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Abstract. A new model of an anisotropic compact star is obtained in our present paper by assuming the

pressure anisotropy. The proposed model is singularity free. The model is obtained by considering a

physically reasonable choice for the metric potential grr , which depends on a dimensionless parameter n. The
effect of n is discussed numerically, analytically, and through plotting. We have concentrated a wide range

for n (10� n� 1000) for drawing the profiles of different physical parameters. The maximum allowable

mass for different values of n has been obtained by the M–R plot. We have checked that the stability of the

model is increased for a larger value of n. For the viability of the model, we have considered two compact

stars PSR J1614-2230 and EXO 1785-248. We have shown that the expressions for the anisotropy factor and

the metric component may serve as generating functions for uncharged stellar models in the context of

general theory of relativity.

Keywords. General relativity—anisotropy—compactness—TOV equation.

1. Introduction

The term ‘compact object’ is mainly used in astron-

omy to describe collectively white dwarfs, neutron

stars and black holes. It is well known that stars are an

isolated body that is bounded by self-gravity, and

which radiates energy supplied by an internal source.

Most compact objects are formed to a point of the

stellar evolution when the internal radiation pressure

from the nuclear fusions of a star cannot balance the

external gravitational force and the star collapses

under its own weight. It is familiar that the model of a

compact star can be obtained by solving Einstein’s

field equations in the context of general theory of

relativity. There are large numbers of papers on the

exact solution of Einstein’s field equations for spher-

ically symmetric perfect fluid spheres (Delgaty &

Lake 1998; Stephani et al. 2003). Durgapal et al.
(1982) have obtained two new classes of solutions of

field equations with constant proper mass densities.

Stewart (1982) has solved field equations for finding

interior solutions for spherically symmetric, static, and

conformal flat anisotropic fluid spheres. According to

Ruderman (1972), the pressure inside the highly

compact astrophysical objects such as an X-ray pulsar,

Her-X-1, X-ray buster 4U 1820-30, the millisecond

pulsar PSR J1614-2230, LMC X-4, etc., that have a

core density beyond the nuclear density (1015 g/cc)

show anisotropic nature, i.e., the pressure inside these

compact objects can be decomposed into two parts:

the radial pressure pr and the transverse pressure pt.
The existence of a solid stellar core, the presence of a

type-3A superfluid, pion condensation, different kinds

of phase transitions, a mixture of two gases, etc., are

reasonable for pressure anisotropy (Sawyer 1972;

Letelier 1980; Sokolov 1980; Kippenhahn & Weigert

1990). A large number of works have been done by

assuming pressure anisotropy (Herrera & Santos 1997;

Dev & Gleiser 2003; Sharma & Maharaj 2007;

Rahaman et al. 2010, 2012; Bhar & Murad 2016).

To obtain the maximum value of the mass-to-radius

ratio for a model of a compact star is an important
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problem in relativistic astrophysics since ‘‘the exis-

tence of such a bound is intriguing because it occurs

well before the appearance of an apparent horizon at

M ¼ R=2’’ as proposed by Guven & Murchadha

(1999). The authors have investigated the upper limit

of M/R for compact general relativistic configurations

by assuming that inside the star the radial stress pr is
different from the tangential pressure pt. It was also

investigated by them that if the density is monotoni-

cally decreasing and radial pressure is greater than the

tangential pressure then the upper bound 8/9 is still

valid to the entire bulk if m is replaced by the quasi-

local mass. Several bounds on the mass–radius ratio

and anisotropy parameter have also been found for

models in which the anisotropic factor is proportional

to r2 Mak et al. (2002). Bounds on m/r for static

objects with a positive cosmological constant were

obtained by Andréasson & Böhmer (2009). According

to Heintzmann & Hillebrandt (1975), for an arbitrarily

large anisotropy, in principle, there is neither limiting

mass nor limiting redshift and they also proposed that

semi-realistic equations of state lead to a mass of 3–

4M� for neutron stars with an anisotropic equation of

state (EoS). Bowers & Liang (1974) have analytically

obtained the maximum equilibrium mass and surface

redshift in the case of incompressible neutron matter.

