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Abstract. Influence of magnetic field on the propagation of shock waves in radiation gasdynamics is analysed
by using wavefront analysis method. We examined behavior of the waves propagated into the two-dimensional
(2-D) steady supersonic magnetogasdynamic flow of non-ideal gas with radiation. The transport equations
are derived, which determine the condition for the shock formation. The effect of non-idealness and thermal
radiation and their consequences under the influence of magnetic field is studied and examined how the flow
patterns of the disturbance vary with respect to the variation in the parameters of the flow. It is found that the
presence of a magnetic field plays an essential role in the wave propagation phenomena. Nature of the solution
with respect to Mach number is analysed, and it is examined how the shock formation distance changes with
an increase or decrease in the value of Mach number. Also, the effect of non-idealness on the shock formation
distance is elucidated and examined how the shock formation affects the increase in the value of non-ideal
parameter in the presence of magnetic field with thermal radiation.
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1. Introduction

Study of nonlinear phenomena is a prominent topic
from a mathematical as well as a physical point of view
because of its massive contribution in aerodynamics,
space science, cosmology, rocket science, theory of rel-
ativity, interplanetary motion and many more (Karman
1941; Moschetti 1987; Wang et al. 2019). In the present
scenario, many researchers and scientists are studying
the theory of nonlinear waves with the help of partial
differential equations describing the existence of these
waves in certain mediums. The conservation laws of gas
dynamics, electrodynamics, hydrodynamics and other
branches of mechanics are typically characterized by
quasilinear system of PDEs or system of such equa-
tions. Hyperbolic systems, in particular, represent the
proper mathematical model for a host of a variety of
wave propagation phenomena in Whitham (2011).

Many researchers have studied the nonlinear waves
in one-dimensional system. In stellar environments,

shock waves, such as those produced by a core-collapse
supernova explosion, are transformed into radiation-
mediated shocks. Such shocks form when photons
collide with matter like electrons, and the downstream
of these shocks is dominated by radiation energy den-
sity rather than thermal energy density. The relativistic
shock wave is a particular example of an astrophysi-
cal shock wave, in which the velocity of shocks is the
non-negligible fraction of the speed of light. Shock for-
mation in black hole accretion is also expected to be a
general phenomenon because shock waves in rotating
and non-rotating flows are convincingly capable of con-
verting a significant amount of gravitational energy (see
Horowitz & Itzhaki 1999). Das (2002) explored the pos-
sibility of shock formation in black hole accretion discs
and observed that standing shocks are a crucial com-
ponent of accretion discs near non-rotating black hole.
When we look at two-dimensional problem, it becomes
more complicated. In two-dimensional form, it is very
difficult to find the solution and to analyse the study. To
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explain the phenomena ranging from atomic explosions
in the Earth’s atmosphere to supernova explosions and
active galactic nuclei (Zel’Dovich et al. 1967; Weaver
1976), the shock wave theory has been used contin-
uously. The investigation of shock wave in van der
Waals gas flow has great consideration of engineers
and scientists due to its important role in the study
of several areas like atmospheric science, oceanog-
raphy, astrophysics, hypervelocity impact, hypersonic
flow and aerodynamics. Some authors have explored
the analysis of shock wave propagation in various gas
regimes and discussed different physical features of
these propagating waves (Pandey 2015; Srivastava et al.
2020, 2021, 2022). Jagadeesh (2008) has studied the
various features of the shock wave theory, described
the innovative shock wave applications in industries
and science, and shown that shock waves can enhance
the temperature, pressure and other flow variables,
which experience rapid changes. Also, the shock wave
phenomenon is widespread in radiation gas dynam-
ics because radiation effects are crucial in extremely
high-speed flow, where shock waves usually occur. The
study of propagation of small disturbances in a radiating
gas has been previously examined by Marshak (1958),
Vincenti & Baldwin (1962), Lick (1964), Sharma et al.
(1987), Chaturvedi et al. (2019a, b, 2022) and Chauhan
(2022). The study of shock is most common in the inter-
stellar medium. In stellar environments, shock waves
often form due to collisions of photons with electrons
of the matter (Mostafavi & Zank 2018; Shweta et al.
2023). Furthermore, Singh et al. (1988, 2010, 2011,
2012), Chaturvedi & Singh (2021) and Chaturvedi
et al. (2022) used the wavefront analysis method to
analyse the phenomenon of shock-wave formation in
a 2-D steady supersonic flow of a radiating gas and
described the behavior of propagating waves and their
flow patterns. Menon & Sharma (1981) examined the
flattening and steepening of characteristic wavefronts
in planar and non-planar plasma motion in perfect gas
and the magnetic field effect on wave propagation and
have illustrated that the disturbance propagated into the
medium obeys the Bernoulli-type differential equation.
Whitham (1956) has proposed a method to study the
propagation and decay of weak shock wave produced by
explosions and by bodies in supersonic flight. The rela-
tivistic shock is an example of the astrophysical shock
(see Bykov & Treumann 2011). The problem of a shock
wave in a real gas with presence of magnetic field has
been studied by many researchers in the past. In recent
decades, many studies have been available in the liter-
ature on the propagation of magnetic shock waves and
applications in many industrial and scientific researches

