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Abstract. The inflationary epoch and the late time acceleration of the expansion rate of universe can be

explained by assuming a gravitationally coupled scalar field. In this article, we propose a new method of

finding exact solutions in the background of flat Friedmann–Robertson–Walker (FRW) cosmological models

by considering both scalar field and matter where the scalar field potential is a function of the scale factor.

Our method provides analytical expressions for equation of state parameter of scalar field, deceleration

parameter and Hubble parameter. This method can be applied to various other forms of scalar field potential,

to the early radiation dominated epoch and very early scalar field dominated inflationary dynamics. Since the

method produces exact analytical expression for H(a) (i.e., H(z) as well), we then constrain the model with

currents data sets, which includes-Baryon Acoustic Oscillations, Hubble parameter data and Type 1a

Supernova data (Pantheon Dataset). As an extension of the method, we also consider the inverse problem of

reconstructing scalar field potential energy by assuming any general analytical expression of scalar field

equation of state parameter as a function of scale factor.

Keywords. Cosmology—dark energy—exact solutions.

1. Introduction

The observations of Type 1a Supernovae indicate

that expansion rate of the universe in the recent past

(on cosmological time scale) is speeding up (Riess

et al. 1998; Perlmutter et al. 1999; Tegmark et al.
2004; Spergel et al. 2007; Davis et al. 2007;

Kowalski et al. 2008; Hicken et al. 2009; Komatsu

et al. 2009; Hinshaw et al. 2009; Lima & Alcaniz

2000; Lima et al. 2009; Basilakos & Plionis 2010;

Komatsu et al. 2011; Planck Collaboration et al.
2014, 2020). This discovery serves as a paradigm

shift in our understanding of cosmology by postu-

lating the existence of a component named ‘dark

energy’. The analysis of current cosmological

observations (Planck Collaboration et al. 2020)

indicates that the ‘dark energy’ provides dominant

contribution to the present total energy density of the

universe. The accelerated expansion took place also

in a widely separated time epoch, before the Uni-

verse became radiation dominated, during inflation

(Guth 1981), the theory of which was subsequently

developed by Guth (1981) and Linde (1982, 1983).

The inflationary epoch as well as the recent accel-

erated expansion can be modelled by postulating

existence of a scalar field dynamically coupled to

gravitation. Since a scalar field is a simple, yet nat-

ural candidate which causes accelerated expansion it

plays a fundamental role in cosmology. Scalar fields

have been extensively studied in cosmology (see

Linde 1982, 1983; Ratra & Peebles 1988; Peebles &

Ratra 2003; Bamba et al. 2012, and references

therein). The scalar field, in this context, serves as the

model of dark-energy. For the purpose of constrain-

ing the nature of dark-energy understanding the

evolution of the universe during the accelerated

expansion epoch of universe is an area of great

research interest.

Currently, there is no unique underlying principle

can uniquely specify the potential of the scalar field

that gives rise to earlier inflationary epoch and the

late time accelerated epoch of the universe. Many

proposals based on new particle physics and gravi-

tational theories were introduced (see Linde 2005,

J. Astrophys. Astr.          (2021) 42:111 � Indian Academy of Sciences

https://doi.org/10.1007/s12036-021-09776-6Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12036-021-09776-6&amp;domain=pdf
https://doi.org/10.1007/s12036-021-09776-6


and references therein) and others were based on ad-

hoc assumption so as to get the desired evolution of

the universe (Ellis & Madsen 1991). There is also a

formalism where we can reconstruct the potential by

using the knowledge of tensor gravitational spec-

trum and the scalar density fluctuation spectrum

(Copeland et al. 1993; Liddle & Turner 1994).

Though there are numerous scalar field potential

which can give rise to accelerated expansion, the

exact solutions of these cosmological models are

less known. As the exact solutions of cosmological

models gives rise to exact cosmological parameters,

they have a vital role in the present cosmological

scenario. There are several methods by which one

can explore the exact solutions of Friedman equa-

tions in a scalar field dominated universe. The

construction of exact solutions for an inflationary

scenario was started with Muslimov (1990). The

author, by starting with the assumption of scalar

field potential Vð/Þ, found the remaining parame-

ters, i.e., a(t) and /ðtÞ based upon the model. A

method of generating exact solutions in scalar field

dominated cosmology by considering scalar field

potential as a function of time V(t) has been

explored in Zhuravlev et al. (1998). By assigning

the time dependence of scale factor a(t), we can also

find the scalar field /ðtÞ and potential V(t) as seen in

Ellis and Madsen (1991). One can also find the

analytical expressions for a(t) and Vð/Þ by assign-

ing time dependence of scalar field /ðtÞ which

is explored in Barrow (1993). Barrow (1990)

showed a simple method of finding exact solutions

of cosmological dynamic equations in terms of a

pressure–density relationship.