For a relativistic stellar model, the value of the red-

shift cannot be arbitrarily large. Bondi (1992) con-

sidered the relation between redshift and the ratio of

the trace of the pressure tensor to local density and

proved that when anisotropic pressures are allowed,

considerably larger redshift values can be obtained.

Ivanov (2002) obtained the maximum value of the

redshift for anisotropic stars. For realistic anisotropic

star models, the surface redshift cannot exceed the

values 3.842 or 5.211 when the tangential pressure,

respectively, satisfies the strong or the dominant

energy condition (DEC), whereas this bound in the

perfect fluid case is 2.

The dynamical stability of spherically symmetric
gravitational equilibria of cold stellar objects made of

bosons and fermions was proposed by Jetzer (1990).

Using the Einstein–Klein–Gordon equation, Jetzer &
Scialom (1992) explored the dynamical instability of

the static real scalar field. Bhar et al. (2015) studied
the behavior of static spherically symmetric rela-
tivistic objects with locally anisotropic matter distri-

bution considering the Tolman VII form for the

gravitational potential grr in curvature coordinates

together with the linear relation between the energy
density and the radial pressure. Bhar (2015b) proposed

a model of a superdense star admitting conformal

motion in the presence of a quintessence field by

taking Vaidya & Tikekar (1982) ansatz motivated by

the accelerating phase of our present universe. Ivanov

(2018) proposed a physically realistic stellar model

with a simple expression for the energy density with a

conformally flat interior and discussed all the physical

properties without graphic proofs. Recently, Sharma

et al. (2020) obtained a new class of solutions by

revisiting the Vaidya–Tikekar stellar model in the

linear regime and discussed the impact of the curva-

ture parameter K of the Vaidya–Tikekar model, which

characterizes a departure from homogeneous spherical

distribution, on the mass–radius relationship of the

star. Mustafa et al. (2020) considered spherically

symmetric space–time with an anisotropic fluid dis-

tribution. In particular, they used the Karmarkar

condition to explore the compact star solutions.

To study the model of a compact star by utilizing

Finch & Skea (1989) metric potential is a very inter-

esting platform to the researchers. Hansraj & Maharaj

(2006) obtained charged Finch–Skea stars and these

models are given in terms of Bessel functions and

obey a barotropic EoS. Sharma & Ratanpal (2013)

obtained the model of stars with a quadratic EoS with

the Finch–Skea geometry and this work was extended

by Pandya et al. (2015) for a generalized form of the

gravitational potential. Kalam et al. (2014) proposed
quintessence stars with both dark energy and aniso-

tropic pressures. A charged anisotropy stellar model in

the background of Finch–Skea geometry has been

obtained by Maharaj et al. (2017) and the exact

solutions have been expressed in terms of elementary

functions, Bessel functions, and modified Bessel

functions. Bhar (2015a) proposed a new model of an

anisotropic strange star, which admits the Chaplygin

EoS. The study of a compact star model in the context

of Finch–Skea geometry has been conducted in matter

distributions with lower dimensions also (Banerjee

et al. 2013; Bhar et al. 2014). Relativistic solutions of
anisotropic charged compact objects in hydrodynam-

ical equilibrium with Finch–Skea geometry in the

usual four and higher dimensions have been studied

by Dey & Paul (2020).

Inspired by all of these earlier works, in the

present paper, we obtain a new model of a singu-

larity-free compact star by assuming a physically

reasonable anisotropic factor along with the metric

potential grr: Our paper is arranged as follows: in

Section 2, the basic field equations have been dis-

cussed. In the next section, we have described the

metric potential grr. Section 4 is devoted to the

description of the new model. In Section 5, we
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matched our interior solution to the exterior Sch-

warzschild line element. Physical analysis of the

obtained model is described in Section 6. In the next

section, the stability condition of the present model

has been discussed and finally, some comparative

study of the present model for different values of

n is given in Section 8.

