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Abstract. We study the effect of heating–cooling imbalance on slow magnetohydrodynamic waves in solar

coronal loops with time-varying background temperature in the presence of thermal conduction, optically

thin radiation and heating. The MHD equations governing the plasma motion are solved numerically to

examine the effects of heating–cooling imbalance on slow waves in the presence of thermal conduction and

radiation. It is found that the amplitude of perturbed velocity decreases in the case of increasing background

temperature, whereas the perturbed velocity amplitude increases in the case of decaying background tem-

perature. The heating–cooling imbalance influences the damping of slow waves. Damping of waves is

stronger for characteristic time s ¼ 1000 s than the damping for s ¼ 3000 s in both time-varying background

temperature plasmas.
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1. Introduction

Over the last two decades, substantial progress has

been made in observations of MHD waves in the solar

atmosphere due to appearance of new observational

facilities. Slow MHD waves have been detected in

coronal loops by SOHO/EIT (Berghmans & Clette

1999; De Moortel et al. 2002) and SOHO/SUMER

observations (Ofman & Wang 2002; Wang et al.
2003), in polar plumes by UVCS/SOHO (Ofman et al.
1997) and EIT/SOHO observations (Ofman et al.
1999). These observations of MHD waves motivate

the development of various theoretical models. In the

absence of coronal heating, plasma starts to cool by

various mechanisms. The damping mechanisms for

slow waves are caused by dissipative effects, namely,

thermal conduction, compressive viscosity and radia-

tion. De Moortel & Hood (2003) studied the damping

of slow MHD waves in a homogeneous medium by

taking into account thermal conduction and

compressive viscosity as the damping mechanisms.

The behaviour of propagating slow MHD waves in a

radiatively cooling homogeneous plasma is investi-

gated by Morton et al. (2010). They found that cool-

ing causes the damping of propagating slow MHD

waves. Al-Ghafri et al. (2014) studied the effect of

cooling on standing slow MHD waves in hot coronal

loops in the presence of thermal conduction and

showed that the oscillation period increases with time

due to the effect of plasma cooling. The amplitude of

oscillations increases in relatively cool coronal loops

due to plasma cooling but damping rate enhances in

very hot coronal loop oscillations by the cooling. The

effect of varying temperature or density background

on slow MHD waves has been investigated by several

researchers (Aschwanden & Terradas 2008; Ruder-

man 2011; Al-Ghafri & Erdélyi 2013). The propaga-

tion and damping of slow MHD waves in flowing

viscous coronal plasma have been studied by Kumar

et al. (2016). They showed that the amplitude of

velocity perturbation and damping time of slow waves

decrease with increase in the value of Mach number.
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Flow causes an increase in the period of slow waves

and phase shift in the perturbed velocity amplitude.

Ballester et al. (2016) studied the effect of time-de-

pendent background temperature on prominence

oscillations and found that the period of slow waves

decreases with time and amplitude of velocity per-

turbations is damped when background temperature

increases with time whereas the period of slow waves

increases with time and amplitude of velocity pertur-

bations grows when background temperature decrea-

ses with time. Kolotkov et al. (2019) studied the

mechanism for the damping of standing slow waves in

the solar corona by the misbalance of some heating

and cooling processes. They discussed the wave

dynamics in the presence of heating, radiative cooling

and thermal conduction and found that the wave

dynamics is highly sensitive to the characteristic

timescales of heating–cooling function. Zavershinskii

et al. (2019) studied the role of heating–cooling

imbalance in the formation of quasi-periodic slow

MHD waves. They have shown that a broadband

impulsive driver may excite the formation of

quasiperiodicity in slow MHD modes. Recently, Pra-

sad et al. (2021a) have explored the effect of thermal

conductivity, compressive viscosity and radiative

cooling with and without heating–cooling imbalance

on the phase shift of slow waves and found that phase

difference is highly dependent on the form of heating

function chosen. In an another study, Prasad et al.
(2021b) discussed the role of compressive viscosity

and thermal conduction on damping of slow waves

with and without heating–cooling imbalance in solar

coronal loops. They found that damping of funda-

mental mode of oscillations in shorter and super-hot

loops enhances significantly with the inclusion of

compressive viscosity along with thermal conductivity

and pointed out that in the presence of heating–cool-

ing, thermal conductivity plays a dominant role. So,

we aim to extend the work of Ballester et al. (2016) to

investigate the effect of heating–cooling imbalance on

the behaviour of slow MHD waves in an unbounded

solar plasma in which background temperature varies

with time by considering thermal conduction and

optically thin radiation as damping mechanisms.

In this paper, we study the effect of heating–cooling

imbalance on slow magnetohydrodynamic waves in

solar coronal loops taking into account time-varying

background temperature and optically thin radiation

and thermal conduction. The plan of the paper is as

follows. In Section 2, we model the problem for

studying slow waves in solar coronal loops in terms of

basic governing equations. We linearise the basic

equations and then Fourier decompose to solve them.