One can also reduce the scalar field cosmology

equations to a known type of equation whose solu-

tion has already been developed. In Harko et al.
(2014) and Chakrabarti (2017) we can see a method

in which the Klein–Gordon equation which describes

the dynamics of the scalar field is transformed to a

first order non-linear differential equation. This

equation immediately leads to the identification of

some exact classes of scalar field potentials Vð/Þ for
which the field equations can be solved exactly and

there by obtaining analytical expressions for a(t),
/ðtÞ and q(t). The solutions of the Friedman equa-

tions in a scalar field dominated universe is explored

by its connection with the Abel equations of first kind

is seen in Yurov & Yurov (2010). Here for a given

Vð/Þ one can obtain a(t) and /ðtÞ analytically. The

exact solutions for exponential form of the potential

Vð/Þ by rewriting the Klein–Gordon equation in the

Riccati form and thereby transforming it into a sec-

ond-order linear differential equation is investigated

in Andrianov et al. (2011). Analytical solutions to

the field equations can also be obtained by consid-

ering suitable generating functions. Here the gener-

ating functions are chosen as a function of one of the

parameters of the model (Kruger & Norbury 2000;

Charters & Mimoso 2010; Harko et al. 2014; Cher-
von et al. 2018) and thus by simplifying the scalar

field cosmology equation one can obtain all the

parameters of the model. In Salopek & Bond (1990) a

method was proposed by simplifying scalar field

cosmology equation by assuming Hubble function as

a function of scalar field /. By making use of the

Noether symmetry for exponential potential (de Ritis

et al. 1990; Paliathanasis et al. 2014), Hojman’s

conservation law (Capozziello & Roshan 2013), and

other non-canonical conservation laws (Dimakis

et al. 2016) for arbitrary potential and also by the

form-invariant transformations of scalar field cos-

mology equations (Chimento et al. 2013) one can

obtain the exact solutions for the parameters of the

model. Moreover analytical solutions for field equa-

tions by considering a homogeneous scalar field in

the Szekeres cosmological metric has been investi-

gated in Barrow & Paliathanasis (2018).

Though there are various ways for finding exact

solutions in scalar field cosmology, the solutions are

limited if we incorporate the contributions by a perfect

fluid source. In Chimento & Jakubi (1996) the authors

showed that the Einstein’s equations with a self-in-

teracting minimally coupled scalar field, a perfect

fluid source and cosmological constant can be reduced

to quadrature in the Robertson–Walker metric. Here

the scale factor is considered as the independent

variable and the scalar field potential is expressed in

terms of scale factor. Barrow & Saich (1993) pre-

sented exact solutions of Friedman universes which

contain a scalar field and a perfect fluid with the

requirement that the kinetic and potential energies of

the scalar field be proportional. The classes of scalar

field potentials Vð/Þ, which provide exact solutions

for scalar field with scaling behavior had been

investigated in Liddle & Scherrer (1999). In Barrow &

Paliathanasis (2016) specific closed-form solutions of

field equations (with and without matter source) have

been derived by assuming special inflationary func-

tions for the scale factor and special equation of state

parameters of the scalar field. The application of lie

symmetry methods in finding the exact cosmological

solutions for scalar field dark energy in the presence of

perfect fluids has been investigated in Paliathanasis
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et al. (2015). In Socorro et al. (2015), a scenario of

time varying cosmological term is investigated by

using a special anartz were energy density of the

scalar field is proportional to energy density of the

barotropic fluid. Fomin (2018) explored the exact

solutions by considering scalar field and matter fields

or non-zero curvature by representing the main cos-

mological parameters as a function of number of e-
folds and also by the direct substitution of the scale

factor. The study of late-time cosmology in a (phan-

tom) scalar-tensor theory with an exponential poten-

tial had been investigated in Elizalde et al. (2004). In
Elizalde et al. (2008), the unification of inflation and

late-time acceleration epochs within the context of a

single field theory had been studied. Moreover, the

exact and semiclassical solutions of the Wheeler–

DeWitt equation for a particular family of scalar field

potential had been explored in Guzmán et al. (2007).
In this paper, we propose a new method of finding

analytical solutions of equation of state parameter of
scalar field, deceleration parameter and also the
Hubble parameter as a function of scale factor. Using
the continuity equation for the scalar field we form a
first order linear inhomogeneous equation of the

independent variable _/2 and dependent variable a.
Since the inhomogeneous term is given by - dV/da,
derivative of the scalar field a the linear equation is
exactly solvable for any choice of V = V(a). As some
test applications we present solutions for some chosen
forms of V(a). Since the linear equation is completely
decoupled from the other source terms of the Fried-

mann equation the solution of _/2(a) and the chosen
form of V(a) can be used in the right hand side of first
Friedmann equation together with the other source
terms. Therefore, apart from the scalar field, our
method can incorporate matter or radiation as a per-
fect fluid source to obtain an exact solution of H(a) or
H(z), which can be constrained using observations.
Since the method is applicable for any well behaved
(e.g., differentiable w.r.t. a) chosen form of V(a) it can
be applied to understand the physics of the inflation,
as well as the late time acceleration of expansion rate.

The paper is organized as follows. In Section 2 we

explore the basis equations in scalar field cosmology.

In Section 3 we consider the scalar field potential

energy of power law form. The Section 4 is dedicated

to the reconstruction of scalar field potential energy.

After discussing the relationship of the scalar field

potential with the particle physics models in Sec-

tion 5, we constrain the model parameters in Sec-

tion 6. Finally, in the last Section 7 we discuss and

conclude upon our results.

