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Abstract. We have investigated the five-dimensional Bianchi type-III string cosmological models with dark
energy using the Saez–Ballester scalar-tensor theory of gravitation. To solve the field equations, we applied the
laws of volumetric expansions and assumed a scaling relation between the shear scalar σ and the expansion
scalar θ , which leads to a relationship between the metric potentials, i.e., D = Cr (where r is a non-zero
constant). We have considered both power-law model and exponential model and have discussed the physical
and kinematical parameters of these models.
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1. Introduction

According to multiple observations, including stud-
ies of type Ia supernovae (Filippenko & Riess 1998;
Perlmutter et al. 1999), the Sloan Digital Sky Sur-
vey (Tegmark et al. 2004) and the cosmic microwave
background data, the universe is currently undergoing
accelerated expansion. These findings provide strong
evidence for the existence of an accelerating universe.
According to these studies, the acceleration of the uni-
verse is caused by dark energy, a fluid with negative
pressure, even though it dominates the universe, more
research is needed to understand its mysterious origins
and behavior. The cosmological constant is described
as the energy density linked to empty space or as vac-
uum energy with a net pressure that drives the universal
expansion. The cosmological constant has been used to
represent a part of dark energy, although there are issues
with cosmic coincidence and fine-tuning. To compre-
hend the universal cosmic acceleration, scalar field
theories, such as quintessence, phantom, k-essence,
tachyon and quintom have been investigated. The vari-
able equation of state parameter (ω) can be used to
describe different dark energy theories. In the case of
ω = −1, it is mathematically evolved into the cosmo-
logical constant. Researchers have recently shown an
interest in many scalar-tensor theories. The analysis of

the scalar-tensor theories of gravity proposed by Brans
& Dicke (1961) and Saez & Ballester (1986), as well
as the f (R) and f (R, T ) theories of gravitation, are
important in explaining the dark energy models. In the
Brans & Dicke (1961) theory of gravity, we introduced a
scalar field (φ) that is coupled to the mass density of the
universe and is reciprocal to the time-varying gravita-
tional constant, G. In Saez & Ballester (1986) theory of
gravitation, the metric potentials are simply connected
to a dimensionless scalar field (φ). They have demon-
strated that the weak fields are adequately described by
this minimal coupling. Additionally, the Saez–Ballester
theory presents a possible solution to the problem
of missing matter in non-flat FRW cosmologies. A
lot of researchers have studied Saez–Ballester theory
of gravitation. Aditya & Reddy (2018) proposed an
anisotropic new holographic dark energy model within
the framework of Saez–Ballester theory of gravitation.
They investigated the implications of holographic dark
energy on the dynamics and expansion of the universe,
considering an anisotropic behavior. Chand & Mishra
(2016) investigated the Bianchi type-III cosmological
model within the framework of Saez–Ballester theory
of gravity in the presence of bulk viscous dark fluid.
The study explores the dynamics of the universe and
the impact of bulk viscosity on the evolution of the
cosmic scale factor. Naidu et al. (2012) studied a
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Bianchi type-III cosmological model with dark energy
within the framework of Saez–Ballester scalar-tensor
theory. They investigated the dynamical behavior of the
universe and the influence of dark energy on its evolu-
tion. Pradhan et al. (2013) investigated the dynamics
of accelerating Bianchi type-V cosmological models
with perfect fluid and heat flow within the framework of
Saez–Ballester theory of gravitation. The study explores
the role of perfect fluid and heat flow in the evolu-
tion of the universe and the possibility of achieving
accelerated expansion. Rao & Divya Prasanthi (2017)
investigated Bianchi type-I and type-III cosmological
models with modified holographic Ricci dark energy
in the framework of Saez–Ballester theory of gravita-
tion. The findings contribute to our understanding of the
interplay between modified holographic dark energy,
geometry and evolution of the universe.

The field equations for Saez–Ballester theory are
provided below:

Gi j − ωφn(φ,i φ, j −1
2gi jφ,k φ,k) = −Ti j (1)

and the equations are satisfied by the scalar field:

2φnφ
,i
;i + nφn−1φ,kφ

,k = 0, (2)

where Gi j is the Einstein tensor, Ti j represents the
energy-momentum tensor, ω is a dimensionless cou-
pling constant and the term’s comma (,) and semicolon
(;) denote partial and covariant differentiations, respec-
tively.