In Section 3, we numerically solve the equations to

show the temporal behaviour of normalised velocity

amplitude of slow waves for time-varying background

temperature in interesting typical situations arising in

solar coronal loops and discuss the results obtained.

2. The model and governing equations

We consider solar coronal plasma with time-varying

background temperature in the presence of thermal

conduction, optically thin radiation and heating per-

meated by a uniform magnetic field which is aligned

along the z-axis. The governing MHD equations

describing the solar coronal plasma motion are mass

conservation equation, momentum conservation

equation, induction equation, energy equation, ideal

gas equation and solenoid constraint are given as

follows (Priest 2014; Ballester et al. 2016).

The mass conservation equation:

oq
ot

þr � ðqvÞ ¼ 0: ð1Þ

The momentum conservation equation:

q
o

ot
þ v � r

� �
vþrp ¼ ðr � BÞ � B

l0

: ð2Þ

The induction equation:

oB

ot
¼ r� ðv� BÞ: ð3Þ

The energy equation:

R

~l
qc

o

ot

T

qc�1
þ ðv � rÞ T

qc�1

� �
¼ �ðc� 1ÞL: ð4Þ

The ideal gas equation:

p ¼ R

~l
qT : ð5Þ

Solenoidal constrain:

r � B ¼ 0: ð6Þ

Here v, B, q, p and T denote the velocity, magnetic

field, density, gas pressure and temperature, respec-

tively; R is gas constant, ~l is mean molecular weight,
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c is the ratio of specific heats and l0 is the magnetic

permeability of free space. The symbol L is given by

L ¼ �r � ðjkrTÞ þ Lr � H; ð7Þ

comprising radiation and heating terms Lr and H,

respectively. The first term in Equation (7) represents

the thermal conduction term where the symbol jk
denotes the component of conductivity tensor along

the magnetic field and it is approximated in solar

atmosphere as jk ¼ j0T
5=2
0 ¼ 10�11T

5=2
0 W m�1 K�1.

Following Ballester et al. (2016), we assume that

radiation term Lr is proportional to plasma tempera-

ture, that is, Lr ¼ aT . The heating term is H ¼ hqbTc,

where b and c are constants. For heating by coronal

current dissipation (b ¼ 1 and c ¼ 1), the heating

function H can be written as H ¼ hqT . The back-

ground magnetic field B0 is considered to be uniform

and horizontal, B0 ¼ B0ẑ. The background state for

this problem can be described as

T0 ¼ T0ðtÞ; p0 ¼ p0ðtÞ; q0 ¼ const:; B0 ¼ const:

ð8Þ

Here T0, p0, q0 and B0 are the background quantities

representing the temperature, pressure, density and

magnetic field, respectively. Assuming that there is no

background flow, the MHD equations determining the

background plasma state reduce to

q0 ¼ const:; v0 ¼ 0; rp0 ¼ 0; p0 ¼ R

~l
q0T0;

R

~l
q0

dT0

dt
¼ �ðc� 1ÞL: ð9Þ

In equilibrium state, Lr ¼ aT0ðtÞ. Imposing T0i as the

initial temperature, we obtain from Equation (9)

T0 ¼ T0iexp
�t

s

� �
; ð10Þ

where s ¼ ðRq0Þ=ððc� 1Þ~lða� hq0ÞÞ is the charac-

teristic time that governs the rate at which plasma

temperature is changing.

Considering small perturbations from the equilib-

rium, the field quantities can be written as

B ¼ B0 þ B1ðr; tÞ; v ¼ 0þ v1ðr; tÞ;
p ¼ p0ðtÞ þ p1ðr; tÞ; q ¼ q0 þ q1ðr; tÞ;
T ¼ T0ðtÞ þ T1ðr; tÞ

where the subscripts ‘0’ and ‘1’ refer to equilibrium

and perturbed quantities, respectively.

Taking into consideration the motion and propa-

gation in the plane, the linearised MHD equations are

oq1

ot
þ q0

ov1x

ox
þ ov1z

oz

� �
¼ 0; ð11Þ

q0

ov1
ot

¼ �rp1 þ
1

l0

ðr � B1Þ � B0; ð12Þ

oB1x

ot
¼ B0

ov1x

oz
; ð13Þ

oB1z

ot
¼ �B0

ov1x

ox
; ð14Þ

R

~l
q1

oT0

ot
þ q0

oT1

ot
þ ðc� 1Þq0T0

ov1x

ox
þ ov1z

oz

� �� �

¼ �ðc� 1ÞðaT1 � j0T
5=2
0 r2T1 � hq0T1 � hq1T0Þ;