2. Formalism

In the spatially flat Friedman–Robertson–Walker

(FRW) model of the universe the space-time interval

ds between two events in a global comoving Cartesian

coordinate system follows,

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2 þ dz2Þ; ð1Þ

where a and t represent the scale factor and

comoving time respectively and we have used c = 1

unit. If the universe is dominated by the non-rela-

tivistic matter (e.g., baryon and cold dark matter)

and a spatially homogeneous and time varying

scalar field, / which is minimally coupled to grav-

ity, the evolution of a(t) is determined by the fol-

lowing system of equations,

H2 � _a

a

� �2

¼ 8pG
3

½q/ þ qm�; ð2Þ

€a

a
¼ � 4pG

3
½qm þ q/ þ 3ðpm þ p/Þ�; ð3Þ

where an over-dot represents derivative with respect

to the comoving time t, and q/ and qm represent the

scalar field and matter density respectively. The time

evolution of /ðtÞ couples to a(t) and Vð/Þ and is

governed by the second order generally non-linear

differential equation,

€/þ 3H _/þ dV

d/
¼ 0: ð4Þ

We also have the continuity equation which holds

separately for each component,

_qþ 3Hqð1þ xÞ ¼ 0; ð5Þ

where x � p=q represents the equation of state

parameter for the component under consideration. The

fluids filling the universe have equation of state given

by,

pm ¼ 0; p/ ¼ x/q/; ð6Þ

with

qm ¼ q0m
a3

1

; q/ ¼
_/2

2
þ V; p/ ¼

_/2

2
� V: ð7Þ

Using p/ and q/ from Equation (7) in Equation (5)

along with p/ ¼ x/q/, we can rewrite continuity

1In this article, we use super or subscript 0 to represent the values

of the dynamical variables at present time t0 with the convention

a0 ¼ 1, so that present day redshift z0 ¼ 0.
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equation as follows,

d

da

_/2

2

 !
þ dV

da
þ 3

a

_/2

2

 !
¼ 0: ð8Þ

Now, by considering V = V(a) and using the trans-

formation _/2ðaÞ ¼ yðaÞ we get the following linear

differential equation

dy

da
þ 2

dV

da
þ 6

a
y ¼ 0; ð9Þ

where we have assumed that y and V are in units of

present day critical energy density q0c such that

y ! y0 ¼ y

q0c
; V ! V 0 ¼ V

q0c
; ð10Þ

and omitted any primes in our forthcoming analysis

of this work. The solution of linear differential

Equation (9) gives _/2ðaÞ.2 Using Equation (10) the

Friedmann Equations (2) and (3) become

H2ðaÞ ¼ H2
0

_/2

2
þ VðaÞ þ X0

m

a3

 !
ð11Þ

and

€a

a
¼ �H2

0
_/2 � VðaÞ þ X0

m

2a3

� �
; ð12Þ

wherewehaveassumedpm ¼ 0.At this point,wemention

that once a form of V(a) is assumed, Equation (9) may be

considered to be decoupled from the expansion dynamics

of the universe, i.e., it does not depend on the exact

solution of a(t) which is obtained from first and second

Friedman equations, Equations (11) and (12). This is an

excellent advantage since the independent variable y(a)
can now be evolved irrespective of evolution of other

components that contribute to the total energymomentum

tensor. Another advantage of Equation (9) is that using its

solution we immediately obtain the equation of state

parameter of scalar field as, x/ as

x/ðaÞ ¼
_/2=2� V

_/2=2þ V
; ð13Þ

which serve as an important physical parameter to

describe and constrain the nature of dark energy fromboth

observational and theoretical point view. In this work, we

focus ourselves for cases where both _/2 and V(a) are
positive (semi) definite, resulting in�1�x/ðaÞ� 1.

Once _/2ðaÞ is solved using Equation (9) for the

assumed model of V(a) one can relate the dynamics

of the / sector with some important dynamical

variables of the dynamics of a(t). One such vari-

able is the total effective equation of state param-

eter, xtot taking into account all components of the

universe

xtotðaÞ �
p/ þ pm
q/ þ qm

�
_/2ðaÞ=2� VðaÞ

_/2ðaÞ=2þ VðaÞ þ X0
m=a

3
;

ð14Þ

where X0
m represents the present day energy density

parameter for matter. The effective equation of state

parameter, xtot has great significance because it tells

us whether the universe undergoes an accelerated

expansion (xtot\ � 1=3) or decelerating expansion

(xtot [ � 1=3) at any particular epoch of time.

Another useful parameter which encodes the infor-

mation of acceleration or deceleration phases of a(t) in
its sign is the so-called deceleration parameter, q,
defined as

q ¼ � €a
_a2
a ¼ � €a

a

_a

a

� ��2

¼ � €a

a
ðHÞ�2: ð15Þ

A transition between the two phases always corre-

sponds to zeros of the q parameter. Since _/2ðaÞ, V(a)
and qmðaÞ are now known functions of scale factor, by

using Equation (2) we can easily obtain the Hubble

parameter, H(a).3 Knowing the numerator of Equa-

tion (15) using Equation (12) and denominator using

Equation (11) we find an exact expression of q(a)
as well.

Before we proceed to discuss solution of Equa-

tion (9) for specific choice of V(a) let us discuss some

general features of these solutions. First, a = 0 is a

singular point of Equation (9). This means that the

solution _/2ðaÞ is not analytic at a = 0. One common

feature of _/2 may be obtained by considering the

associated homogeneous equation corresponding to

Equation (9) by setting either V = 0 or V ¼ V0, a

constant for all a, so that dV/da = 0. In this case,

ignoring the trivial solution, _/2ðaÞ ¼ 0, we have
_/2ðaÞ ¼ _/2

0=a
6. In fact, presence of a modulation

factor of � 1=a6 is ubiquitous in the solution of _/2ðaÞ
through the integrating factor of Equation (9) for any

other choice of V(a). Thus _/2 diverges in general, as

2We note that with the aforementioned normalization choice both

V and _/2 henceforth become dimensionless variables.