The equation for the conservation of energy can be
expressed as:

T i j
; j = 0. (3)

The analysis of data from WMAP and CMB sug-
gests that a small amount of anisotropy may be visible
during the early stages of the universe. Consequently,
the spatially homogeneous and anisotropic universe
has become a subject of interest among researchers.
Bianchi’s models have proven to be valuable tools in
understanding the anisotropic universe. The concept of
extra dimensions was discovered by Kaluza (1921) and
Klein (1926) through their work on unifying gravitation
and electromagnetism. Although the fifth dimension
remains small, resulting in our universe appearing four-
dimensional, it has become challenging to explain the
early evolution of the universe after the Big Bang explo-
sion. To address this issue, higher-dimensional models
have been developed to understand the early evolution
of the universe. The presence of extra dimensions can
help to solve problems related to flatness and horizon
by generating a large amount of entropy. Furthermore,

higher dimensions play a vital role in the develop-
ment of string theories and can affect the unification
of fundamental forces. This outcome is seen in lots
of authors who have studied higher-dimensional mod-
els. The study by Trivedi & Bhabor (2021) explores
the interplay among cosmic strings, dark energy and
the scalar field, providing insights into the dynamics of
the universe in higher dimensional framework. Katore
et al. (2010) studied the dynamics of domain walls and
their implications in the context of scalar-tensor theo-
ries, shedding light on the behavior of gravity and matter
interactions in higher-dimensional scenarios. Samanta
et al. (2013) explored the dynamics and evolution of the
universe considering the effects of bulk viscosity, pro-
viding insights into the behavior of string cosmologies
in higher-dimensional spacetimes.

Building on the research mentioned above, we have
conducted a study of the Bianchi type-III string cos-
mological universe with dark energy using the Saez–
Ballester theory of gravitation. The structure of this
paper is as follows: Section 2 provides the field equa-
tion for the Bianchi type-III universe, while Section 3
presents the solutions of the field equations obtained in
Section 2. Subsections 3.1 and 3.2 estimate the phys-
ical parameters of power-law and exponential models,
respectively. Section 4 offers a discussion of our find-
ings and finally, Section 5 presents the conclusions of
both power-law and exponential models.

2. Metric and field equations

The spacetime described by the Bianchi type-III metric
as:

ds2 = dt2 − A2dx2 − B2e−2mxdy2

− C2dz2 − D2dψ2, (4)

here, the metric potentials A, B,C and D in the Bianchi
type-III metric are functions of cosmic time t , while the
constant m is non-zero. We have assumed that x1 = x ,
x2 = y, x3 = z, x4 = ψ and x5 = t .

The energy-momentum tensor for the derived model
is expressed as:

Ti j = TCS
i j + T DE

i j , (5)

where the energy-momentum tensor is composed of the
energy-momentum tensors of cosmic string (TCS

i j ) and

dark energy (T DE
i j ). The energy-momentum tensor of

cosmic string is defined as:

TCS
i j = (ρ + p)uiu j − pgi j + λxi x j , (6)
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here, uiui = −xi xi = 1 and ui xi = 0, where xi repre-
sents the direction of cosmic strings along x-direction
and ui denotes the four-velocity vector. The fluid’s pres-
sure is denoted by p, the tension density of the string is
represented by λ and the rest energy density of strings
is given by ρ. Now:

T j (CS)
i = diag[−(p + λ), −p, −p, −p, ρ]. (7)

The energy-momentum tensor of dark energy is defined
as:

T DE
i j = (ρ + p)uiu j − pgi j , (8)

which finally takes the form of:

T j (DE)
i = diag[−ωx , −ωy, −ωz, −ωψ, 1]ρde, (9)

T j (DE)
i = diag[−ωde, −(ωde + β),

− (ωde + γ ), −(ωde + γ ), 1]ρde. (10)