2. Interior space–time and Einstein field
equations

The structure of compact and massive stars is deter-

mined by Einstein’s field equations:

Glm ¼ j
G

c4
Tlm; ð1Þ

where Glm and Tlm are the Einstein tensor and energy-

momentum tensor, respectively. G and c, respectively,
denote the universal gravitational constant and speed

of the light.

A non-rotating spherically symmetry 4D space–

time in Schwarzschild coordinates xl ¼ ðt; r; h; /Þ is
described by the line element

ds2 ¼ �A2 dt2 þ B2 dr2 þ r2ðdh2 þ sin2 h d/2Þ; ð2Þ

where A and B are static, i.e., functions of the radial

coordinate r only, and these are called the gravita-

tional potentials. They satisfy Einstein’s field

Equation (1).

We also assume that inside the stellar interior, the

matter is anisotropic in nature, and therefore, we

write the corresponding energy–momentum tensor

as

Tl
m ¼ ðqþ prÞulum � ptg

l
m þ ðpr � ptÞvlvm; ð3Þ

with uiuj ¼ �vivj ¼ 1 and uivj ¼ 0. Here the vector

vi is the space-like vector and ui is the fluid 4-ve-

locity and it is orthogonal to vi, q is the matter

density, pt and pr are, respectively, the transverse

and radial pressures of the fluid and these two

pressure components act in the perpendicular

direction to each other.

The Einstein field equations assuming G ¼ 1 ¼ c
are given by

jq ¼ 1

r2
1� 1

B2

� �
þ 2B0

B3r
; ð4Þ

jpr ¼
1

B2

1

r2
þ 2A0

Ar

� �
� 1

r2
; ð5Þ

jpt ¼
A00

AB2
� A0B0

AB3
þ 1

B3rA
ðA0B� B0AÞ: ð6Þ

The mass function for our present model is obtained as

mðrÞ ¼ 4p
Z r

0

x2qðxÞ dx: ð7Þ

Using (4)–(6), we obtain

2A0

A
¼

jrpr þ 2m
r2

1� 2m
r

; ð8Þ

dpr
dr

¼ � ðqþ prÞ
A0

A
þ 2

r
ðpt � prÞ: ð9Þ

Combining (8) and (9), one can finally obtain

dpr
dr

¼ � qþ pr
2

jrpr þ 2m
r2

� �
1� 2m

r

� � þ 2

r
ðpt � prÞ: ð10Þ

Equation (10) is called the Tolman–Oppenheimer–

Volkoff (TOV) equation of a hydrostatic equilibrium

for the anisotropic stellar configuration and j ¼ 8p
being Einstein’s constant.

Where ‘prime’ indicates differentiation with respect to

radial coordinate r. Our goal is to solve Equations (4)–(6).

3. Choice of the metric potential

In system (4)–(6), we have three equations with five

unknown (q; pr; pt; A; B). To solve this system, we

are free to choose any two of them. Now by our

previous knowledge of algebra we know that there

are 5
2

� �
¼ 10 possible ways to choose any two

unknowns. Sharma & Ratanpal (2013), Bhar et al.