3Solutions corresponding to H[ 0 correspond to expanding

cosmological models and H\0 corresponds to collapsing

models.
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a ! 0. This can be contrasted with the corresponding

behavior for matter (or radiation) density,

qmðaÞ ¼ q0m=a
3ðqrðaÞ ¼ q0r=a

4Þ. We note that, such

divergence of _/2ðaÞ does not necessarily imply

divergence of x/, for a general V(a). If V ¼ V0 we

have x/ðaÞ ¼ ð _/2
0 � 2a6V0Þ=ð _/2

0 þ 2a6V0Þ, which

tends to unity as a ! 0.4

3. Applications

3.1 Power law potential

Let us consider the power law form of potential

energy density

VðaÞ ¼ V0a
n; ð16Þ

where V0 is a dimensionless constant and n is a real

number. By direct observation of Equation (9) we see

that in this case, _/2ðaÞ� an is a solution. If n[ 1 all

terms of Equation (9) remains finite for all a. In fact,

for any polynomial choice of

VðaÞ ¼
Xn
p¼0

Vpa
pþ1; ð17Þ

where Vp for p ¼ 1; . . .; n are constants, _/2ðaÞ also

admits a polynomial solution

_/2ðaÞ ¼
Xn
p¼ 0

Apa
pþ1; ð18Þ

which is finite for all a. In this case, (9) becomes

Xn
p¼ 0

Apðpþ 7Þap ¼ �2
Xn
p¼ 0

Vpðpþ 1Þap; ð19Þ

which leads to a solution of the form

_/2ðaÞ ¼ �2
Xn
p¼ 0

Vpðpþ 1Þ
ðpþ 7Þ apþ1: ð20Þ

Equation (20) does not capture the complete picture of

the most general solution _/2ðaÞ since it only corre-

sponds to the solution of the in-homogeneous

Equation (9). The general solution of Equation (9) is

obtained after adding with Equation (20) C=a6, which
is the solution corresponding to the homogeneous

equation of Equation (9), where C is a constant. The

general solution is therefore

_/2ðaÞ ¼ �2
Xn
p¼ 0

Vpðpþ 1Þ
ðpþ 7Þ apþ1 þ C

a6
: ð21Þ

The constant C is fixed by imposing suitable boundary

condition. If the potential energy density consists of a

single power law as given by Equation (16), the only

value of p in Equation (21) becomes p ¼ n� 1.

Equation (21) now becomes

_/2ðaÞ � yðaÞ ¼ 1

a6
� 2V0na

nþ6

nþ 6
þ C

� �
; ð22Þ

where n 6¼ �6. If at t ¼ t0, a ¼ a0 ¼ 1 and
_/2ð1Þ ¼ y0, then q0/ þ q0m ¼ q0c ¼ 3H2

0=ð8pGÞ, which
following the definitions of Equation (10) implies

y0 ¼ 2ð1� V0 � X0
mÞ: ð23Þ

Using Equations (22) and (23) we obtain

C ¼ y0 þ
2V0n

nþ 6
¼ 2

nþ 6ð1� V0Þ
nþ 6

� �
� 2X0

m: ð24Þ

Finally using Equations (22) and (24) we obtain

_/2ðaÞ ¼ 1

a6
2

nþ 6ð1� V0Þ
nþ 6

� ��
� 2V0na

nþ6

nþ 6
� 2X0

m

�
:

ð25Þ

To get some insight into the nature of the solution

given by Equation (25) we first consider a simple

case for which n = 0 (implying V ¼ V0, a con-

stant) and X0
m ¼ 0 as well. This corresponds to a

dark energy dominated flat universe with
_/2
0 ¼ 2ð1� V0Þ. If V0 6¼ 1, V 6¼ 1 for always and

using Equation (25)

_/2ðaÞ ¼ 2ð1� V0Þ
a6

; ð26Þ

implying the kinetic energy density of the scalar field

decays as � a�6 as the universe expands. One can

further consider two limiting values of V0, namely, 1

and 0 respectively. If V0 ¼ 1 then from Equation (25)
_/2ðaÞ ¼ 0 for all a implying / is a constant. In this

case, as expected, we recover the cosmological model

with cosmological constant with x/ðaÞ ¼ �1. If

V0 ¼ 0, _/2
0 ¼ 2 to satisfy the flatness condition today.

In this case, x/ ¼ 1 always and hence the particular

scalar field theory does not cause inflation. Using

4Apart from the usual argument that the classical Friedmann

equation must only be valid up to some initial scale factor well

above the Planck length scale, the problem of divergence of _/2

can also be bypassed if we assume that the scalar field theory

valid up to some initial scale factor ai corresponding to
_/2ðaiÞ ¼ _/2

i , a finite value.
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Equation (26) we obtain _/2ðaÞ ¼ 2=a6. Substituting

this in first Friedmann equation with X0
m ¼ 0 and after

some algebra one finds

aðtÞ ¼ ðH0Þ1=3t1=3; ð27Þ

where we have used boundary condition a = 0 at

t = 0. Clearly this particular scalar field does not

cause inflation as argued earlier since x/ ¼ 1. In

summary, we conclude that for different choices of

numerical values of V0 and specific choice of

exponent n in Equation (16) the solutions _/2ðaÞ as

given by Equation (9) are capable of capturing a

wide range of dynamical behavior of scale

factor a(t).

