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Abstract.

Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and

technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation
radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data
in 1874-2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is
applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the
block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar
extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the
generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a
threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is
applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis
indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods,
while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar

cycles will be stronger than that of the 24th solar cycle.

Keywords.

1. Introduction

Solar activity is made of sunspots, coronal mass ejec-
tions (CMEs), filament eruptions, and flares (Chowd-
hury et al. 2021). The ebb and flow of solar activity
over an 11-year cycle has important implications for
high-frequency radio communications, space climate
and navigation (Pala & Atici 2019). In space climate
and solar physics, it is very important to predict the
maximum amplitude of the following solar cycle (SC)
(Kitiashvili 2021), which may help reveal the dynam-
ical mechanism of the cycle (Babcock 1961) and plan
future space missions (Kumar et al. 2022). Sunspots
are the earliest observed solar activity and solar
magnetic fields. The solar magnetic field and its
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interaction with solar convection drive and modulate
solar activity (Bhowmik et al. 2023; Karak 2023).

Sunspot area (SSA) is a valuable indicator of the
Sun’s magnetic activity over extended periods. This
metric can be effectively employed to forecast solar
cycles, similar to the utilization of sunspot numbers
(SSN) for this purpose (Hathaway 2015). Sunspot
area stands as one of the longest observed indices of
solar activity to date, rendering it almost equivalent
to physical significance compared to sunspot numbers.
Therefore, records of sunspot areas are important for
understanding the long-term behavior of solar magnetic
activity and variability (Mandal et al. 2020).

In general, solar activity prediction typically employs
three methodologies: precursor method, model-based
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method, and extrapolation method (Petrovay 2020). The
precursor method, as the first approach, relies on distinct
measures of solar activity or magnetism at a partic-
ular period to predict the amplitude of the upcoming
solar maximum. There is a strong positive correlation
between the rising rate and the peak sunspot num-
ber (Cameron & Schiissler 2008; Karak & Choudhuri
2011). Kumar et al. (2022) predicted the amplitude of
the 25th solar cycle by using the rising rate of the sunspot
cycle and found the amplitude of the 25th cycleis 138+
26, which will be slightly stronger than the 24th solar
cycle. This comparison also affirms the accuracy of
this method. The second model-based method generally
entails inputting observational solar data into diverse
physical dynamical models to predict solar activity. It
can be further divided into two categories: predictions
based on consistent dynamo models and surface flux
transport models (Petrovay 2020). For instance, Schat-
ten et al. (1978) employed dynamo theory to predict
the sunspot number during solar cycle 21, estimating
the yearly mean sunspot number at the solar maximum
to be 140+20. Dikpati ez al. (2006) effectively utilized a
flux transport-based dynamo tool to predict the intensity
of the 24th solar cycle. Choudhuri ef al. (2007) incorpo-
rated solar polar magnetic field data into a solar dynamo
model, enabling the simulation of the most recent solar
cycles. Applying a surface flux transport (SFT) model,
Bhowmik & Nandy (2018) utilized a combination of an
observational data-driven surface flux transport model
and a dynamo model, providing ensemble predictions of
solar cycle 25, and were also successful in reproducing
the past eight observed solar cycles. Jiang & Cao (2018)
computed correlations between key solar cycle prop-
erties, effectively forecasting upcoming cycle trends.
Contrastingly, extrapolation methods, the last one men-
tioned, are founded on the assumption that the physical
process responsible for the sunspot number record is
statistically uniform. This implies that the mathematical
consistencies governing its fluctuations remain consis-
tent across all time points (Petrovay 2020). Extrapo-
lation methods can be divided into the following cate-
gories: non-linear model-based forecast, statistical fore-
cast, spectral methods-based forecast, machine learning
and neural network-based forecast (Nandy 2021). Such
as, utilizing spectral component extrapolation, Rigozo
et al. (2011) assessed the intensity of the 25th solar
cycle. Attia et al. (2013) introduced the Neuro—Fuzzy
model for analyzing sunspot time series and predicting
the sunspots for the 24th and 25th solar cycle. Applying
a Bayesian approach, Noble & Wheatland (2012) pro-
jected solar cycles, while Sarp et al. (2018a) employed
a nonlinear method to predict the 25th solar cycle.

