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Abstract. Model orbits have been fitted to 27 physical double stars listed in a 1922 catalog. A Markov
Chain Monte Carlo technique was applied to estimate best-fitting values and associated uncertainties for the
orbital parameters. Dynamical masses were calculated using parallaxes from the Hipparcos mission and are
presented in this paper with the estimates of the orbital parameters for the 27 systems. The resulting mass
estimates of the current study are in good agreement with a recently published study, as are comparisons with
the orbital parameters listed by the Washington Double Star catalog, confirming the validity of the optimization
methodology.
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1. Introduction

Double stars make observing targets which are popular
for various reasons including an interest in the practi-
calities of obtaining valuable scientific data with small
telescopes. Such measurements can indicate whether
the two stars, observed to be close to the sky, are a
physical double, as the two stars should slowly shift
their relative positions with time as they orbit about each
other. Binary stars are important to astronomy as they
allow direct determination of stellar masses. Where the
stars are not observed to be following such orbits, their
proximity in the sky might mean that they are actually
gravitationally remote from each other and simply in a
similar line of sight from Earth (i.e., an optical double).
In practice, it turns out that this situation is often not the
case. In passing, we note that Argyle (2004), MacEvoy
& Tirion (2015) and Argyle et al. (2019) provide use-
ful background materials for observing and analyzing
visual doubles.

A major goal of the current paper is to outline the
testing of an algorithm based on Markov Chain Monte
Carlo (MCMC) optimization. This note documents our
final testing of a Bayesian-based methodology by com-
paring systems with known results and placing these
results into the literature for later use by the double-
star community. The rationale behind these tests is
that agreement of our findings with literature results
would lend confidence for later general applications
of the method, such as for systems without known
orbital solutions. A noteworthy point is that our method
provides uncertainties for the derived parameters, some-
thing not provided for many orbital solutions in the
literature.

The paper, therefore, outlines the automated estima-
tion of values and uncertainties of orbital parameters
to a selection of physical double binaries listed in
Miller & Pitman (1922), and in particular from their
Table 1 of ‘First Class’ systems that those authors con-
sidered to possess well determined orbital estimates
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(and therefore good systems for the planned testing).
Miller & Pitman (1922) did not present the orbital
solutions and so we make use of the parameter esti-
mates adopted in the Washington Double Star (WDS)
catalog (Mason et al. 2022). We sourced the posi-
tional data from the WDS, current to 2023. Our paper
presents estimates for the orbital parameters for these
systems using all the available data. These results are
in agreement with the solutions given in the WDS with
the advantage that single sigma uncertainties are pre-
sented for all the estimated parameters. This is reached
through the use of an optimization technique based on
Bayesian statistics, which is described in the following
section.

2. Markov Chain Monte Carlo

A Markov Chain is a probabilistic model describing
the likelihood of future states based on the currently
observed state. It is a ‘memory-less’ process, typically
based on a matrix giving the transition probabilities
between one observed state to another. The current state
of the process depends only on the immediately previ-
ous one. A chain is built up of repeated steps through
this transition matrix.

Markov Chain Monte Carlo (MCMC) combines such
chains with a Monte Carlo approach, or basically
random probabilities (Privault 2013; Hogg & Foreman-
Mackey 2018). This combination allows MCMC to
explore and then characterize a distribution by randomly
sampling that distribution without requiring knowl-
edge of the distribution’s mathematical properties (van
Ravenzwaaij et al. 2018). It is a Bayesian statistical
technique where inferences about unknown quantities
(such as model parameters or predictions) are made
by combining prior ‘knowledge’ (often called ‘beliefs’
in the literature) about those quantities together with
observations.

No u-turn sampler (NUTS) avoids the random walk
behavior of more simple MCMC algorithms, mak-
ing a faster exploration of possible model parameter
sets and a faster convergence to an optimal set of
parameter estimates. It handles multiple parameter
models better than simpler techniques, which struggle
with these higher dimensional problems. We used this
Hamiltonian Monte Carlo (HMC) technique for these
reasons.

We are not the first authors to apply an MCMC
method to visual double star data, but the technique
is not yet widely used in the field (see, e.g., Sahlmann
et al. 2013; Lucy 2014; Mendez et al. 2017).