and developments. The propagation of wave and its
behavior always depend on the flow variables and the
medium chosen for the flow unless the motion of the
wave need a medium for the flow. The behavior of the
flow changes with respect to the constraint considered.
The strength of the wave depends on the Mach number,
which is the ratio of flow speed to sound speed. Here,
we consider the steady flow, therefore, we do not con-
sider the time dependence of the flow variables. In this
paper, we consider the transverse magnetic field; one
may use an oblique shock wave to generalize this prob-
lem to get different results as in Wang & Wu (2022).
Sahu (2020) and Srivastava et al. (2022) studied the
propagation of cylindrical and spherical shock waves
non-ideal gas with conductive as well as radiative heat
fluxes in magnetogasdynamics under the presence of
magnetic field.

The issues of radiative energy transmission in fluids
stand out enough to be noticed in recent decades as a
result of speeding up bodies through the atmosphere
and extremely high temperatures achieved by gases in
motion. Significant efforts have been made to study
interaction problems between the gasdynamic field and
the radiation field, and a new title ‘Radiation Gasdy-
namics’, has been proposed for this subject. The new
advancements in space innovation have necessitated an
in-depth investigation of the consequences of the effect
of thermal radiation on the flow field of extremely high-
temperature gas. In many technological developments,
such as space vehicle re-entry, temperature of the gas
is so high that thermal radiation becomes a critical fac-
tor in determining the flow field. The effect of thermal
radiation in gas dynamics is an excellent example of
an interdisciplinary research activity that necessitates
the practical application of the following crucial physi-
cal science fields: quantum mechanics, fluid mechanics
and statistical mechanics (with stress on quantitative
spectroscopic investigations; Scala & Sampson 1963;
Pai 1966; Pai & Tsao 1966).

Purpose of the present study is to analyse the
simultaneous effect of radiative heat transfer and the
imperfectness (non-idealness) of the gas on the flow
pattern of the discontinuities propagated under the pres-
ence of magnetic field. It seems worthwhile to give a
broader discussion of these effects for wave propagation
problems in general and to investigate all the various
possibilities that may arise in astrophysics. In the previ-
ous studies (see Chaturvedi & Singh 2021; Chaturvedi
et al. 2022), no one has been analysed the supersonic
flow in non-ideal magnetogasdynamic regime in the
presence of radiation effect. In this paper, we study the
behavior of the flow in ideal and non-ideal cases and
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compare the difference between the flow patterns and
the physical changes that took place.

The complete structure of this paper is organized into
sections as follows: In Section 2, we transformed the
governing equations into matrix form to determine the
characteristic curves that represent the propagation of
the waves. In Section 3, we introduced new coordinates
and derive the transport equations, which describe the
evolutionary process of the propagating waves. In Sec-
tion 4, we have analysed the behavior of the waves for
plane and axisymmetric cases and determined the con-
dition for the shock formation. Section 5 refers to the
consequences of various parameter effects on the shock-
formation process and its deformation. The last section
is the conclusion of the entire work of this paper.