Using the general solution _/2ðaÞ; Equations (25) and
(16) in Equations (13) and (14) respectively, we obtain

x/ ¼ nþ 6ð1� V0Þ � X0
mðnþ 6Þ � 2V0ðnþ 3Þanþ6

nþ 6ð1� V0Þ � X0
mðnþ 6Þ þ 6V0anþ6

ð28Þ

and

xtot ¼ ðnþ 6ð1�V0Þ�X0
mðnþ 6Þ� 2V0ðnþ 3Þanþ6Þ=

�ðnþ 6ð1�V0Þ�X0
mðnþ 6Þþ 6V0a

nþ6

þX0
ma

3ðnþ 6ÞÞ: ð29Þ

One can also easily calculate the Hubble parameter H(a)
as a function of scale factor using the Equation (11)

H2ðaÞ ¼ H2
0

1

a6
nþ 6ð1� V0Þ

nþ 6
� X0

m � V0na
nþ6

nþ 6

� ��

þV0a
n þ Xm0

a3

�
:5 ð30Þ

The deceleration parameter q(a) can be obtained from

the Equation (15)

qðaÞ ¼ ðX0
mða3 � 4Þð6þ nÞ þ nð4� 6anþ6V0Þ

� 12ð�2þ ð2þ anþ6ÞV0ÞÞ=ð2ð6þ nþ X0
mðnþ 6Þ

� ða3 � 1Þ � 6V0 þ 6anþ6V0ÞÞ: ð31Þ

4. Reconstruction of scalar field potential energy

The first order differential Equation (9) has another

great advantage. It can be used as a tool to reconstruct

V(a) and _/2ðaÞ from any general equation of state

parameter, w/ðaÞ of the scalar field. To illustrate this,

we first note that

_/2ðaÞ ¼ x/ þ 1

1� x/

� �
ð2VðaÞÞ; ð32Þ

where we have used Equation (13),6 after calculation,

we obtain

d _/2ðaÞ
da

¼ 2V

ð1� x/Þ2
dx/

da
þ 2

dV

da

1þ x/

1� x/

� �
: ð33Þ

Using Equations (32) and (33) in Equation (9), after

calculation we obtain

dV

da
þ V

3ð1þ x/Þ
a

þ 1

2ð1� x/Þ
dx/

da

� �
¼ 0; ð34Þ

which has the solution,

VðaÞ ¼ V0 exp �
Z a

1

3ð1þ x/Þ
a

��

þ 1

2ð1� x/Þ
dx/

da

�
da

�
; ð35Þ

where V0 ¼ Vða ¼ a0 ¼ 1Þ as earlier. It is evident

from Equation (35) that given any general form of x/

an analytical expression of scalar field potential

energy density can be obtained as long as the first and

second integrands in the exponent of this equation are

integrable. The second integral in the exponent can

further be carried out analytically. Performing inte-

gration by parts on the first integrand, and after cal-

cutation as in Appendix we find

VðaÞ ¼ V0

1� x/ð1Þ
1� x/ðaÞ

� �1=2
a�3ð1þx/ðaÞÞ

� exp 3

Z a

1

dx/

da
lnðaÞda

� �
: ð36Þ

It is interesting to note from Equation (36) that apart

from the scale factor dependence through x/ induced

by the first term ½ð1� x/ð1ÞÞ=ð1� x/ðaÞÞ�1=2, V(a) is
determined by the product of one power law and

another exponential function in a. As a simple appli-

cation of Equation (36) if we assume x/ ¼ �1 for all

a, the exponential function on a becomes unity and

since dx/=da ¼ 0, the integral in the exponent dis-

appear as well, implying V ¼ V0, a constant. In this

case, _/2 ¼ 0 by using Equation (32), as expected.

5H[ 0 correspond to expanding cosmological models and H\0

corresponds to collapsing models.

6In this case, we have assumed that x/ðaÞ 6¼ 1 or equivalently,

VðaÞ 6¼ 0 for the domain of interest of a. The solution V(a) = 0

when x/ðaÞ ¼ 1 can be easily obtained from Equation (13).
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Therefore, starting from x/ ¼ �1 we reproduce the

well known case of a cosmological constant by using

the general solution of V(a) (Equation 36) and defi-

nition of x/ (Equation 32). If we assume x/ðaÞ ¼ 0

for all a, then using Equation (36) we obtain VðaÞ ¼
V0=a

3 and _/2=2 ¼ VðaÞ using Equation (13), i.e., the

kinetic energy of the scalar field traces the potential

energy exactly for all a. In the case, the scalar field

behaves like pressure less non relativistic matter. One

can also reconstruct the scalar field potential from the

observed spectral indices for the density perturbation

ns and the tensor to scalar ratio r as seen in Barrow &

Paliathanasis (2016).