Figure 1. Observations and model orbits are shown for
two representative systems from those analyzed in this paper.
North is upwards and east increases to the right, as is the
convention in many visual binary papers. The red curve
plots the model orbit, while observations (the position of the
secondary star relative to the primary star at a given time)
are shown as black dots. Blue lines connect the observations
to their predicted positions given the derived orbital param-
eters. The star symbol at (�x,�y) ∼ (0, 0) is the location
of the primary star in each system. (a) η Cor Bor and (b)
	 2052.

3. Analysis

The orbit of a (visual) binary star system can be
described on the xy plane as (see, e.g., Ribas et al.
2002):

x = a(1 − e2)

1 + e cos ν
[cos (ν + ω) sin �

+ sin (ν + ω) cos � cos i],
y = a(1 − e2)

1 + e cos ν
[cos (ν + ω) cos �

− sin (ν + ω) sin � cos i],



    9 Page 4 of 8 J. Astrophys. Astr.            (2024) 45:9 

Figure 2. Comparison between MCMC (this paper) and WDS optimal parameter estimates for P, a, e and ω by the system.
Linear regressions have been fitted to the data, resulting in best-fit (blue-colored) lines in the charts. Two sigma confidence
limits are shown as the grey-shaded regions. The dashed grey lines are those of perfect agreement, which are essentially in
agreement with the regression lines, indicating good agreement between the two sets of parameter estimates.

where a is the semi-major axis of the orbit, measured in
arcsec. e is the orbital eccentricity. ν is the true anomaly
(or function of time) of the orbit of the stars about their
barycenter. i is the inclination, the angle between the
plane of projection and the orbital plane. Position angles
were precessed to the year 2000.

We implemented this model as the fitting function
in the stan programming language,1 using the NUTS
MCMC variant to perform the optimization. We note

1For further details on STAN see https://github.com/stan-dev/stan
and https://mc-stan.org/users/documentation/

https://github.com/stan-dev/stan
https://mc-stan.org/users/documentation/
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Figure 3. Comparison between HMC and WDS optimal parameter estimates for i and � by system.

that if we were only interested in point estimates for the
parameters, there are superior optimization techniques
which can reach such estimates with less computa-
tional effort. Our key interest in using MCMC was
to see how well-constrained the parameter estimates
are rather than just the optimal estimates alone. The
stan code was called from the R programming lan-
guage (R Core Team 2021), where we handled data
processing and additional analysis. The role of MCMC
was to adjust the model parameters so that the pre-
dicted positions became close to the actual data. In
other words, the optimizer trialed different estimates
for the parameters in the model function, measuring
how well the model based on this function fitted the
observed data. The measure of fit employed the χ2

function (see Bevington 1969). The minimum chain
length was 100,000 steps, with four chains being run
simultaneously. Convergence about an optimal solu-
tion set was assessed through trace plots (charts plot-
ting parameter estimates by step position along the
chains), which should be statistically random about
the optimal estimates, i.e., no trends should remain.
We also used the R̂ statistic (Sinharay 2003) to assess
convergence.

Best-fit solutions (and one standard deviation uncer-
tainty) are listed in Table 1 for each modeled system.
Figure 1 plots data for two example systems, along with
the best-fit projected orbits based on the parameters
given in Table 1.

The orbital solutions generally agree with those listed
by WDS as the adopted solutions for that catalog, with
the advantage that uncertainties for the parameters are
given for all solutions. Not all WDS solutions have

uncertainties provided for the parameter estimates, as
seen in Figures 2 and 3. The NUTS-based uncertain-
ties are generally larger than those given for the WDS
solutions, even with our naive handling of errors. Eccen-
tricity has the highest relative uncertainty out of the
optimized parameters, followed by the argument of
periastron. 42 Com Ber (BD + 18 2697) has an inclina-
tion close to 90◦ and was difficult to model, leading to
large uncertainties in parameter estimates for that sys-
tem.