2. Governing equations and its characteristic
formulation

In this section, to describe the propagation of nonlin-
ear wave in gasdynamics, we considered the following
hyperbolic system of quasilinear partial differential
equations, which governs the two-dimensional steady
supersonic flow of van der Waals gas in magnetogasdy-
namics under the effect of radiative heat transfer as in
Chaturvedi & Singh (2021) and Jeffrey (1976):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∂x� + v∂y� + �

(

∂xu + ∂yv + mv

y

)

= 0,

�u∂xu + �v∂yu + (∂x p + ∂xh) = 0,

�u∂xv + �v∂yv + (∂y p + ∂yh) = 0,

u∂x p + v∂y p − γ p

�(1 − b�)
(u∂x� + v∂y�)

+(γ − 1)q = 0,

u∂xh + v∂yh + �e2
(

∂xu + ∂yv + mv

y

)

= 0,

(1)

where x , y are spatial coordinates, � is the density of
the gas and u and v are the velocities in x and y direc-
tions, respectively. p represents the pressure and h is
the magnetic pressure, which is defined as h = ωH2/2.
Here, ω and H denote the magnetic permeability and
transverse magnetic field, respectively. q represents the
rate of energy loss by the gas per unit volume through
radiation and it is defined as q = 4kσ(T 4 −T 4

b ), where
k is the Planck mean absorption coefficient, which is
a function of density � and temperature T of the gas.
σ denotes the Stefan–Boltzmann constant and Tb is the
uniform temperature of the body along which the flow
is investigated. γ is the specific heat ratio of the gas.
The energy loss q = 4kσT 4 caused by the radiating
gas has been enhanced by q = −4kσT 4

b , resulting in

an infinite optically thin gas with no radiating bound-
ary. The boundary wall having uniform temperature Tb
has no energy loss or gain due to the radiating gas.
e = (2h/�)1/2 is Alfvén speed. m is a constant such
that m = 0 for planar flow and m = 1 for cylindrically
axisymmetric flow.

In matrix form, Equation (1) can be written as:

Vx + MVy + N = 0. (2)

Here, the subscript x and y signify the partial derivatives
in x and y directions. V and N are column vectors and
M is a square matrix of order 5 given below:

V =

⎛

⎜
⎜
⎜
⎜
⎝

�

u
v

p
h

⎞

⎟
⎟
⎟
⎟
⎠

, N = 1

(u2 − c2)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�muv
y + (γ−1)q

u
−mv
y c2 − (γ−1)q

�

0
�muv
y a2 + (γ−1)q

u (u2 − e2)
�muv
y e2 + (γ−1)q

u e2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

and the non-zero entries of the matrix M = (Mi j )5×5
are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11 = v

u
, M12 = − �v

(u2 − c2)
, M13 = �u

(u2 − c2)
,

M14 = M15 = v

u(u2 − c2)
, M22 = uv

(u2 − c2)
,

M23 = − c2

(u2 − c2)
, M24 = M25 = − v

�(u2 − c2)
,

M33 = v

u
, M34 = M35 = 1

�u
, M42 = − �va2

(u2 − c2)
,

M43 = �ua2

(u2 − c2)
, M44 = v(u2 − e2)

u(u2 − c2)
,

M45 = va2

u(u2 − c2)
,

M52 = − �ve2

(u2 − c2)
, M53 = �ue2

(u2 − c2)
,

M54 = ve2

u(u2 − c2)
, M55 = v(u2 − a2)

u(u2 − c2)
,

(4)

where

a =
(

γ p

�(1 − b�)

)1/2

is speed of sound for a non-ideal gas and c = (a2 +
e2)1/2 is the magneto-sonic speed.