(2016a), and Bhar & Ratanpal (2016) choose B2

along with pr, Bhar & Rahaman (2015) choose q
along with pr, Murad & Fatema (2015) and Thir-

ukkanesh et al. (2018) choose A2 with D to model

different compact stars. However, a very popular

technique is to choose B2 along with an EoS, i.e., a

relation between the matter density q and radial

pressure pr. Several papers were published in this

direction (Komathiraj & Maharaj 2007; Sharma &

Maharaj 2007; Sunzu et al. 2014; Bhar 2015a; Bhar
& Murad 2016; Bhar et al. 2016b, 2017; Thomas &

Pandya 2017).
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To solve Equations (4)–(6), let us assume the

expression of the coefficient of grr, i.e., B
2 as

B2 ¼ 1þ r2

R2

� �n

; ð11Þ

where n 6¼ 0 is a real number. If one takes n ¼ 0,

then from Equation (4), we get q ¼ 0, which is not

physically reasonable. The gravitational potential B2

is well behaved and finite at the origin. It is also

continuous in the interior and it is important to

realize that this choice for B2 is physically rea-

sonable. For n ¼ 1, the metric potential reduces to

well-known Finch & Skea (1989) potential. The

metric potential in (11) was used earlier by Pandya

et al. (2015) to model a compact star by using a

proper choice of the radial pressure pr and they

proved that the model is compatible with obser-

vational data.

Assuming G ¼ c ¼ 1 and by using (11) in

(4), the expression for matter density is obtained as

jq ¼
1� 1þ r2

R2

� ��n

r2
þ
2n 1þ r2

R2

� ��1�n

R2
: ð12Þ

4. Proposed model

Using the expression of B2, Equations (5) and (6)

become

jpr ¼ 1þ r2

R2

� ��n
1

r2
þ 2A0

Ar

� �
� 1

r2
; ð13Þ

jpt ¼
A00

A
1þ r2

R2

� ��n

�A0

A

nr 1þ r2

R2

� ��1�n

R2

þ 1

rA
A0 � Anr

R2
1þ r2

R2

� ��1
( )

1þ r2

R2

� ��n

: ð14Þ

From Equations (13) and (14), it is clear that once we

have the expression for A, one can obtain the

expressions for pr and pt in a closed form. Instead of

a choice for A, for our present model, we introduce

the anisotropic factor D, the difference between these

two pressures, i.e., pt � pr. This anisotropic factor

measures the anisotropy inside the stellar interior and

it creates an anisotropic force, which is defined as

2D=r. This force may be positive or negative

depending on the sign of D, but at the center of the

star, the force is zero since the anisotropic factor

vanishes there.

From (13) and (14), we obtain

A00

A
� A0

A

1

r
1þ nr2

r2 þ R2

� �
þ
�1þ ð1þ r2

R2Þn

r2

¼ n

r2 þ R2
þ j 1þ r2

R2

� �n

D: ð15Þ

To solve equations (13) and (14), we choose the

expression of D as

jD ¼ 1

r2
�

1þ r2

R2

� ��n

ðð1þ nÞr2 þ R2Þ
r2ðr2 þ R2Þ : ð16Þ

Whenever we choose the expression, one has to

remember that the expression ofD is to be chosen in such

a manner that (i) it should vanish at the center of the star,

(ii) it does not suffer from any kind of singularity, (iii)D
is positive inside the stellar interior, and finally (iv) the

field equation can be integrated easily with this choice of

D. To obtain the model of a compact star, Maharaj et al.
(2014),Murad&Fatema (2015), andDey& Paul (2020)

choose a physically reasonable choice of D to find the

exact solutions for the Einstein–Maxwell equations. Our

present choice of the anisotropic factor satisfies theabove

conditions, which will be verified in the coming section

and therefore this choice is physically reasonable.

Solving (13) and (14) with the help of (16), we get

the following equation:

A00 ¼ A0 1þ nr2

r2 þ R2

� �
1

r
: ð17Þ

Solving (17), we obtain another metric coefficient as

A2 ¼ Dþ Cðr2 þ R2Þ1þ
n
2

2þ n

 !2

; ð18Þ

where C and D are constants of integrations which can

be obtained from the matching conditions. Using the

expression for A2, the expressions for radial and

transverse pressures are obtained as

jpr ¼
2Cð2þ nÞ 1þ r2

R2

� ��n

ðr2 þ R2Þ
n
2

Dð2þ nÞ þ Cðr2 þ R2Þ1þ
n
2

�
1� 1þ r2

R2

� ��n

r2
; ð19Þ

jpt ¼

�
Cð4þ nÞðr2 þ R2Þ1þ

n
2 � Dnð2þ nÞ

�
1þ r2

R2

� ��n

Dð2þ nÞðr2 þ R2Þ þ Cðr2 þ R2Þ2þ
n
2

:

ð20Þ
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5. Boundary condition

To fix the different constants, in this section, we match

our interior space–time continuously to the exterior

Schwarzschild space–time

ds2þ ¼ 1� 2M

r

� ��1

dr2 þ r2ðdh2 þ sin2 h d/2Þ

� 1� 2M

r

� �
dt2; ð21Þ

outside the event horizon, i.e., r[ 2M, where M
is a constant representing the total mass of the

compact star corresponding to our interior space–

time:

ds2� ¼ 1þ r2

R2

� �n

dr2 þ r2ðdh2 þ sin2 h d/2Þ

� Dþ Cðr2 þ R2Þ1þ
n
2

2þ n

 !2

dt2: ð22Þ

A smooth matching of the metric potentials across the

boundary is given by the first fundamental form, i.e.,

at the boundary r ¼ rb

gþrr ¼ g�rr; gþtt ¼ g�tt ; ð23Þ

and the second fundamental form implies

piðr ¼ rb � 0Þ ¼ piðr ¼ rb þ 0Þ; ð24Þ

where i takes the values of r and t.
From the boundary conditions gþtt ¼ g�tt and

prðrbÞ ¼ 0, we get the following two equations:

1� 2M

rb
¼ Dþ Cðr2b þ R2Þ1þ

n
2

2þ n

 !2

; ð25Þ

1� 1þ r2b
R2

� ��n

r2b
¼

2Cð2þ nÞ 1þ r2b
R2

� ��n

ðr2b þ R2Þ
n
2

Dð2þ nÞ þ Cðr2b þ R2Þ1þ
n
2

:

ð26Þ

• Determination of R: Now the boundary condi-

tion gþrr ¼ g�rr , implies

R ¼ rbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

rb

� ��1
n�1

r : ð27Þ

• Determination of C and D: Solving Equa-

tions (25) and (26), we obtain the expressions

C and D as

C ¼ �
ðR2 þ r2bÞ

�n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Mþrb

rb

q
1� 1þ r2b

R2

� �n� �
2r2b

;

ð28Þ

D ¼ � Cðr2b þ R2Þ1þ
n
2

2þ n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

rb

r
: ð29Þ

So, we have matched our interior space–time to

the exterior Schwarzschild space–time at the

boundary r ¼ rb. Obviously, it is clear that the

metric coefficients are continuous at r ¼ rb, but

the transverse pressure pt does not vanish at the

boundary and therefore it is not continuous at the

junction surface. To take care of this situation, let

us use the Darmois Israel (1966), Israel (1967)

formation to determine the surface stresses at the

junction boundary. The intrinsic surface stress–

energy tensor Sij is given by Lancozs equations in

the following form:

Sij ¼ � 1

8p
ðjij � dijj

k
kÞ; ð30Þ

where jij represents the discontinuity in the second

fundamental form, written as

jij ¼ Kþ
ij � K�

ij ; ð31Þ

Kij being the second fundamental form is presented by

K�
ij ¼ �n�m

o2Xm

onion j þ Cm
ab
oXa

oni
oXb

on j

	 
����
S

; ð32Þ

where n�m are the unit normal vectors defined by

n�m ¼ � gab
of

oXa

of

oXb

����
����
�1

2 of

oXm
; ð33Þ

with nvnm ¼ 1. Here nv is of unit magnitude, and ni is
the intrinsic coordinate on the shell. - and þ corre-

spond to interior and exterior Schwarzschild space–

time, respectively.