An interesting application of Equation (35) is to obtain

potential energy density for the CPL equation state

x/ðaÞ ¼ x0 þ x1a; ð37Þ

where x0 and x1 are constants.7 Using Equation (37)

in Equation (36) we obtain

VðaÞ ¼ V0

1� x0 � x1

1� x0 � x1a

� �1=2
a�3ð1þx0þx1aÞax1 : ð38Þ

If x1 ¼ 0 in Equation (37) so that x/ ¼ x0 6¼ 1,

Equation (38) leads to

VðaÞ ¼ V0a
�3ð1þx0Þ: ð39Þ

By using Equation (13) we can also obtain

_/2ðaÞ ¼ 2V
�3ð1þx0Þ
0 ð1þ x0Þ=ð1� x0Þ: ð40Þ

5. Relation with the particle physics models

Once we obtain _/2ðaÞ analytically, it is possible to get an
analytical expression for theHubble parameterH(a) using
Equation (11). Then by a numerical evaluation one can

easily obtain /ðaÞ and finally the particle physics moti-

vated form, i.e., potential in termsof the scalar field,Vð/Þ.
This can be achieved by the following procedure. It is

simple to estimate _a ¼ aHðaÞ, wherewe alreadyobtained
an analytical expression for the Hubble parameter H fol-

lowing our method. Using identity _a ¼ ðda=d/Þ _/ and

knowing _/ following the method of this article, one

obtains /ðaÞ after employing a numerical integration.

From the graph of/ðaÞ andV(a) one can readily estimate

Vð/Þ numerically. This makes a connection of our

method with the theory of particle physics, since there

Vð/Þ is directlymodel led following symmetryconditions

of the theory. Thus for any choice of potential V(a), one
can obtain its corresponding form of Vð/Þ. For instance,
considering the case of the potentialV(a) in the power law
form discussed in Section 3.1, one can easily obtain the

corresponding form ofVð/Þ using themethodmentioned

above. Here the scalar field/ is scaled by
ffiffiffiffiffiffiffiffiffi
8pG

p
¼ M�1

p .

Figure 1 shows the variation of scalar field potential as a

function of scalar field for the case of the potentialVðaÞ ¼
V0a

n with V0 ¼ 0:672 and n = - 0.24. It is very inter-

esting to note that, this potential approximates an inverse

power law potential of the form Vð/Þ ¼ V 0
0ð/þ /0Þ�m

with V 0
0 ¼ 0:16, /0 ¼ 0:00049 and m = 0.257 with

some level of clearly visible differences. This is shown in

blue in Figure 1. It is noteworthy to mention that the

derived potential Vð/Þ resembles to the class of

quintessential tracker potentials (inverse power law

models) proposed by Ratra & Peebles (1988).

6. Observational constraints

After obtaining the analytical expressions for Hubble

parameter as a function of redshift (or scale factor) for

different cosmological models, one can constrain its

model parameters using the observational probes in the

cosmology. The observational probes utilized for the data

analysis includes the Type 1a supernovae, Baryon

acoustic oscillations and Hubble parameter data sets. We

constrain the parameters by employing the v2 statistics.

The total likelihood function for the joint data is given by

LtotðhÞ ¼ e�v2totðhÞ=2; ð41Þ

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

V

φ/Mp

Figure 1. The reconstructed potential Vð/Þ (in red) with

/ when VðaÞ ¼ V0a
n. The blue curve shows the potential

Vð/Þ ¼ V 0
0ð/þ /0Þ�m

with V 0
0 ¼ 0:16, /0 ¼ 0:00049 and

m = 0.257.

7In fact, the CPL equation of state parameterized by,

x/ðzÞ ¼ xa þ xbðz=ð1þ zÞÞ, where z denotes the redshift. Using
1=a ¼ 1þ z and a calculation with some redefinition of variables,

one can show this is equivalent to Equation (37).
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where

v2tot ¼ v2SN þ v2Hub þ v2BAO; ð42Þ

where h denotes the parameters of the model under

consideration. The best fit values of the model

parameters (h) are the values corresponding to the

minimum v2 value.

6.1 Observational probes

6.1.1 Hubble data (H) The Hubble parameter data

set consists of measurements of the Hubble

parameter H(z) at different redshifts. We use H(z)
data which is compiled and listed in Table 1 of

Farooq et al. (2017). The table contains 38

measurements of Hubble parameter and its

associated errors in measurements up to a redshift

of z = 2.36. From the total of 38 data sets, we have

considered only 32 points as we do not consider

three data points taken from Alam et al. (2016) at

reshifts z = 0.38, 0.51, 0.61 and we also removed

the data points corresponding to the redshits

z = 0.44, 0.6, 0.72 as they are already included in

the BAO dataset. The chi-squared function of Hubble

data is given by

v2HubðhÞ ¼
X32
i¼1

½Hthðzi; hÞ � HobsðziÞ�2

r2HðziÞ
; ð43Þ

were rH is the error associated with each

measurements.

6.1.2 Type 1a supernovae (SN 1a) The Type 1a

supernovae are the result of the explosion of a white

dwarf star in a binary when it crosses the

Chandrasekhar limit. These Type 1a supernovae is

an ideal probe for the study of the cosmological

expansion. As they all have the same luminosity,

they are considered as a good standard candle. So the

first data set which we used for the analysis is the

Type 1a supernovae data from the Pantheon

compilation (Scolnic et al. 2018). This data set

consists of 1048 supernovae in the redshift range

0:01\z\2:26.
The luminosity distance of a Type 1a supernova at

given redshift z reads as

DLðzÞ ¼ ð1þ zÞ
Z z

0

H0dz
0

Hðz0Þ : ð44Þ

Moreover the luminosity distance is directly related

to the observed quantity, distance modulus lðzÞ

given by

lðzÞ ¼ m�M ¼ 5 logDLðzÞ þ l0; ð45Þ

where M and m are the absolute and apparent mag-

nitude of the supernovae. Here the quantity l0 ¼
5 logðH�1

0 =MpcÞ þ 25 is a nuisance parameter which

should be marginalized.