J. Astrophys. Astr. (2024) 45:14

As a branch of statistics, extreme value theory (EVT)
has played an important role in various science fields in
recent times, such as climate change (Nogaj et al. 2006;
Coelho et al. 2008; Acero et al. 2011, 2014), economics
(Gilli & Keellezi 2006), engineering (Castillo et al.
2004), and especially astrophysics (Bhavsar & Barrow
1985; Bernstein & Bhavsar 2001; Deng et al. 2020).
In these fields, extreme events are rare occurrences that
can produce dramatic and severe changes. Due to its
importance and specificity, EVT offers techniques for
studying and estimating the probability of predicting
rare events (Coles 2001). Solar activity, as a part of
astronomy, can also experience rare extreme events. For
instance, although the typical duration of the solar activ-
ity cycle is approximately 11 years, the most probable
return time for a large event such as the maximum at
solar cycle 19, happens once every about 700 years and
the probability of finding (Asensio Ramos 2007). Addi-
tionally, considerations must be made for the Maun-
der minimum period, while hardly any sunspots were
observed. Consequently, the applicability of the EVT
has been extended to the study of solar sunspot data.

In 2017, EVT was applied to observe the new sunspot
number index at three different timescales, and the
results showed that sunspot numbers are hardly >550
in the coming years (Acero et al. 2017). Elvidge &
Angling (2018) used EVT to determine the probability
of Carrington-like solar flares and they found that the
return level (RL) of the expected 150 years was approx-
imately an x60 flare. EVT was employed to focus on
extreme solar flare events to calculate the return levels
of Carrington or Halloween storm-like events (Tsiftsi
& De la Luz 2018). Acero et al. (2018a) used 10Be and
14C time series to study solar activity with EVT. The
extreme events law was estimated with the solar radio
of flux at the daily scale, and the results suggested that
there was a bound for the index (Acero er al. 2018b)
in 2019. Besides, four projects to predict and mitigate
the harmful effects of extreme space weather storms
in 2020 employed EVT statistical model to examinate
the intensities of the magnetic superstorms recorded in
the disturbance storm time (Dst) index time series, and
the result showed that the choice of data and statisti-
cal model could significantly affect the extrapolation
probabilities of extreme events (Love 2020). In 2021,
the sunspot number series from the Purple Mountain
Observatory was studied with EVT to conclude that the
trend of the 25th solar cycle will be stronger than the
24th solar cycle (Chen et al. 2021).

Extreme value theory has been used to study the data
from sunspots, sunspots umbrae and faculae (Willis &
Tulunay 1979). However, no one has employed EVT
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on sunspot areas to study solar activity. To freshen up
the research, EVT is first applied to study the sunspot
areas in this work, examining data from three scopes:
the entire disk, the southern hemisphere, and the north-
ern hemisphere. The daily sunspot areas dataset used in
this paper are from the Royal Observatory, Greenwich
(RGO) USAF/NOAA during May 1874 to July 2023.
In Section 2, the data and methods are introduced. We
present the results from our experimental analyses in
Section 3. Finally, our concluding discussion is given
in Section 4.

2. Data and methods
2.1 Data

In this work, the daily sunspot areas dataset for the
period of May 1874 to July 2023 are from the Royal
Observatory, Greenwich (RGO) USAF/NOAA. The
website,  http://solarcyclescience.com/activeregions.
html, covering 149 years of observations. The statistical
analysis of sunspot areas data is important for under-
standing solar activities and their impact on the Earth.
The long-term evolution of the sunspot areas during this
period is shown in Figure 1.
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Figure 1. Distribution of the daily sunspot areas dataset

during the period of May 1874 to July 2023. These three
figures correspond to datasets of the full disk, the northern
and southern hemispheres.
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2.2 Methods

Extreme value theory is a branch of statistics that
provides a tool for estimating the probability of events
outside the observed range and characterizes the prob-
ability of random processes (Coles 2001).