Let μi denotes the eigenvalue of the matrix M and
li denotes the corresponding left eigenvector, where
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1 ≤ i ≤ 5. Eigenvalues of M are given as:

μ(1,2) =
uv ± c2

(
M2(1−b�)

ε
− 1

) 1
2

(u2 − c2)
,

μ(3,4,5) = v

u
. (5)

Here,

M = (u2 + v2)1/2

d
represents the upstream flow Mach number, b is the
parameter of non-idealness and d = (γ p/�)1/2 is the
speed of sound for ideal gas. The Alfvén number ε is
defined as ε = 1+(e2/a2), which is 1 for non-magnetic
case and >1 for magnetic case.

The left eigenvectors li of the corresponding eigen-
values μi are given as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(1) =
(

0 1 −u

v
− 1

�v

(
M2(1 − b�)

ε
− 1

) 1
2

0

)

,

l(2) =
(

0 1 −u

v

1

�v

(
M2(1 − b�)

ε
− 1

) 1
2

0

)

,

l(3) =
(

1 0 0 − 1

a2 0

)

,

l(4) =
(

0 1
v

u

ε

�u
0
)

,

l(5) = (0 0 0 (1 − ε) 1).

Equation (5) shows that all eigenvalues of the matrix M
are real for supersonic flow (M > 1), therefore, system
(2) is hyperbolic in nature. Also, from Equation (5),
it can be noticed that system (2) have two families of
characteristic curves along:

dy

dx
=

uv ± c2
(
M2(1−b�)

ε
− 1

) 1
2

(u2 − c2)
,

which represents the waves propagating in opposite
directions with the characteristic speed μ(1,2).

3. Transport equations for discontinuities

In this section, we shall derive the transport equations
for the evolution of weak discontinuities in V as they
move along the initial wavefront, which will be used for
further study of the growth and decay behavior of shock
wave. We assume that the initial wave front ψ(x, y) =
0, is described by the characteristic curve μ(1), such
that it passes through the point (x0, y0). Further, we
consider that the initial wavefront ψ(x, y) = 0, moving

with uniform velocity u0 in x-direction and v0 = 0 in
y-direction, density �0, pressure p0 and temperature
T0 = Tb. Here, we have used the suffix ‘0’ to signify
the value of the variables in the region ahead of the
wavefront ψ(x, y) = 0.

Now, we transform the coordinates x and y into
curvilinear coordinates ψ and ȳ by using the follow-
ing transformation (Jeffrey 1976):
⎧
⎪⎨

⎪⎩

ψx + μ(1)ψy = 0,

ψ(x, y0) = x − x0,

y = ȳ.

(6)

Then, ψ has the property that is positive (negative)
behind (ahead of) the leading characteristic on which
ψ = 0.

Using the coordinate transformation (6) and multi-
plying Equation (2) by l(i) from left side, (2) reduces
into the following form:

l(i)Vψ + μ(1)μ(i)

μ(1) − μ(i)
xψ l

(i)Vȳ + μ(1)

μ(1) − μ(i)
xψ l

(i)

N = 0, (7)

where i is unsummed and xψ = 1/ψx is the Jacobian
of the transformation.

V and Vȳ are continuous across the wavefront
ψ(x, y) = 0 and we use the subscript ‘0’ to denote the
values of V and Vȳ at the wavefront. On the other hand,
Vψ and xψ are discontinuous across the ψ(x, y) = 0.
Evaluating Equation (7) by putting the values of i
(i = 2, 3, 4, 5) behind the wavefront, we obtain:

�ψ = 1

a2
0

pψ, (8)

uψ = − ε0

�0u0
pψ, (9)

vψ = 1

�0u0

(
M2

0 (1 − b�0)

ε0
− 1

) 1
2

pψ, (10)

hψ = (ε0 − 1)pψ. (11)

Taking i = 1 in (7) and differentiating with respect to
ψ , then evaluating it behind the wavefront ψ(x, y) = 0,
we get:

c0a0ε
1
2
0

(
M2

0 (1 − b�0)

ε0
− 1

) 1
2

pψ ȳ + u0�0c0a0ε
1
2
0 vψ ȳ

+ mu0�0

ȳ
a2

0vψ + (γ − 1)

u0
(u2

0 − e2
0)qψ = 0. (12)

