely
sympatho-excitatory action of central origin has also been
proposed by Biancardi et al. (2007), who showed that
vasoconstriction in response to L-NAME by the sympathetic
tone plays an important role in the initiation and maintenance
of hypertension.

In relation to cardiac abnormalities, the level of hyper-
trophy in this model is relatively minor as compared with
other models with similar BP levels. L-NAME-induced
pressure overload is associated with a distinct pattern of left
ventricle (LV) remodelling characterized by a decrease in
LV chamber size relative to wall thickness in the absence of
an increase in LV mass (Bartunek et al. 2000).

7. Hypertension induced by ANG II

ANG II is known to play an important role in the physiological
regulation of vascular tone and BP and in pathological
conditions such as hypertension and heart failure, although
the mechanisms by which ANG II chronically exerts its effects
remain unclear. ANG II, the final mediator of the RAS, plays a
pivotal physiological role in cardiovascular homeostasis. It is a
potent vasoconstrictor of the peripheral vasculature and
induces growth of smooth muscle cells of blood vessels
and in the heart (Itoh et al. 1993).

This ANG II infusion rate does not cause immediate
increases in systemic BP but it rather leads to a slowly
developing hypertension over a period of 6–10 days. ANG-
II-induced hypertension produces a presumably baroreflex-
mediated sympathoinhibition corresponding to the increased

BP, but with the added challenge of increased dietary salt,
the sympathetic nervous system does not respond to the
increase in pressure with the appropriate inhibition
(McBryde et al. 2007).

8. Dietetically induced hypertension

It is known that long-term exposure to a special diet (high
salt, fat or sugar) results in dietary hypertension in some
animals or humans (Navarro-Cid et al. 1995; Kang et al.
2004; Giani et al. 2009).

High-salt intake is able to decrease both plasma levels
and urinary excretion of nitrates (Fujiwara et al. 2000) and
increased superoxide production in both vasculature and
kidney blockade by superoxide dismutase (SOD)-enhanced
endothelium-dependent relaxation Roberts et al. (2000)
demonstrated the presence of oxidative stress and inactiva-
tion of NO in rats maintained on the high-fat or high-sugar
diet, which may contribute to the development of hyperten-
sion by enhanced generation of reactive oxygen species
(ROS). The reduction in NO availability in the high-fat and
high-sugar diet-fed animals was associated with marked salt
sensitivity, as evidenced by a significant rise in BP on the
high-salt diet (Roberts et al. 2003).

Dietary intake of fats and carbohydrate, particularly the
intake of simple sugars and the resultant effects of plasma
insulin, adipokine and lipid concentrations, may affect
cardiomyocyte size and function, especially with chronic
hypertension (Sharma et al. 2007). High fructose consump-
tion by animals produces a model of the metabolic
syndrome with hypertension, hyperlipidaemia and insulin
resistance, and this greatly accelerates progression of
chronic kidney disease (Gersch et al. 2007).

9. Concluding remarks

Animal models can lead to understanding of the interactions
of the principal regulatory factors in critical developmental
periods of hypertension. Many of these models were
developed by using etiologic factors responsible for human
hypertension, although the cardiovascular response can be
more easily obtained in animals than in human studies.
Thus, limitations are found for a direct and simplified
application of these results, which suggests that there is no
evidence to support that any experimental model of
hypertension exactly mimics all the symptoms of the human
disease. Furthermore, many researches have shown that
variables such as duration of exposure to causal factors and
dose, differences in animal species, gender as well as age of
the animal at the beginning of exposure, and the technique
for BP monitoring greatly differ amongst the studies and
may interfere with the results.
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In this sense we suggest that the various models should
be increasingly investigated, providing subsidies for new
findings in the pathogenesis of hypertension, with a rational
discussion about the advantages and disadvantages of each
experimental model in order to allow the best choice for the
study in question.
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