Two key methods for studying extreme events are
the block maxima (BM) approach and the peaks-
over-threshold (POT) approach. The former achieves
the generalized extreme value (GEV) distribution and
obtains the generalized Pareto (GP) distribution. In the
BM approach, the observed data are divided into some
blocks with equal size nn, and the maximum value of each
block is obtained. Next, extreme sample points are fit-
ted to GEV distribution, a type of law of large numbers
with a probability distribution. When the sample size is
sufficiently large, GEV is used to model the distribution
of the maximum (or minimum) values from a sample of
random variables. In the realm of extreme value theory,
it is commonly used to represent the ultimate distribu-
tion of the maxima in a sequence of independent and
identically distributed random variables (Coles 2001;
Acero et al. 2017). The probability distribution func-
tion of the GEV distribution is expressed as follows:

GEV(x; u,8,8) =expy— |1 +& .
o +
(1

It should satisfy —oo < u, & < +o00, 0 > 0, while
is the location parameter, o is the scale parameter and
& is the shape parameter.

As for the POT approach, the value of u for the upper
threshold is set and sample values over it are extracted.
Then, extreme sample points are fitted to the GP dis-
tribution. More details about GP distribution can be
found in Coles (2001), Acero et al. (2017, 2018a). A
brief description follows. In the asymptotic limit for
sufficiently large thresholds, the distribution function
of (X — u), conditional on X > u, is approximately as
follows:

H(y)=1—(1+57y>5, @)
o

defined on {y: y > 0} and

()1

where 6 = 0 + &£(u — p) with o is the scale parameter
and & is the shape parameter (§ # 0).

The choices of block length in the BM approach
and threshold value in the POT approach should
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be objective, ensuring a balance between bias and
variance (Tsiftsi & De la Luz 2018). The dataset are
daily sunspot areas, so a block length of one year is set
in BM. The stability assessment of the parameter esti-
mates and the mean residual life plot are two ways to
choose the threshold in the POT approach.

Some differences exist between the two methods.
One is the defined way of the extreme events (Coles
2001; Acero et al. 2017; Tsiftsi & De la Luz 2018;
Acero et al. 2018a). Another difference is the utiliza-
tion of data. For the BM approach, the choice of the
block length could result in a large amount of wasted
data when the block length is large. However, the POT
approach can allow for effective use of data, which will
not waste valuable extreme data. Meanwhile, strong
links exist in two approaches. As the block maximum
is fitted to the GEV distribution, exceedances over the
threshold will be fitted to the GP distribution. The shape
parameters of these two distributions are expected to be
asymptotically identical (Coles 2001; Tsiftsi & De la
Luz 2018).

3. Results
3.1 Block maxima approach

Here, we take the full-disk data for the prediction of the
25th solar cycle as an example to illustrate the methods
and workflow of data processing in the prediction pro-
cess. Following the below steps, first of all, the dataset
are cut into some blocks, all of which have equal length.
Given the use of daily sunspot areas, the value for the
block size is approximately one year. A series of values
are tried for the block length: 360-370 are tried, and
the value of 365 is the best choice, considering higher
estimation efficiency. According to the Figure 2, it can
be found that the sunspot areas data are divided into 150
blocks with vertical red lines, indicating that there are
150 maxima values.

Then 150 maxima values are fitted to the GEV
distribution. In the fitting process, the maximum like-
lihood estimation (MLE) method is used to estimate
three parameters for the GEV distribution: p (location
parameter), o (scale parameter), and & (shape param-
eter). In Figure 3, three standard diagnostic plots are
utilized for estimating the accuracy of GEV model.
The quantile—quantile (QQ) plot compares the empir-
ical quantiles of 150 sample points with GEV model
quantiles and confirms the validity of the GEV model
in the top panel (a), as the plotted point set is close to
linear. The QQ-plot compares randomly generated data
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Figure 2. The full-disk sunspot areas (SAs) cut into 150
blocks with the BM approach. The vertical axis represents
the daily sunspot areas. Each pair of red lines is separated by
approximately 1 year.

from GEV distribution against the empirical quantiles.
In middle panel (b), we can observe that all 150 sample
points are uniformly distributed within the 95% con-
fidence bands, displaying a linear relationship, which
confirms the validity of the model. The shape of the
empirical density line is similar to the model density
line in the bottom panel (c). Therefore, three diagnostic
plots provide support for the GEV model.

The next step is to use the bootstrap technique to
obtain the fitting results. Return level is a crucial prop-
erty predicting extreme events in the future, meaning
that the N-year return level is the level expected to be
surpassed, on average, once every N years.