In the above equation, the parameter ωde denotes
the equation of state (EoS) for dark energy and ρde
represents the density of dark energy. Additionally,
there are two skewness parameters β and γ , which
describe the deviations from ωde along the y, z and
ψ axes. The inclusion of deviations from the equation
of state parameter of dark energy along specific axes
in cosmological models serves to incorporate the pos-
sibility of anisotropy in the distribution of dark energy
(Yadav et al. 2011; Aditya & Reddy 2018). For sim-
plification of the solution, we assume ωdex = ωde and
ωdez = ωdeψ = ωde + γ . The Saez–Ballester field
Equations (1) and (2) for the metric (4) by using (5), (7)
and (10) can be written as:

B̈

B
+ C̈

C
+ D̈

D
+ ḂĊ

BC
+ Ċ Ḋ

CD
+ Ḃ Ḋ

BD
− ω

2
φ̇2φn

= −((p + λ) + ωdeρde), (11)

Ä

A
+ C̈

C
+ D̈

D
+ Ċ Ḋ

CD
+ ȦḊ

AD
+ ȦĊ

AC
− ω

2
φ̇2φn

= −(p + (ωde + β)ρde), (12)

Ä

A
+ B̈

B
+ D̈

D
+ Ȧ Ḃ

AB
+ Ḃ Ḋ

BD
+ ȦḊ

AD
− m2

A2 − ω

2
φ̇2φn

= −(p + (ωde + γ )ρde), (13)

Ä

A
+ B̈

B
+ C̈

C
+ Ȧ Ḃ

AB
+ ḂĊ

BC
+ ȦĊ

AC
− m2

A2 − ω

2
φ̇2φn

= −(p + (ωde + γ )ρde), (14)

Ȧ Ḃ

AB
+ ḂĊ

BC
+ Ċ Ḋ

CD
+ ȦḊ

AD
+ ȦĊ

AC
+ Ḃ Ḋ

BD

− m2

A2 + ω

2
φ̇2φn = ρ + ρde, (15)

Ȧ

A
− Ḃ

B
= 0, (16)

φ̈ + φ̇

(
Ȧ

A
+ Ḃ

B
+ Ċ

C
+ Ḋ

D

)
+ n

2

φ̇2

φ
= 0. (17)

The notation used in the equation implies that the
derivative with respect to cosmic time, t is denoted by
a dot above the corresponding variable.

2.1 Physical parameters

Spatial volume:

V = a4(t) = ABCD. (18)

Hubble parameter:

H = ȧ

a
= 1

4

(
Ȧ

A
+ Ḃ

B
+ Ċ

C
+ Ḋ

D

)
. (19)

The deceleration parameter:

q = d

dt

(
1

H

)
− 1. (20)

Scalar expansion:

θ = 4H =
(
Ȧ

A
+ Ḃ

B
+ Ċ

C
+ Ḋ

D

)
. (21)

Shear scalar:

σ 2 = 1

2

(
4∑

i=1

H2
i − 4H2

)

. (22)

Mean anisotropy parameter:

Ah = 1

4

4∑

i=1

(
Hi − H

H

)2

, (23)

here, the directional Hubble parameter in the x , y, z and
ψ directions is denoted by Hi .

3. Solution of field equations

By Equation (16), we get:

B = k A, (24)

where k is the constant of integration. If we take k = 1,
then we get:

B = A. (25)

By using Equation (25), the field Equations (11)–(17)
and the energy conservation Equation (3) lead to the
following equations:

Ä

A
+ C̈

C
+ D̈

D
+ ȦĊ

AC
+ Ċ Ḋ

CD
+ ȦḊ

AD
− ω

2
φ̇2φn

= −((p + λ) + ωdeρde), (26)
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Ä

A
+ C̈

C
+ D̈

D
+ ȦĊ

AC
+ Ċ Ḋ

CD
+ ȦḊ

AD
− ω

2
φ̇2φn

= −(p + (ωde + β)ρde), (27)

2
Ä

A
+ D̈

D
+ 2

ȦḊ

AD
+

(
Ȧ

A

)2

− m2

A2 − ω

2
φ̇2φn

= −(p + (ωde + γ )ρde), (28)

2
Ä

A
+ C̈

C
+ 2

ȦĊ

AC
+

(
Ȧ

A

)2

− m2

A2 − ω

2
φ̇2φn

= −(p + (ωde + γ )ρde), (29)