The dynamical (or combined stellar) mass Md of such
binary systems can be calculated if the parallax is known
via an equation (Malkov et al. 2012) based on Kepler’s
third law:

Md = a3

π3P2 , (1)

where both a and the parallax π are in milli-arcsec,
P is in years, and Md is in solar masses. Thirteen
of the systems had Gaia DR3 parallaxes, and all
27 had Hipparcos parallaxes. The Hipparcos (ESA
1997; Perryman 2008) and Gaia (Gaia Collaboration
2016, 2022) parallaxes agreed well (regressing the
Hipparcos parallaxes onto the corresponding Gaia val-
ues resulted in a slope of 0.998 ± 0.007 assuming
a zero intercept). We therefore used the Hipparcos
parallaxes for comparison given the good correla-
tion and also the fact that more systems had paral-
lax estimates in the Hipparcos dataset than the Gaia
one. We compared our estimates for the dynami-
cal masses (Table 2) with those from Malkov et al.
(2012), see Figure 4. We found good agreement,
indicating that our methodology appears reasonable,



    9 Page 6 of 8 J. Astrophys. Astr.            (2024) 45:9 

Table 2. Dynamical solar masses (MD) based on Hipparcos parallaxes (given in the column ‘Hipparcos’ as milli-arcsec) and
parameter estimates from the MCMC orbital fitting. Column MM lists the dynamical masses given in Malkov et al. (2012).
MVL lists the dynamical mass estimates using the van Leeuwen (2007) parallaxes (listed in column ‘van Leeuwen’ and units
of milli-arcsec). Errors in MD and MVL are one standard deviation.