To study the trend of the solar activity of the 25th
solar cycle, which is started from 2020 to 2031, N = 8
years is suitable to be set for the last year of this solar
cycle, as our data covers the period from 1874 to 2023
(2023 4+ 8 = 2031). That is to say, in the future, 8
years after 2023, the return level value of sunspot areas
can be obtained by bootstrap. Similarly, for the 26th
solar activity cycle from 2031 to 2042, N = 19 could
be set, representing the future 19 years after 2023. In
Table 1, there are three parameters of GEV distribution
and their 95% confidence intervals (CIs). It is seen that
the shape parameter is negative, presenting that an upper
bound exists in the distribution and that there is a max-
imum extreme value. Table 2 presents the estimates of
the return level of 8 years and 19 years. Combining the
Figure 4 with Table 2, the return level for N = 8 and
N = 19is about 5701 and 7165, showing that the max-
imum value of sunspot areas is about 5701 and 7165
for the 25th and 26th solar cycle. Comparing with the
amplitude of cycle 24, the trend of both return levels is
upward. The estimates of the return level for the south-
ern and northern hemispheres also confirm this point,
as seen in the estimated values in Table 2.
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Figure 3. The GEV distribution has three diagnostic plots
of full-disk sunspot area. The sample points represent the
maximum value of each block. (a) The QQ-plot compares the
empirical quantiles of 150 sample points with the GEV model
quantiles. (b) The QQ-plot compares the randomly gener-
ated data against the empirical data quantiles with the 95%
confidence bands (black dashed line). (c) The plot shows that
the empirical density line of the observed maximum (black
solid line) and GEV model density line (blue dashed line) are
close to coinciding.

3.2 Peaks-over-threshold approach

Although the BM method is theoretically simple and
easy to implement and is better suited for situa-
tions where data is not completely independent and
identically distributed, it still has a drawback of inef-
ficient data utilization (Ferreira & de Haan 2013).
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Therefore, the POT method is considered the funda-
mental approach for extreme value analysis because of
efficient utilization (Chen ez al. 2021). The POT method
picks up all ‘relevant’ high observations. Choosing u,
the value of a threshold is vital in this process. The
choice of threshold is necessary but difficult; # cannot
be too high or too low. As the analysis methods for
these three datasets relying on POT are identical, we
have chosen the full-disk data as an example to reveal
the detailed analysis process. Figure 5 shows the mean
residual life of full-disk data. To determine the most
suitable threshold, it is necessary to identify a stable
interval from Figure 5 for the experiment. It can be
observed that the image between [1000, 5000] is sta-
ble. As the confidence interval becomes larger, there
seems to be a linear relationship in the interval [3000,
4500]. There is the stability of the parameter estima-
tion, which is fitted by the GP distribution over a range
of thresholds. In Figure 6, the lines of the shape parame-
ter and reparameterized scale parameter are stable when
u 1is set to 3300. Besides, other values for u are tried,
and the best fit is achieved while # = 3300. Employ-
ing a similar analysis, we have determined the threshold
values for the southern and northern hemispheres data,
resulting in # = 2135 and u = 2412, respectively.
Due to the clustering of extreme values in the sunspot
area, there are often consecutive days with maximum
values exceeding the threshold, making it difficult to
obtain approximately independent clusters of extreme
observations. Therefore, these potential exceedance
clusters must be processed with a declustering pro-
cedure to avoid short-term dependencies in the time
series. The method called ‘runs declustering’. This
method involves marking exceedances as belonging to
the same cluster when the gap between them is less
than a fixed number of observations, referred to as the
run length (Acero et al. 2017). Figure 7 shows the data
above a threshold u. Then, we can get the independent
threshold exceedances after the declustering procedure.
The run length value is set to 13 because the solar global
rotation is 27, and half is 13.5 (Heristchi & Mouradian
2009). During the declustering process, exceedances
are marked as one cluster if the exceedances are sep-
arated by less than a number of run lengths. Here, we
take the full-disk data as an example. The number of
new independent threshold exceedance is 221. Then
221 exceedance is applied to the GP distribution. The
method of estimating the parameters is also the MLE
and the estimations of the two parameters o, & of the
GP distribution are estimated as 1311.47 and —0.07.
The same analysis method is applied to the northern and
southern hemispheres, and the resulting parameters are
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Table 1. Estimates and their 95% confidence intervals (CIs) of three GEV parameters obtained by
bootstrapping with the BM approach. The data includes full-disk, southern hemisphere, and northern

hemisphere results.