Equation of state for non-ideal gas is:

p(1 − b�) = �RT, (13)
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where R is the gas constant. In view of (13), differentiat-
ing q = 4kσ(T 4−T 4

b ) with respect to ψ and evaluating
it behind ψ = 0, we obtain:

qψ = 16(γ − 1)kσT 4
b

�0a2
0(1 − b�0)

. (14)

Inserting the value of vψ and qψ from Equations (10)
and (14) in (12), we have:

pψ ȳ +
(
m

2 ȳ
+ 	
0

)

ε−1
0 pψ = 0, (15)

where

	 = 8(γ − 1)k

�

denotes the measure of thermal radiation,

� = �0a3
0

(γ − 1)σT 4
b

represents the rate of the convective energy flux and


0 =
ε0

(
M2

0 (1−b�0)

ε0
− 1

)

+ 1

M0(1 − b�0)
1
2

(
M2

0 (1−b�0)

ε0
− 1

) 1
2

.

Further, along ψ = constant, we have:

xȳ = (u2 − a2ε)

uv + a2ε
(
M2(1−b�)

ε
− 1

) 1
2

. (16)

Integrating Equation (15) with respect to ȳ, we get:

pψ = pψ0

(
y0

ȳ

)mε
−1
0
2

e	ξ0(y0−ȳ), (17)

where ξ0 = 
0ε
−1
0 and pψ0 denotes the limiting value

of pψ along ψ = 0 as ȳ → y0.
Taking derivative of (16) with respect to ψ and eval-

uating it behind the wavefront ψ = 0 and using (17),
we obtain:

xψ ȳ = 2ε0(1 − ε0) − (γ + ε0 + b̄(1 − ε0))M2
0

2�0ε0c2
0

(
M2

0 (1−b̄)
ε0

− 1

) 1
2

×
(
y0

ȳ

)mε
−1
0
2

e	ξ0(y0−ȳ) pψ0, (18)

where, b̄ is defined as b̄ = b�0. Equations (15) and (18)
are the transport equations for the discontinuities pψ

and xψ , which will be used to analyse the flow pattern
and behavior of the waves propagating into the disturbed
region.

4. Behavior of propagating waves

Integrating Equation (18) with respect to ȳ, we have:

xψ = 1 + 2ε0(1 − ε0) − (γ + ε0 + b̄(1 − ε0))M2
0

2�0ε0c2
0

(
M2

0 (1−b̄)
ε0

− 1

) 1
2

× (y0)
mε

−1
0
2 e	ξ0y0 pψ0

∫ y

y0

(z)−
mε

−1
0
2 e−	ξ0zdz. (19)

In the above Equation (19), we have used the boundary
condition xψ−0 = xψ |ψ=0− = xψ |ψ=0+ = 1.

We consider y = κ(x) to be the body contour equa-
tion in which the tangent to it remains parallel to the
velocity of the streamline at the leading edge of the
body. Along the stream line, we have:
dy

dx
= v

u
. (20)

Taking derivative of (20) with respect to ψ and evalu-
ating it behind ψ = 0, we obtain:
vψ0 = u0κ

′′
0 , (21)

where κ ′′
0 is the curvature of the top of the body.

In view of (10) and (21), (19) can be written into the
following form:

xψ = 1 + 2ε0(1 − ε0) − (γ + ε0 + b̄(1 − ε0))M2
0

2ε0(M2
0 (1 − b̄) − ε0)

×(y0)
mε

−1
0
2 M2

0 (1−b̄)κ ′′
0 e

	ξ0y0

∫ y

y0

(z)−
mε

−1
0
2 e−	ξ0zdz.

(22)

In Equation (22), since xψ is the Jacobian of the trans-
formation at just behind ψ = 0, so that if for some
y = yz , Jacobian vanishes, then the neighboring char-
acteristics of the family ψ = constant will intersect on
the wavefront ψ = 0 and this will cause to develop a
discontinuity in the solution V of the system (2) in the
form of a shock wave. In this case, if we consider Vψ is
finite at y = yz as xψ = 0, then, just behind the wave-
front ψ = 0, Vx = (Vψ/xψ) will be infinite, which
describes the wave propagation phenomenon.