2
ȦĊ

AC
+ 2

ȦḊ

AD
+ Ċ Ḋ

CD
+

(
Ȧ

A

)2

− m2

A2 + ω

2
φ̇2φn

= ρ + ρde, (30)

φ̈ + φ̇

(
2
Ȧ

A
+ Ċ

C
+ Ḋ

D

)
+ n

2

φ̇2

φ
= 0, (31)

ρ̇ + 4H(p + ρ) + λH1 + ˙ρde + 4H(ωde + 1)ρde

+ (βH2 + γ (H3 + H4))ρde = 0. (32)

By subtracting Equation (27) from Equation (26), we
have:
βρde = λ. (33)

Equation (32) represents the energy conservation
equation involving cosmic strings (with energy density
ρ) and dark energy (with energy density ρde). Assuming
non-interacting behavior between cosmic strings and
dark energy, Equation (32) can be separated into three
individual Equations (34)–(36).

ρ̇ + 4H(p + ρ) + λH1 = 0, (34)

˙ρde + 4H(ωde + 1)ρde = 0, (35)

βH2 + γ (H3 + H4) = 0. (36)

Equation (34) corresponds to the energy conservation
equation for cosmic strings. Equation (35) represents
the energy conservation equation for dark energy. Equa-
tion (36) represents a constraint equation that arises
when assuming non-interacting behavior between cos-
mic strings and dark energy. These equations describe
the energy conservation and interaction properties of
cosmic strings and dark energy in the universe (Aditya
& Reddy 2018; Trivedi & Bhabor 2021).

By subtracting Equation (29) from Equation (28) and
solving it, we get:

Ḋ

D
− Ċ

C
= k1

a4 , (37)

where k1 is the constant of integration.
The system of field Equations (26)–(31) consists of

six independent equations with eleven unknowns. These

equations are highly non-linear, making it challenging
to find a determinate solution. To simplify the problem,
we make two physical plausible assumptions:

1. We have assumed a scaling relation between the
shear scalar σ and the expansion scalar θ (Collins
et al.1980), which leads to a relationship between
the metric potentials. As a result, we can take:

D = Cr , (38)

where r �= 0 is a constant.
2. We have used two different volumetric expansion

laws (Akarsu & Kılınç 2010).
Volume (V ) for power-law model:

V = c1t
4m (39)

and volume (V ) for the exponential model:

V = c1e
4mt , (40)

where c1 and m are positive constants. These
models cover all possible expansion histories,
including exponential (Koivisto & Mota 2008)
and power-law expansion (Golovnev et al. 2008).
The models with the power-law form < 1 exhibit
accelerating volumetric expansion, while those
for m = 1 exhibit volumetric expansion with
constant velocity. The models for m > 1 exhibit
decelerating volumetric expansion. Therefore,
the anisotropic fluid studied in this work can be
considered in the context of DE in the models
with power-law expansion for m > 1.

3.1 Power-law model

Using Equations (25), (37)–(39), we get the metric
potentials:

A = B = c2
1t

2mk
r+1

2(1−r)
2 exp

{
k1(r + 1)t1−4m

2c1(1 − r)(1 − 4m)

}
,

(41)

C = k
1

r−1
2 exp

{
k1t1−4m

c1(r − 1)(1 − 4m)

}
, (42)

D = k
r

r−1
2 exp

{
k1r t1−4m

c1(r − 1)(1 − 4m)

}
. (43)

The Hubble parameter:

H = m

t
. (44)

The directional Hubble parameters are:

H1 = H2 = 2m

t
+ k1(r + 1)t−4m

2c1(1 − r)
, (45)
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H3 = k1t−4m

c1(r − 1)
, (46)

H4 = k1r t−4m

c1(r − 1)
. (47)

The deceleration parameter:

q = 1

m
− 1, where m > 1. (48)

The expansion scalar:

θ = 4H = 4m

t
. (49)

The shear scalar:

σ 2 = 2m2

t2 + k2
1(3r2 + 2r + 3)t−8m

4c2
1(r − 1)2

+ 2mk1(r + 1)t−1−4m

c1(1 − r)
. (50)

The anisotropy parameter:

Ah = σ 2

2H2 = 1 + k2
1(3r2 + 2r + 3)t2(1−4m)