Data Location (1) [95% CI] Scale (o) [95% CI] Shape (§) [95% CI]

Full 2344.47 [2026.30, 2662.69] 1685.97 [1421.32, 1950.63] —0.008 [—0.20, 0.18]
South 2016.79 [1671.34, 2362.23] 1356.07 [1088.63, 1623.52] —0.01 [—0.20, 0.18]
North 2089.58 [1731.98, 2447.18] 1328.22 [1062.57, 1593.87] —0.05[—0.27,0.17]

Table 2. Estimate and its 95% confidence interval of the 8 year and 19 year
return levels (RL) by bootstrapping with BM approach for the three datasets.

Data 8 year-RL 19 year-RL

Full 5700.65 (5192.53, 6178.53) 7164.88 (6373.87, 8023.58)
South 4707.05 (4251.71, 5208.14) 5839.86 (4949.56, 6796.80)
North 4600.94 (4104.91, 5046.86) 5671.08 (4899.87, 6484.26)

shown in Table 3. In Figure 8, the precision of the GP
model evaluated by standard diagnostic plots for full-
disk data are shown. These three plots also support the
accuracy of the GP model.

In Figure 9, the confidence interval of the return level
for N = 8 and N = 19 years is obtained by boot-
strapping with a confidence of 95%. Table 3 shows the
data by bootstrapping with the two different parameters
of GP distribution. The shape parameter and the 95%
confidence interval are negative. Combining the results
of three standard diagnostic plots in Figure 8 and these
two parameters of the full-disk data in Table 3, it can be
concluded that there is a good GP distribution. Table 4
lists the estimates of the return level for the daily time
series with N = 8 and N = 19 years, indicating that the
maximum of sunspot area value is about 6258 and 7165
for 25th and 26th solar cycle. Compared to the strength
of the 24th solar cycle, the solar activity is stronger dur-
ing the 25th and 26th solar cycle.

4. Discussions and conclusions

Extreme value theory is commonly used in astrophysics
as an excellent statistical tool for estimating rare events.
To predict the solar activity during the 25th and 26th
solar cycles, EVT (with two different methods: BM
and POT) is used to analyze the full-disk, southern
and northern hemispheres daily sunspot areas from the
Royal Observatory, Greenwich (RGO) USAF/NOAA
during May 1874 to July 2023. It is the first time EVT
isemployed to study the solar activity with sunspot areas
observations.

In the BM approach, the return levels were estimated
by obtaining the maximum block data values and fit-
ting them to the GEV distribution. According to the
results in Table 1, it can be seen that shape parame-
ters are negative, which means that the existence of the
extreme upper bound of time series is revealed. The
return levels for N = 8 years were estimated as 5701,
4707 and 4601, respectively (see Table 2) applying to
data from the full-disk, southern hemisphere and north-
ern hemisphere. This implies that the maximum values
for the 25th solar cycle are approximately 5701, 4707
and 4601. The return levels for N = 19 years, which is
approximately the maximum values for the 26th solar
cycle, were estimated as 7165, 5840 and 5671, respec-
tively, applying to the full, south and north data. These
results we can conclude that the 25th and 26th solar
cycles will be stronger than cycle 24. In addition, the
maxima in the northern and southern hemispheres add
up to a much larger maximum than the full-disk data,
suggesting that the peak activities in the northern and
southern hemispheres are not within the same time
frame. It is possible, although less likely, that this phe-
nomenon could result in a double peak in the 25th and
26th solar cycles (Karak et al. 2018).

According to the application of the POT approach the
mean residual life plot and the parameter estimates were
used to obtain the best threshold u. Hence, we selected
the thresholds u = 3300, 2135 and 2412 for the data
from the full-disk, southern and northern hemispheres,
respectively. This approach results in a negative shape
parameter, indicating an upper bound in the distribution
(see Table 3). The 8-year return levels were estimated as
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Figure 6. Estimates of two parameters (shape and scale)
with different thresholds using full-disk data. There is a linear
relationship of about 3300. The selection of the threshold
range is based on observations from Figure 5 and multiple
experiments.
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Figure 7. Decluster data above a threshold: u = 3300,
and newly independent exceedances are produced. The clear
points above the dashed line are the values after the declus-
tering procedure.