Star MD MM Hipparcos van Leeuwen MVL

42 Com Ber 1.244+2.731
−1.060 – 69.81 ± 27.58 56.10 ± 0.89 2.398+3.856

−1.478

70 Oph 1.634+0.046
−0.044 1.60 196.62 ± 1.38 196.72 ± 0.83 1.631+0.031

−0.031

85 Pegasi 1.474+0.293
−0.241 1.49 80.63 ± 3.03 82.17 ± 2.23 1.393+0.223

−0.192

99 Herc 1.421+0.368
−0.308 1.73 63.88 ± 0.55 63.93 ± 0.34 1.418+0.349

−0.296

A 88 2.540+0.984
−0.716 2.40 20.01 ± 0.93 20.85 ± 0.91 2.245+0.842

−0.620

β 80 1.100+0.377
−0.276 0.43 30.75 ± 1.74 31.20 ± 1.60 1.055+0.337

−0.253

β 524 4.461+2.040
−1.395 3.88 13.87 ± 0.86 14.15 ± 0.72 4.201+1.709

−1.221

β 612 2.991+0.797
−0.618 3.41 18.68 ± 0.91 16.67 ± 0.58 4.208+0.895

−0.733

β 1111 0.746+0.623
−0.312 2.47 22.40 ± 3.40 15.17 ± 0.53 2.401+0.591

−0.475

Castor 5.448+0.838
−0.720 5.43 63.27 ± 0.23 64.12 ± 3.75 5.234+1.923

−1.362

ε Equ 5.652+6.831
−2.750 4.17 16.59 ± 3.40 18.49 ± 1.35 4.082+1.607

−1.114

η Cass 1.567+0.114
−0.106 1.58 167.99 ± 0.62 167.98 ± 0.48 1.567+0.110

−0.102

η Cor Bor 1.153+0.241
−0.191 2.11 69.7 ± 3.8 55.98 ± 0.78 2.229+0.147

−0.137

γ Cor Bor 4.193+0.738
−0.622 4.18 22.48 ± 0.67 22.33 ± 0.50 4.278+0.640

−0.555

κ Peg 3.804+0.871
−0.711 – 28.34 ± 0.88 29.22 ± 0.74 3.470+0.721

−0.661

Krueger 60 0.586+0.290
−0.179 1.44 225.0 ± 25.6 249.94 ± 1.87 0.427+0.028

−0.026

μ Herc 0.774+0.036
−0.034 – 119.05 ± 0.62 120.33 ± 0.16 0.750+0.025

−0.025

Procyon 2.014+0.163
−0.153 2.03 285.93 ± 0.88 284.56 ± 1.26 2.043+0.174

−0.162

	 518 0.855+0.169
−0.141 – 198.24 ± 0.84 200.62 ± 0.23 0.825+0.154

−0.130

	 1938 4.121+0.976
−0.805 – 26.96 ± 0.65 28.83 ± 0.74 3.370+0.818

−0.671

	 2052 1.708+0.376
−0.304 1.63 51.2 ± 1.49 50.87 ± 0.80 1.742+0.298

−0.253

	 2107 2.630+0.780
−0.582 2.70 17.62 ± 0.95 17.12 ± 0.53 2.867+0.592

−0.482

	 2173 1.949+0.199
−0.178 1.91 60.80 ± 1.42 61.19 ± 0.68 1.912+0.118

−0.111

Sirius 3.306+0.115
−0.112 3.08 379.21 ± 1.58 379.21 ± 1.58 3.306+0.115

−0.112

τ Cyg 2.720+0.289
−0.261 – 47.80 ± 0.61 49.16 ± 0.40 2.507+0.226

−0.209

ζ Herc 2.619+0.129
−0.124 2.44 92.63 ± 0.60 93.32 ± 0.47 2.561+0.115

−0.110

with the advantage that confidence intervals are gen-
erated for the optimized parameters. However, we
also note that Malkov et al. (2012) made use of the
reduction by van Leeuwen (2007) of Hipparcos astro-
metric data which improved parallax accuracies by
up to a factor of four times for stars brighter than
Hp = 8, as well as the later analyses of Al-Wardat

et al. (2021) and Masda & Al-Wardat (2023) which
demonstrated that the van Leeuwen (2007) parallaxes
were superior to both the original Hipparcos and the
DR3 Gaia estimates. Calculating dynamical masses
using the van Leeuwen (2007) parallaxes (see Table 2)
led to an improvement in the Pearson correlation coef-
ficient from 0.905 to 0.960 (for the masses calculated



J. Astrophys. Astr.            (2024) 45:9 Page 7 of 8     9 

Figure 4. A comparison of dynamical masses calculated in this study. Sub-figure 4(a) is based on the Hipparcos parallaxes
while sub-figure 4(b) is based on van Leeuwen (2007), as per Equation (1). These estimates are compared with those made
by Malkov et al. (2012), who did not provide uncertainties for their values. Overall agreement is good. Error bars are not
plotted for Epsilon Equilei in sub-figure 4(a) as they are large and lead to a vertical compression of the chart when they are
included, obscuring details. The shaded region corresponds to 95% statistical confidence for the regression. A zero intercept
was assumed. Note the improved scatter in sub-figure 4(b) is largely driven by changes in the mass estimates for ε Equ, β

1111, and η Cor Bor. See Table 2 for the data plotted in these figures.

in the current paper compared with those from Malkov
et al. 2012), in line with the comments by van Leeuwen
2007, Al-Wardat et al. (2021) and Masda & Al-Wardat
(2023). We therefore recommend using the mass esti-
mates given in the column MVL of Table 2 as the
final estimates of the dynamical masses for the studied
systems.

4. Discussion

This paper presents in Table 1 new estimates of the
orbital elements and uncertainties for a selection of sys-
tems listed in Miller & Pitman (1922), based on MCMC
optimization. We also calculate dynamical masses using
Equation (1) plus original (ESA 1997; Perryman 2008)
and refined (van Leeuwen 2007) Hipparcos parallaxes
(see Table 2), which we show to be in good agreement
with Malkov et al. (2012). Figure 4(b) shows the best
comparison between our results and those of Malkov
et al. (2012). Comparison of the orbital elements is
made between those adopted by the WDS and those
derived by our MCMC method (see Figures 2 and 3).

The estimates agree well, with the NUTS-based uncer-
tainties tending to be significantly larger than those
in the WDS-adopted solutions (not all such solutions
provide formal errors). This comparison of known sys-
tems gives us confidence that the HMC-based technique
presented could be reliably applied to new systems
without previously published solutions. Indeed, we have
used an earlier version of this methodology to ana-
lyze a multiple star system (Erdem et al. 2022), with
the astrometric analysis complementing and extending
the spectroscopic and photometric analyses. We intend
to use this methodology as we extend our survey of
detailed studies of multiple systems (such as Erdem
et al. 2022) and recommend it to other researchers inter-
ested in not only estimating the orbital parameters but
gaining insight into the accuracy of these estimates. We
also hope that the orbital parameters (and accompanying
uncertainties) presented by this paper for the 27 systems
involved in the testing will be of interest to double-
star researchers and that the paper acts as a record of
the careful testing made of the methodology before its
use for systems with no published estimates for orbital
parameters or dynamical masses.
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