8c2
1m

2(r − 1)2

+ k1(r + 1)t1−4m

c1m(1 − r)
. (51)

The ratio:

σ 2

θ2 = 1

8
+ k2

1(3r2 + 2r + 3)t2(1−4m)

64c2
1m

2(r − 1)2

+ k1(r + 1)t1−4m

8c1m(1 − r)
. (52)

By Equations (2) and (44), the scalar field (φ) is given
by:

φ
n+2

2 = φ0
(n + 2)t1−4m

2(1 − 4m)
+ k3(n + 2)

2
, (53)

where φ0 and k3 are constant of integration.
To determine the string density, we make use of the

assumption. These assumptions allow us to get simpler
equations and easier analytical solutions (Reddy & Rao
2006; Adhav et al. 2009).

λ = αρ, (54)

p = χρ, (55)

where α and χ are non-evolving state parameters.
Solving Equation (34) by using Equations (44), (45),

(54) and (55), we get:

ρ = ρ0t
−2m(2χ+α+2) exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
,

(56)

ρ0 represents the rest energy density at the present
epoch.
String pressure:

p = χρ0t
−2m(2χ+α+2)

× exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
. (57)

String tension density:

λ = αρ0t
−2m(2χ+α+2) exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
.

(58)

Solving Equation (30), by using Equations (41), (44)–
(47), (53) and (56), the dark energy density is given by:

ρde = 4m2

t2 − 2mk1(r + 1)t−1−4m

c1(r − 1)

+ t−8m
(

ωφ2
0

2
− k2

1(3r2 + 2r + 3)

4c2
1(r − 1)2

)

− m2k
r+1
r−1
2 t−4m

c1
exp

{
k1(r + 1)t1−4m

c1(r − 1)(1 − 4m)

}

− ρ0t
−2m(2χ+α+2) exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
.

(59)

Solving Equation (35), by using Equations (44) and
(59), the EoS parameter is given by:

ωde = 1

ρde

[
−4m2

t2 + 2m

t2 − t−4m
(
m2k

r+1
r−1
2

c1

+ k1(r + 1)(1 + 4m)

2c1(r − 1)t
− 2mk1(r + 1)

c1(r − 1)t

)

+ t−8m
(

ωφ2
0

2
− k2

1(3r2 + 2r + 3)

4c2
1(r − 1)2

)

+ t1−8m mk1(r + 1)k
r+1
r−1
2

4c2
1(r − 1)

+ mk1(r + 1)k
r+1
r−1
2 t1−8m

4c2
1(r − 1)

×
(

1 + exp

{
k1(r + 1)t1−4m

c1(r − 1)(1 − 4m)

})

− ρ0

(
χ + α

2
− αk1(r + 1)t

8mc1(r − 1)

)

× t−2m(2χ+α+2) exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}]
. (60)
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By Equations (33) and (36), using Equations (45)–
(47), (58) and (59), the skewness parameters are given
by:

β = ρ0

ρde
αt−2m(2χ+α+2) exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
,

(61)

γ = ρ0

ρde
αt−2m(2χ+α+2)

(
1

2
− 2mc1(r − 1)t4m−1

k1(r + 1)

)

× exp

{
αk1(r + 1)t1−4m

2c1(r − 1)(1 − 4m)

}
. (62)

3.2 Exponential model

Using Equations (25), (37), (38) and (40), we get the
metric potentials:

A = B = c
1
2
1 k

r+1
2(1−r)
2 exp

{
2mt + k1(r + 1)e−4mt

8mc1(r − 1)

}
,

(63)

C = k
1

r−1
2 exp

{
k1e−4mt

4mc1(1 − r)

}
, (64)

D = k
r

r−1
2 exp

{
k1re−4mt

4mc1(1 − r)

}
. (65)

The Hubble parameter:

H = m. (66)

The directional Hubble parameters are:

H1 = H2 = 2m − k1(r + 1)e−4mt

2c1(r − 1)
, (67)

H3 = k1e−4mt

c1(r − 1)
, (68)

H4 = k1re−4mt

c1(r − 1)
. (69)

The deceleration parameter:

q = −1. (70)

The expansion scalar:

θ = 4H = 4m. (71)

The shear scalar:

σ 2 = 1

2

(
4m2 + k2

1(3r2 + 2r + 3)e−8mt

2c2
1(r − 1)2

− 4mk1(r + 1)e−4mt

c1(r − 1)

)
. (72)

The anisotropy parameter:

Ah = σ 2

2H2 = 1 + k2
1(3r2 + 2r + 3)e−8mt

8c2
1m

2(r − 1)2

− k1(r + 1)e−4mt

c1m(r − 1)
. (73)

The ratio:

σ 2

θ2 = 1

8
+ k2

1(3r2 + 2r + 3)e−8mt

64c2
1m

2(r − 1)2
− k1(r + 1)e−4mt

8c1m(r − 1)
.

(74)

By Equation (2) and using Equation (66), the scalar
field (φ) is given by:

φ
n+2

2 = −φ0
(n + 2)e−4mt

8m
+ k3(n + 2)

2
, (75)

where φ0 and k3 are constant of integration.
To determine the string density, we make use of the

assumption (Reddy & Rao 2006; Adhav et al. 2009).

λ = αρ, (76)

p = χρ, (77)

where α and χ are non-evolving state parameters.
Solving Equation (34) by using Equations (66), (67),

(76) and (77), we get:

ρ = ρ0 exp

{
−2m(2χ + α + 2)t − αk1(r + 1)e−4mt

8mc1(r − 1)

}
,

(78)

where ρ0 denotes the rest energy density at the present
epoch.
String pressure:

p = χρ0 exp

{
− 2m(2χ + α + 2)t

− αk1(r + 1)e−4mt

8mc1(r − 1)

}
. (79)

String tension density:

λ = αρ0 exp

{
−2m(2χ + α + 2)t−αk1(r + 1)e−4mt

8mc1(r − 1)

}
.

(80)

Solving Equation (30), by using Equations (63),
(66)–(69), (75) and (78), the dark energy density is given
by:

ρde = 4m2 + 2mk1(r + 1)e−4mt

c1(r − 1)

+ e−8mt
(

ωφ2
0

2
− k2

1(3r2 + 2r + 3)

4c2
1(r − 1)2

)
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− m2k
r+1
r−1
2

c1
exp

{
−4mt − k1(r + 1)e−4mt

4mc1(r − 1)

}

− ρ0 exp

{
− 2m(2χ + α + 2)t

− αk1(r + 1)e−4mt

8mc1(r − 1)

}
. (81)

Solving Equation (35), by using Equations (66) and
(81), the EoS parameter is given by:

ωde = 1

ρde

[
−4m2 + e−8mt

(
ωφ2

0

2

− k2
1(3r2 + 2r + 3)

4c2
1(r − 1)2

)
+ mk1(r + 1)k

r+1
r−1
2 e−4mt

4c2
1(r − 1)

× exp

{
−4mt− k1(r + 1)e−4mt

4mc1(r − 1)

}

− ρ0

(
χ + α

2
− αk1(r + 1)e−4mt

8mc1(r − 1)

)

× exp

{
− 2m(2χ + α + 2)t

− αk1(r + 1)e−4mt

8mc1(r − 1)

}]
. (82)

By Equations (33) and (36), and using Equations
(67)–(69), (80) and (81), the skewness parameters are
given by:

β = α
ρ0

ρde
exp

{
− 2m(2χ + α + 2)t

− αk1(r + 1)e−4mt

8mc1(r − 1)

}
, (83)

γ = ρ0

ρde
α

(
1

2
− 2mc1(r − 1)e4mt

k1(r + 1)

)

× exp

{
−2m(2χ + α + 2)t − αk1(r + 1)e−4mt

8mc1(r − 1)

}
.

(84)

4. Results and discussion

The variations of the string tension density (λ) over time,
t are depicted in Figures 1 and 2. These figures demon-
strate that at the early stage of the universe, when time
t approaches zero, the value of λ can be either negative
or positive, depending on the value of α. At a later time,
as t → ∞, λ converges towards zero. It is noteworthy
that when α = 0 then λ = 0 for both models. Based on
these observations, we can infer that the universe was
initially dominated by strings, and that at a later time,

Figure 1. For the power-law model, the graph between
string tension density, λ and cosmic time, t (giga years) for
m = 2, r = 2, χ = −1, k1 = −1, c1 = 1 and ρ0 = −1.