6258, 4501 and 4344 for the full-disk, south and north
data, while the 19-year return levels were estimated as
7165, 5363 and 5086 for the three datasets, respectively.
The results of the POT technique are generally higher
than the BM, indicating that the 25th and 26th solar
cycles are stronger than the 24th solar cycles.

As discussed in Bhowmik er al. (2023), the solar
cycle could be understood as a weakly nonlinear limit
cycle influenced by stochastic noise. These models have
effectively replicated the characteristics of the solar
cycle, including the occurrence of grand minima, when
observed over specific time scales. The predictability
of the solar cycle is jointly influenced by stochasticity
and nonlinearity, making long-term predictions notably
challenging. The solar activity cycle is inherently pre-
dictable; however, due to its intrinsically dynamical
complexity, it can only be predicted with high accuracy
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Table 3. Estimates and their 95% confidence intervals (CIs) of two GP param-
eters obtained by bootstrapping with the POT approach for the three datasets.

Data Scale (o) [95% CI] Shape (&) [95% CI]
Full 1311.47 [1027.67, 1595.26] —0.07 [-0.24, 0.11]
South 1023.29 [819.24, 1227.33] —0.001 [—0.14, 0.14]
North 902.03 [680.18, 1123.88] —0.001 [—0.19, 0.18]
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Figure 8. There are three diagnostic plots in the GP dis-
tribution for the full-disk data. (a) The QQ-plot compars the
empirical quantiles of 150 sample points with the GP model
quantiles. (b) The QQ-plot shows the randomly generated
data against the empirical data quantiles with the 95% confi-
dence bands (black dashed line). (c) The plot shows that the
empirical density line of the observed maximum (black solid
line) and GP model density line (blue dashed line) are close
to coinciding.

for the short- to mid-term (Deng et al. 2016). There
exist differences between the predictions of the 25th
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Figure 9. Return level plot (log scale) of the maxima val-
ues for full-disk (top), southern hemisphere (middle) and
northern hemisphere (bottom) daily sunspot areas with 95%
confidence intervals (dashed lines).

solar cycle made by various data and methods. On the
one hand, spectral analysis was used on sunspot num-
bers to predict the amplitude of the 25th solar cycle,
and the result showed that the amplitude would be lower
than the amplitude of the 24th solar cycle (Javaraiah
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Table 4. Estimate and its 95% confidence interval of the 8 year return level
(RL) by bootstrapping with POT approach for the three datasets.

Data 8 year-RL 19 year-RL

Full 6258.12 (5968.08, 6554.83) 7164.92 (6639.36, 7680.65)
South 4500.89 (4246.05, 4761.29) 5363.01 (4849.28, 5959.76)
North 4343.53 (4124.74, 4564.32) 5086.11 (4669.88, 5595.11)

2015). Gopalswamy et al. (2018) used microwave imag-
ing on 17 GHz data and predicted that the two cycles
are similar. On the other hand, the results of many other
works are consistent with our results. For example,
Sarp et al. (2018b) predicted that the solar maximum
of the 25th solar cycle was greater than that of the
24th solar cycle. Prasad et al. (2022) used the LSTM
model to predict the strength of the 25th solar cycle
by using the monthly smoothed sunspot number from
the Royal Observatory of Belgium, Brussels, suggest-
ing that the upcoming 25th solar cycle is stronger. The
works mentioned above pointed towards our conclu-
sion: solar cycle 25 will be stronger than cycle 24.

As mentioned above, predictions for solar activity
are important. In addition to the distributions used in
the aforementioned work, extreme value theory encom-
passes various other distributions, such as the Fréchet
distribution, Gumbel distribution, Weibull distribution,
and more. These distributions have been widely applied
indiverse fields, including flood prediction, rainfall esti-
mation and stock market forecasting. It can be attempted
to use these distributions to study sunspot areas for pre-
dicting the strength of solar cycle. We hope that this
study would attract more authors to use newly methods
to predict the strength of the solar cycle to make a great
impact on our life in the future.
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