Now, we shall discuss the significance of Equation
(22) and describe the supersonic flow of discontinuities
propagated into the medium and its behavior for dif-
ferent values of m i.e., m = 0 for plane beak case and
m = 1 for sharp-edged ring case. This phenomenon has
been shown in Figure 1.

Case I. Planar flow (m = 0): For m = 0, Equation (22)
takes the form:

xψ = 1 − κ ′′
b (0)

�
[1 − e−	ξ0(y−y0)], (23)
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Figure 1. Convergence of the characteristics for supersonic
planar and axisymmetric flow.

where � = 2	ξ0ε0[M2
0 (1 − b̄) − ε0][(γ + ε0 + b̄(1 −

ε0))M2
0 − 2ε0(1 − ε0)M2

0 (1 − b̄)]−1 > 0 and κ ′′
b (0)

stands for the value of radius of curvature at the tip of the
body, where the contour of the body starts bending. As
we earlier mention that the formation of shock depends
on the Jacobian xψ i.e., when xψ vanishes, shock will
form. From Equation (19), it is clearly observed that xψ

will vanish on the leading wavefront for y0 < y, which
is possible only whenκ ′′

b (0) > 0 withκ ′′
b (0) > �. When

κ ′′
b (0) ≤ �, this is the case where xψ remains positive

for y0 < y and resulting from that, the shock formation
is not possible on the leading wavefront. Thus, we see
that � plays an important role in shock formation. It
represents a critical level in such a manner that whenever
the radius of curvature κ ′′

b (0) surpasses this level at the
tip of the body, shock will form at a finite distance far
from the body.

Now, at the wavefront xψ = 0, we have vx = vψ/xψ .
From Equations (8), (14) and (23) form = 0, we obtain:

vx = c0M0(1 − b̄)
1
2 κ ′′

b (0)e−	ξ0(y−y0)

ε
1
2
0

[
1 − κ ′′

b (0)

�
(1 − e−	ξ0(y−y0))

] . (24)

Equation (24) describes the evolutionary process of
the propagating waves. Since, for κ ′′

b (0) > 0 with the
condition κ ′′

b (0) > �, shock will form and the corre-
sponding shock formation distance y = yz is given by:

yz = y0 + 1

	ξ0
log

{
κ ′′
b (0)

κ ′′
b (0) − �

}

. (25)

In Equation (24), the denominator becomes zero, while
the numerator remains finite, indicating that the velocity
gradient at the wavefront ψ = 0 becomes unbounded
at a distance y = yz , resulting in the termination of the
wave into a shock wave. Equation (25) shows that this
behavior coincides with the vanishing of xψ . The wave
remains compressive in case κ ′′

b (0) ≤ �, but the veloc-
ity gradient does not steepen. In contrast, vx along the

wavefront ψ = 0 diminishes or it becomes stationary
according as κ ′′

b (0) < � or κ ′′
b (0) = �, respectively,

and in this case, shock will not form on the leading
wavefront ψ = 0.

Case II. Axisymmetric flow (m = 1): In this case, we
consider that y = yz(x) represents a ring-shaped body
with a sharp-edged inlet, which initiates the initial per-
turbation running both inwards and outwards along the
characteristic lines.

For m = 1, Equation (22) can be rewritten as:

xψ = 1 − [−2ε0(1 − ε0) + (γ + ε0 + b̄(1 − ε0))M2
0 ]

2ε0(M2
0 (1 − b̄) − ε0)

× (y0)
ε
−1
0
2 M2

0 (1 − b̄)κ ′′
z (0)e	ξ0y0π, (26)

where

π =
∫ y

y0

(z)−
ε
−1
0
2 e−	ξ0zdz.