Figure 2. For the exponential model, the graph between
string tension density, λ and cosmic time, t (giga years) for
m = 2, r = 2, χ = −1, k1 = −1, c1 = 1 and ρ0 = 1.

strings will become less dominant, eventually vanishing
in the universe.

These findings provide important insights into the
evolution of the universe, particularly during the string-
dominated era. The results suggest that the effects of
strings were significant in the early universe, but their
influence has decreased over time (Letelier 1981, 1983;
Akarsu & Kılınç 2010).

Equations (59) and (81) express the dark energy den-
sity (ρde) in the power-law and exponential models,
respectively. In the power-law model, ρde → −∞ at
the initial epoch of time, and converges towards zero as
time t → ∞. These findings are supported by Letelier
(1981, 1983) and are shown in Figure 3. Similarly, in the
exponential model, the dark energy density approaches
20.67 at the initial epoch of time and eventually con-
verges towards 16 as t → ∞ (Figure 4). Notably, in



   78 Page 8 of 10 J. Astrophys. Astr.           (2023) 44:78 

Figure 3. For the power-law model, the graph between dark
energy density, ρde and cosmic time, t (giga years) form = 2,
r = 2, χ = − 1

2 , α = 1, ω = 2 and k1 = k2 = c1 = φ0 =
ρ0 = 1.

Figure 4. For the exponential model, the graph between
dark energy density, ρde and cosmic time, t (giga years) for
m = 2, r = 2, χ = − 1

2 , α = 1, ω = 2 and k1 = k2 = c1 =
φ0 = ρ0 = 1.

both the models, the dark energy density remains pos-
itive throughout the evolution. This suggests that the
dark energy density dominates the string density.

Overall, these findings suggest that the universe is
dominated by dark energy density, and at an early stage,
the universe was driven by a negative dark energy den-
sity (Bonnor 1989; Farnes 2018; Malekjani et al. 2023).
However, as time progressed, the universe transitioned
towards a positive dark energy density. In the case of
α = 0, our model predicts the existence of a universe
dominated solely by dark fluid, which provides a valu-
able framework for further exploration of the nature of
dark energy density and its relationship to other funda-
mental aspects of the universe.

In both the power-law and exponential models, the
EoS parameter of dark energy (ωde) varies with time,
which is consistent with recent observations of Tegmark
et al. (2004). Figures 5 and 6 demonstrate that in both

Figure 5. For the power-law model, the graph between the
EoS parameter, ωde and cosmic time, t (giga years) form = 2,
r = 2, χ = − 1

2 , α = 1, ω = 2 and k1 = k2 = c1 = φ0 =
ρ0 = 1.

Figure 6. For the exponential model, the graph between
the EoS parameter, ωde and cosmic time, t (giga years) for
m = 2, r = 2, χ = − 1

2 , α = 1, ω = 2 and k1 = k2 = c1 =
φ0 = ρ0 = 1.

models, ωde initially has positive values that gradu-
ally decrease over time and eventually approach values
of −0.75 and −1, respectively. This indicates that the
universe has undergone different phases, such as matter-
dominated (ωde = 0), quintessence (ωde > 1) and
phantom fluid-dominated (ωde < 1) phases.

Therefore, we can conclude that at an early stage,
the universe was dominated by matter, and as time
progressed, it underwent a transition to a vacuum fluid-
dominated universe.

Our analysis of the power-law and exponential mod-
els reveals interesting insights into the expansion and
shear properties of the universe. In the power-law
model, we found that the expansion scalar (θ ) and Hub-
ble parameter (H ) are infinite at time t = 0, indicating
the maximum value of Hubble’s parameter and accel-
erated expansion of the universe. However, as time
progresses, both θ and H decrease gradually and even-
tually become zero when t → ∞. This implies that
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Figure 7. For the power-law model, the graph among Hub-
ble parameter (H ), expansion scalar (θ ), shear scalar (σ ) and
cosmic time, t (giga years) for m = 2, r = 2, k1 = 1 and
c1 = 1.

the universe expands with time, but the rate of expan-
sion decreases as time increases. Additionally, we found
that the shear scalar σ → ∞ at the initial epoch, but
decreases with time and becomes zero in the late uni-
verse, indicating that the universe obtained in this model
is shear-free at the late time. Also, as t → ∞, the ratio
σ 2

θ2 = 1
8 �= 0 form > 1

4 . Hence, this model is anisotropic

for large values of t when m > 1
4 (Figure 7) (Priyoku-

mar & Jiten 2021; Daimary & Roy Baruah 2022; Mete
& Deshmukh 2022).