ð15Þ

p1 ¼ R

~l
ðq0T1 þ q1T0Þ: ð16Þ

Here we have considered the heating by coronal cur-

rent dissipation so the heating function H is taken as

H ¼ hqT . As we aim to study slow waves, we con-

sider the perturbed velocity component v1z, parallel

wave number kz and T0ðtÞ only and take perpendicular

wave number kx ¼ 0 in the following analysis. So the

spatial and temporal dependence of the perturbed

quantities can be expressed as

f1ðx; z; tÞ ¼ f1ðtÞ eikzz; ð17Þ

where f1ðtÞ is time-dependent amplitude of the per-

turbations. Using Equation (17), the linearised Equa-

tions (11)–(16) become

oq1

ot
¼ �ikzq0v1z; ð18Þ

ov1z

ot
¼ �ikzp1

q0

; ð19Þ

q1

oT0

ot
þ q0

oT1

ot
þ iðc� 1Þq0T0kzv1z ¼ � q0T1

s

� ðc� 1Þ
~lj0T

5=2
0 k2

z T1

R
þ ðc� 1Þ ~lhq1T0

R
; ð20Þ

p1 ¼ R

~l
ðq0T1 þ q1T0Þ: ð21Þ

System of Equations (18)–(21) is the required set of

equations in order to study the effect of heating–

cooling imbalance on slow waves propagating in time-

varying background temperature plasma with thermal

conduction and optically thin radiation. If we consider
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the constant heating, the above system of Equa-

tions (18)–(21) reduces to the system of Equa-

tions (19)–(22) of Ballester et al. (2016).

3. Results and discussion

We solve the above set of Equations (18)–(21)

numerically for an interesting situation in coronal

loops having density q0 ¼ 5 � 10�11 kg m�3 and

temperature T0i ¼ 10;000 K. We set the initial con-

ditions as v1zð0Þ ¼ 1, q1ð0Þ ¼ 0 and T1ð0Þ ¼ 0 to

study the effect of heating–cooling imbalance on slow

waves. We consider heating function H for two cases

by taking (i) H ¼ constant and (ii) H ¼ hqT . Varia-

tions of normalised velocity amplitudes with time for

increasing and decreasing time-dependent background

temperatures with characteristic time s ¼ 1000 s,

3000 s taking heating H ¼ constant (blue) and H ¼
hqT (red) in the presence of thermal conduction are

shown in Figures 1–4.

The temporal behaviour of normalised perturbed

velocity of slow wave for considered coronal plasma

structure whose background temperature increases

with time in the case of s ¼ 3000 s, H ¼ constant and

H ¼ hqT is shown in Figure 1. It is observed from

Figure 1 that heating–cooling imbalance for different

H influences the damping of slow mode and it does

not alter the period of slow mode. Amplitudes of

velocity decrease with the increase in time. Figure 2

shows the behaviour of normalised perturbed velocity

amplitude of slow wave with time in the case of

decaying background temperature, s ¼ 3000 s,

H ¼ constant, H ¼ hqT . In this case, it is found that

the amplitudes of perturbed velocity are growing with

time but period of slow waves remains the same for

both the values of heating function H. It can be seen

from Figures 1 and 2 that the amplitude of normalised

velocity for constant heating function H is smaller

than the amplitude of normalised velocity for heating

function H ¼ hqT .

Figures 3 and 4 are plotted for showing the tem-

poral behaviour of normalised velocity amplitudes of

slow waves for increasing and decreasing time-

dependent background temperature with s ¼ 1000 s

and heating H ¼ constant, hqT . Figure 3 depicts that

amplitudes of normalised velocity of slow wave

decrease sharply with time when we consider s ¼
1000 s instead of s ¼ 3000 s as taken in Figure 1. In

this case, the damping of slow wave is more promi-

nent than the damping shown in Figure 1. For

H ¼ constant, amplitude of velocity is smaller than

the amplitude of velocity for H ¼ hqT . Figure 4

shows that the damping of waves for s ¼ 1000 s is
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Figure 1. Temporal behaviour of normalised velocity amplitude when background temperature increases with time,

s ¼ 3000 s, H ¼ constant (blue) and H ¼ hqbTc ðb ¼ 1; c ¼ 1Þ (red).
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Figure 2. Temporal behaviour of normalised velocity amplitude when background temperature decreases with time,

s ¼ 3000 s, H ¼ constant (blue) and H ¼ hqbTc ðb ¼ 1; c ¼ 1Þ (red).
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Figure 3. Temporal behaviour of normalised velocity amplitude when background temperature increases with time,

s ¼ 1000 s, H ¼ constant (blue) and H ¼ hqbTc ðb ¼ 1; c ¼ 1Þ (red).
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Figure 4. Temporal behaviour of normalised velocity amplitude when background temperature decreases with time,

s ¼ 1000 s, H ¼ constant (blue) and H ¼ hqbTc ðb ¼ 1; c ¼ 1Þ (red).
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stronger than the damping of waves in the case s ¼
3000 s for decaying-background temperature plasma.
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