So for the case of SN 1a, the v2SN estimator is

defined as

v2SNðl0; hÞ ¼
X1048
i¼ 1

½lthðzi; l0; hÞ � lobsðziÞ�2

r2lðziÞ
; ð46Þ

where lth, lobs and rl are the theoretical, observed

distance modulus and the uncertainty in the

observed quantity respectively. Here h represents the

parameters of the model under consideration. After

marginalizing l0 and by following the reference

Nesseris & Perivolaropoulos (2005), we get

v2SNðhÞ ¼ AðhÞ � B2ðhÞ
CðhÞ ; ð47Þ

where

AðhÞ ¼
X1048
i¼1

½lthðzi;l0 ¼ 0; hÞ � lobsðziÞ�2

r2lðziÞ
; ð48Þ

BðhÞ ¼
X1048
i¼1

lthðzi; l0 ¼ 0; hÞ � lobsðziÞ
r2lðziÞ

; ð49Þ

CðhÞ ¼
X1048
i¼1

1

r2lðziÞ
: ð50Þ

6.1.3 Baryon acoustic oscillations (BAO) The

Baryon acoustic oscillations (BAO), which are

considered as the standard rulers of the cosmology, are

frozen relics left over from the pre-decoupling universe.

Here we have used the BAO data from 6dFGS, SDSS

DR7 andWiggleZ at redshifts z = 0.106, 0.2, 0.35, 0.44,

0.6 and 0.73. In order to derive the BAO constraints we

make use of the distance parameter DvðzÞ which is a

function of angular diameter distance and Hubble

parameter given by

DvðzÞ ¼ ð1þ zÞ2d2AðzÞ
z

HðzÞ

� �1
3

: ð51Þ

Here dAðzÞ is the angular diameter distance. We use

the measurements of acoustic parameter A(z) from

Blake et al. (2011), where the theoretically predicted
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AthðzÞ is given by Equation (5) of Eisenstein et al.
(2005)

AthðzÞ ¼
100DvðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm0h2

p
z

: ð52Þ

After following the procedures given in Section 5.4 of

Omer Farooq (2013), one can obtain the acoustic

parameter Ath independent of the Hubble constant H0.

Finally after calculations the chi-squared function of

BAO data (Blake et al. 2011) reads as

v2BAOðhÞ ¼
X6
i¼1

½Athðzi; hÞ � AobsðziÞ�2

r2AðziÞ
: ð53Þ

6.2 Methodology

We used the Markov Chain Monte Carlo (MCMC)

method to find the high confidence regions of the

model parameters given a set of observational data.

We perform a likelihood analysis to minimize the v2

function in Equation (42) and thereby obtain the best-

fit model parameters corresponding to the minimum v2

value. The minimization of the v2 is equivalent to the

maximization of the likelihood function in Equa-

tion (41). Here we constrain the parameters of the

power law potential given in Section 3.1. The model

parameters and their prior values considered for the

MCMC analysis is given in Table 1.

Initially, we begin the MCMC analysis with the

usual way where we consider a simple proposal

function of the form, hjiþ1 ¼ hji þ dhjgj, where j is a

parameter index, dj is a predefined rms step size, and

gj is a Gaussian stochastic variate of zero mean and

unit variance. As we are dealing with a model of five

parameters, most of the parameters of interest will be

strongly correlated and make this choice quite ineffi-

cient. So we performed certain optimization on the

MCMC chain samples, which enables us to increase

the acceptance ratio and also the chain convergence.

After obtaining sufficient samples from the prelimi-

nary chain, we check the autocorrelation of the

Markov chain. This will give us an idea for estimating

how many iterations of the Markov chain are needed

for effectively independent samples. Later we perform

thinning on the initial chain we had already obtained

so as to get less correlated samples. This action will

further reduce the total number of samples. We will

then compute the covariance matrix Cij ¼ hdhidhji of
the resulting samples. Finally, we then Cholesky-de-

compose this matrix, C ¼ LLt where C is the

covariance matrix, L and Lt are the lower triangular

matrix and its conjugate transpose respectively. We

then redefine our proposal function to be

hiþ1 ¼ hi þ aLg, where g is now a vector of Gaussian

variate and a is an overall scale factor, typically ini-

tialized at � 0:3. This will help us to have the pro-

posed samples with approximately correct covariance

structure, and it will also improve the sampling effi-

ciency significantly. In order to avoid very high and

very small step sizes, we also impose a constraint that

the acceptance ratio must be higher than 5% and lower

than 80%. One can adjust the scale factor a if one of

these two criteria is violated.

7. Discussions and conclusions

The exact solutions of Einstein’s equations play a very

important role in cosmology as they help in the under-

standing of quantitative and qualitative features of the

dynamics of the universe as a whole. In this article, we

discuss amethod to obtain analytical expressions for the

equation of state parameter, deceleration parameter and

Hubble parameter in spatially flat FRW model of the

universe with a perfect fluid and scalar field.

In Section 2, a method is proposed to obtain ana-

lytical expressions for the kinetic energy ( _/2) of the

scalar field as a function of scale factor for different

choices of the scalar field potential. Once the kinetic

term ( _/2) is obtained, one can also obtain exact

solutions for x/, xtot, q and H(a) by simple substi-

tution. The method proposed in this article can also be

applied to inflationary phase, to obtain analytical

solutions, where the scalar field dominates. The

effective equation of state parameter xtot and also the

deceleration parameter are of great importance as they

provide information about the epochs of acceleration

and deceleration phases of the universe.