On the other hand, in the exponential model, we found
that the expansion scalar (θ ) and Hubble parameter (H )
are constant, indicating that the universe is expanding
at the same rate from the beginning. Additionally, we
found that the shear scalar (σ ) is 0.75 at the initial epoch,
increases with time, and becomes constant in the late
universe, indicating that the universe obtained in this
model is neither shear-free at the initial epoch nor will
be in the late time. Also as t → ∞, the ratio σ 2

θ2 = 1
8 �= 0

form > 0, indicating the model does not attain isotropy
(Figure 8) (Priyokumar & Jiten 2021; Daimary & Roy
Baruah 2022; Mete & Deshmukh 2022).

The deceleration parameter (q) is related to the rate
at which the expansion of the universe is slowing down.
If q is negative, as in both models, this means that the
expansion of the universe is accelerating rather than
slowing down.

In the power-law model, since 1 + q > 0, the expan-
sion is accelerating from the initial singularity at t = 0
and continues to accelerate as time increases (Figure 9).
In the exponential model, the value of q remains con-
stant and negative (q = −0.5), which means that the
universe is expanding at a constant rate from the begin-
ning of its expansion (Figure 9). The power-law model

Figure 8. For the exponential model, the graph among
Hubble parameter (H ), Expansion scalar (θ ), Shear scalar
(σ ) and cosmic time, t (giga years) for m = 2, r = 2, k1 = 1
and c1 = 1.

Figure 9. The graph between the deceleration parameter
(q) and variable, m.

describes a universe that begins at an initial singularity
with zero volume at time t = 0. As time progresses,
the universe expands and when t approaches infinity,
the volume V also approaches infinity. This behavior is
described by Equation (39) for volume V in the power-
law model. In the exponential model, the expression of
volume, V as obtained in Equation (40), shows that the
model universe does not start from zero volume at the
initial epoch, but expands as time increases. Addition-
ally, when t → ∞, V → ∞.

This difference in the behavior of the volume in
two models is a significant distinction. The power-law
model predicts that the universe started from a singu-
larity and then expanded, while the exponential model
does not have an initial singularity. This has important
implications for the nature and origin of the universe.
The power-law model suggests a finite age of the
universe, while the exponential model suggests an infi-
nite age. The absence of an initial singularity in the
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exponential model may be seen as a more appealing
feature since it avoids the conceptual difficulties asso-
ciated with a singularity.

5. Conclusions

From the analysis of the power-law and exponential
models, we can draw the following conclusions:

• Both models show that dark energy density dom-
inates the string density throughout the evolution
of the universe.

• The equation of state parameter, ωde is found to
be time-varying in both models, ωde initially has
positive values that gradually decrease over the
time and eventually approach ωde ≥ −1. This is
consistent with recent observations.

• The power-law model shows that the universe
begins with an initial singularity at time t = 0
and expands with time, but the rate of expansion
slows down as time increases, and the expansion
stops at t → ∞. The model also exhibits accel-
erated expansion when 1 + q > 0.

• The exponential model shows that the universe
starts from a non-zero volume at the initial epoch
and expands at a constant rate from the beginning.
The model exhibits constant acceleration when
1 + q = 0.

• Both models predict different phases of the uni-
verse based on the value of the equation of state
parameter, ωde, i.e., matter-dominated universe
(ωde = 0), quintessence (ωde > 1) and phantom
fluid-dominated universe (ωde < 1).

In summary, the power-law and exponential models
provide insight into the behavior of the universe’s evo-
lution and expansion under the influence of dark energy.
These models can help in understanding the current state
of the universe and provide a framework for further
studies and observations.
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