It is clear from Equation (26) that for y > y0, the
quantity within the square bracket is always positive
and <1. As a result, if κ ′′

z (0) is positive and exceeds
the critical value π−1, the Jacobian xψ will vanish,
resulting in the formation of shock. On the other hand,
if κ ′′

z (0) ≤ π−1, the value of xψ will always be >1,
indicating that no shock will ever form on the leading
wavefront. Tables 1 and 2 show the value of π for mag-
netic and non-magnetic cases for different values of 	,
respectively.

5. Results and discussion

In this section, we shall discuss the various parameter
effects on the propagating waves and discuss the pos-
sibilities of shock formation for both the cases (plane
beak case and sharp-edged ring case). From (24), we
see that for M0 ∼ ε0, shock formation distance is given
by:

yz ∼ y0

−
2

[
M2

0 (1−b̄)
ε0

− 1

]

[(γ + ε0 + b̄(1 − ε0))ε
2
0 − 2ε0(1 − ε0)](1 − b̄)

,

whereas for M0 � ε0,

yz ∼ y0 − 2ε0

[(γ + ε0 + b̄(1 − ε0))M2
0 − 2ε0(1 − ε0)]

.

It can be observed from the above expression that
the shock formation distance is a function of the Mach
number M0 i.e., if we increase the value of the Mach
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Table 1. Variation in the value of π for magnetic ideal and
non-ideal cases.

γ ε0 b̄ M2
0 	 π

1.4 1.6 0.0 0.8 0.173668
2.5 1.0 0.135855

1.2 0.106363
0.8 0.193949

3.5 1.0 0.125398
1.2 0.155901

1.4 1.6 0.1 0.8 0.160981
2.5 1.0 0.123606

1.2 0.949981
0.8 0.189555

3.5 1.0 0.151512
1.2 0.121186

Table 2. Variation in the value of π for non-magnetic ideal
and non-ideal cases.

γ ε0 b̄ M2
0 	 π

1.4 1.0 0.0 0.8 0.126074
2.5 1.0 0.920633

1.2 0.067318
0.8 0.140072

3.5 1.0 0.104957
1.2 0.0787336

1.4 1.0 0.1 0.8 0.119994
2.5 1.0 0.0865711

1.2 0.0625481
0.8 0.136397

3.5 1.0 0.101539
1.2 0.075679

number, corresponding to this increment, shock forma-
tion distance decreases. Hence, for increasing the value
of the Mach number, the time for the shock formation
will reduce.

Since κ ′′
b (0) < 0 corresponds to the situation when

the shape of the body has expansive corner at x = 0.
Therefore, for |κ ′′

b (0)| ≥ �, 24 yields:

vx =
−2	ξ0ε

2
0c0

[
M2

0 (1−b̄)
ε0

− 1

]

[(γ + ε0 + b̄(1 − ε0))M2
0 − 2ε0(1 − ε0)]M0

× e−	ξ0(y−y0)

1 − e−	ξ0(y−y0)
. (27)

From Equation (27), we can determine the velocity gra-
dient at the head of a Prandtl–Meyer expansion flow.

(a)

(b)

Figure 2. Effect of thermal radiation on the shock forma-
tion distance with (a) ε0 = 1.6, b = 0.1, y = 1.4 and (b)
ε0 = 1.6, b = 0.1, y = 1.67.

5.1 Analysis of the effects of thermal radiation on
shock formation process

In this section, we shall discuss the consequences of
the effect of thermal radiation on the shock forma-
tion distance and investigate the evolutionary process
of the propagating waves. Figure 2 depicts the effect
of thermal radiation on the shock formation distance
for (a) γ = 1.4 and (b) γ = 1.67. From Figure 2(a),
we observe that as we increase the value of parameter
	, shock formation distance will increase and leads to
increase in the time for the formation of shock. Also,
we noticed that as the Mach number increases, the
shock formation distance decreases, resulting in an early
shock formation. Thus, the behavior of the propagation
process under the thermal radiation effect and Mach
number effect is opposite. A similar result can be seen
from Figure 2(b), which shows the thermal radiation
effect for γ = 1.67. If we compare the results shown in
Figure 2(a and b), we observed that as we increase the
value of γ , shock formation distance decreases, result-
ing in an early shock formation i.e., yz is a decreasing
function of γ .