It is important to emphasize the importance of exact

expression of H(a) (or H(z)) obtained by us in scalar

field cosmology with other perfect fluid components

like matter and radiation. The analytical results can be

Table 1. Priors used for the MCMC

analysis of thepower lawpotential,V0a
n.

Parameter Prior

Xm0 [0, 1]

V0 [0, 1]

n [-5, 5]

H0 [55, 80]
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directly fitted with observations of H(z) to estimate the

best-fit values of parameters of the theory. Thus our

method builds an important connection between the-

ory and observations to constrain the scalar field

potential along with other cosmological parameters.

In Section 4, we consider the inverse problem of

reconstructing the scalar field potential energy by

assuming any general analytical expression of scalar

field equation of state parameter as a function of the

scale factor. By this method, we also reconstructed the

scalar field potential for one of the most widely used

parametrizations of dark energy called the Chevallier–

Polarski–Linder (CPL) model.

Another important result that can be obtained using

the results of this article, is to reconstruct the scalar

field potential in terms of scalar field. In Section 5, we

have discussed the method of reconstruction of Vð/Þ
from the assumed model of V(a) and the exact ana-

lytical expressions of _/ðaÞ, H(a) and using simple

numerical integration. Thus we obtained that the

potential VðaÞ ¼ V0a
n has a close resemblance to the

class of quintessential tracker potentials proposed by

Ratra & Peebles (1988).

Finally in Section 6, we constrained the model

parameters of the power law potential with the Hubble

parameter data, BAO data and the recent Panthelon

Type 1a supernovae compilation. The contours show-

ing the 68.3% and 98.5% confidence regions are

depicted in Figure 2. The best-fit and the mean values

are shown in Table 2. Interestingly, we observed that

theH0 value (H0 ¼ 67:1� 1:5 Km/S/Mpc) we obtained

with low redshift data is consistent with the high red-

shift CMB observations (H0 ¼ 67:4� 0:5Km/S/Mpc)

at one sigma (Planck Collaboration et al. 2020). We

also explored the late-time evolution of the universe

corresponding to the best-fit model parameters.

Although, the formalism of this article is capable also

for early scalar field dominated inflation, in the current

work we focus on the study of the late time acceleration

of the universe. For our analysis, we therefore, choose

the scale factor between a = 0.1 and a = 1.2 which

includes the current epoch a0 ¼ 1.8

The variation of equation of state parameter x/ and

deceleration parameter q(a) for the best-fit parameters

are shown in Figures 3 and 4. From the Figure 3, we

can see that the present value (a = 1) of the equation

of state parameter of the scalar field can go as low as

x/ ¼ �0:9999. Thus at the present epoch, the scalar

field behaves just like a cosmological constant. This is

because within two sigma limits the best-fit value of

the power ‘n’ is consistent with zero, see Table 2,

which gives a constant scalar field potential. More-

over, the transition between the deceleration to the

accelerated phases of expansion occurs at a� 0:6
which is also shown in Figure 4. The Figure 5 shows

the variation of energy density of the scalar field and

the non-relativistic matter as a function of scale factor.

We see that transition between matter and dark-energy

dominated universe occurs around a� 0:75, i.e., the
scalar field starts to dominate at the very late stage of

the evolution of the Universe and it drives the present

accelerated expansion. From the Table 2, the present

density parameter of the non-relativistic matter and

dark energy corresponds to Xm0 � 0:29 and X/� 0:71
respectively.

Figure 2. Posterior distribution for the model parameters

(Xm0;V0; n;H0) of the power law potential. The contours

shows 68.3% and 95.5% confidence regions. The quantita-

tive results are summerised in Table 2.

Table 2. Best fit model for the power law potential.

Parameter

Best-fit ± 95.5%

limits

Mean ± 95.5%

limits

Xm0 0:2820þ0:029
�0:034

0:276� 0:021

V0 0:7176þ0:029
�0:038

0:713� 0:022

n �0:0028þ0:006
�0:324 �0:085þ0:090

�0:13

H0 67:88þ4:48
�4:60

67:1� 2:9

v2min ¼ 1054:0437

8The further incorporation of the early inflationary era will be

followed in a future article.
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The method discussed in Section 2 is not limited to

the power law form of the potential that we have

considered. It can also be applied to any other forms

of potentials which are not discussed here. This

method helps in finding the cosmological dynamical

variables in an exact form without even knowing the

evolution of scale factor. For instance, the Hubble

parameter, H(a) which we obtained analytically

is directly observable. So the difficulty of solving

coupled non-linear equations that one usually

encounters while applying observational constraints in

scalar field dark energy models can be alleviated.
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Appendix

To derive Equation (34) using Equation (32) we first

obtain

d _/2

da
¼ 2

dV

da

1þ x/

1� x/

� ��

þV
1

1� x/
þ 1þ x/

ð1� x/Þ2

( )
dx/

da

#
; ð54Þ

which can be simplified as

d _/2

da
¼ 2V

ð1� x/Þ2
dx/

da
þ 2

dV

da

1þ x/

1� x/

� �
: ð55Þ

Using Equation (55) in Equation (9) and rearranging

terms we obtain

dV

da
1þ 1þ x/

1� x/

� �

þ V
6

a

ð1þ x/Þ
ð1� x/Þ

þ 1

ð1� x/Þ2
dx/

da

" #
¼ 0; ð56Þ

which can be easily simplified into the form of

Equation (34).
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