5.2 Analysis of an increase in the value of magnetic
parameter ε0

Figure 3(a and b) shows the magnetic field effect on the
shock formation distance for γ = 1.4 and γ = 1.67,



    1 Page 8 of 9 J. Astrophys. Astr.            (2024) 45:1 

respectively. Figure 3(a) reveals that an increase in the
value of ε0 enhances the shock formation distance. For
non-magnetic case (ε0 = 1.0), shock forms later as
compared to magnetic case. Similarly, in Figure 3(b),
we see that as we increase the value of ε0, shock forms
earlier. Also, if we increase the value of γ , shock for-
mation distance decreases i.e., an increase in the value
of the parameter γ leads to decrease in the time for
shock formation. In Figure 3(a and b), we found that the
flatness of the curve increases as an increase in the Mach
number. Thus, the behavior of the propagating waves
under the effect of magnetic field and Mach number are
same i.e., for increasing the value of Mach number or
magnetic field parameter ε0, shock formation distance
yz decreases. In the non-magnetic case, shock forma-
tion distance yz decreases rapidly as compared to the
magnetic case.

5.3 Analysis of an increase in the value of non-ideal
parameter b̄

Figure 4(a and b) shows the effect of non-ideal on the
shock formation distance for γ = 1.4 and γ = 1.67,
respectively. In Figure 4(a), it can be noticed that an
increase in the value of non-ideal parameter b̄ causes to
decrease the shock formation distance yz i.e., increase
in the value of b̄ reduces the time for shock formation.
Figure 4(b) shows the similar phenomenon as observed
from Figure 4(a), which is for γ = 1.4. Further, for
increasing the value of γ decrease in yz and an early
shock will form. Thus, we see that the effect of magnetic
field strength and the parameter of non-idealness are
similar, whereas in the case of thermal radiation, we
get different result. Hence, we found that an increase
in the value of parameter ε0 or b̄ causes to increase the
formation process of shock and increase in the value of
	 or Mach number M0 enhances the shock-formation
distance.

6. Summary and conclusions

The present study deals with the combined effect of
non-idealness and the radiative heat transfer effect on
the propagation of shock wave. The optically thin
approximation treats the effect of thermal radiation.
We have described what physical changes take place
when we change (increase or decrease) the values of
the parameters required for the motion. The fundamen-
tal differential equation (transport equations) governing
the growth and decay of disturbances propagated into
the medium is obtained using the wavefront analysis
method, which determines the distance at which the

(a)

(b)

Figure 3. Effect of magnetic field on the shock formation
distance with (a) φ = 0.8, b = 0.1, y = 1.4 and (b) φ = 0.8,
b = 0.1, y = 1.67.

(a)

(b)

Figure 4. Effect of non-idealness on the shock formation
distance with (a) φ = 0.8, ε0 = 1.6, y = 1.4 and (b) φ =
0.8, ε0 = 0.1, y = 1.67.
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characteristic curves intersect, and the conditions that
ensure no shock will ever form on the wavefront. It
is found that the shock formation completely relies on
the upstream flow Mach number M0, the magnetic field
parameter ε0 and initial body curvature η, which may be
either κ ′′

b (0)−1 or κ ′′
z (0)−1, non-ideal parameters b and

	, which represent the importance of thermal radiation.
It is observed that the presence of a magnetic field and
non-idealness reduces the time for shock formation i.e.,
increasing the magnetic field strength and the value of
the non-ideal parameter causes shock to form earlier,
whereas increasing the value of the Boltzmann number
delays the formation process of shock. In the absence
of thermal radiation parameter i.e., (	 = 0), the results
obtained in this study is similar with the results reported
in the recent work by Chaturvedi & Singh (2021). More-
over, the results analysed in this paper are in close
agreement with the results analysed by the authors in
Sharma et al. (1987), Singh et al. (2010, 2011, 2012)
and Chaturvedi et al. (2019a).
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