Using the spherical symmetry nature of the space–

time surface stress–energy tensor can be written as

Sij ¼ diagð�r;PÞ, where r and P are the surface

energy density and surface pressure, respectively.

The expressions for the surface energy density r
and the surface pressure P at the junction surface r ¼
rb are obtained as

r ¼ � 1

4prb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

rb

r
� 1þ r2b

R2

� ��n
2

" #
; ð34Þ
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P ¼ 1

8prb

1� M
rbffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M
rb

q �
1þ r2b

R2

� ��n
2

Dð2þ nÞ þ Cðr2b þ R2Þ1þ
n
2

2
64

� fDð2þ nÞ þ Cðr2b þ R2Þ
n
2
�
ð3þ nÞr2b þ R2

�
g
#
: ð35Þ

6. Physical analysis of the present model

1. Regularity of the metric functions at the center:
We observe from equations (11) and (18) that the

metric potentials take the following values at the

center of the star:

B2jr¼0 ¼ 1; ð36Þ

A2jr¼0 ¼
�Dð2þ nÞ þ CR2þn

2þ n

�2
: ð37Þ

The above two equations imply that metric functions

are free from singularity and positive at the center.

2. Behavior of pressure and density: From Equa-

tions (12), (19) and (20), the central density and

central pressure are obtained as

qc ¼
3n

jR2
[ 0; ð38Þ

pc ¼
�Dnð2þ nÞ þ Cð4þ nÞR2þn

R2
�
Dð2þ nÞ þ CR2þn

� [ 0: ð39Þ

From Equation (38), we obtain n[ 0. Therefore,

we can conclude that the dimensionless parameter n
can never be negative. So n 2 Rþ, R being the set of

real numbers. Now Equation (39) holds if

C

D
[

nð2þ nÞ
ð4þ nÞR2þn

:

Also, it is well known that for a physically

acceptable model, q� pr � 2pt should be positive

everywhere within the stellar interior. By employ-

ing q� pr � 2pt at the center of the star we get

nð2þ nÞ
2Rnþ2

[
C

D
:

Hence, we obtain a reasonable bound for C
D as

nð2þ nÞ
ð4þ nÞR2þn

\
C

D
\

nð2þ nÞ
2Rnþ2

:

The surface density of the star is obtained as

jqs ¼
1� 1þ r2b

R2

� ��n

r2b
þ
2n 1þ r2b

R2

� ��1�n

R2
: ð40Þ

The EoS parameters xr and xt are obtained from

the following formulae:

xr ¼
pr
q
; xt ¼

pt
q
:

The profiles of xr and xt have been plotted in

Figure 1. Next, we are interested to find out the

pressure and density gradient denoted as follows:

(i) density gradient: dq=dr, (ii) radial pressure

gradient: dpr=dr, and (iii) transverse pressure gra-

dient: dpt=dr. Differentiating Equations (12), (19),

and (20) with respect to r, we get the following

expressions for q0; p0r and p0t (overdashed denotes

differentiation with respect to r) as

jq0 ¼ 2

r3

"
1þ r2

R2

� ��n

ðr2 þ R2Þ2
n
ð1� n� 2n2Þr4

þ ð2þ nÞr2R2 þ R4
o
� 1

#
; ð41Þ

jp0r ¼
2� 2 1þ r2

R2

� ��n

r3
�
2n 1þ r2

R2

� ��1�n

rR2

� 2Cð2þ nÞrW1ðrÞ; ð42Þ

jp0t ¼
2r 1þ r2

R2

� ��n

ðDð2þ nÞðr2 þ R2Þ þ Cðr2 þ R2Þ2þ
n
2Þ2

�
n
D2nð1þ nÞð2þ nÞ2 þ CDn2ð2þ nÞ

� ðr2 þ R2Þ1þ
n
2 � C2ð1þ nÞð4þ nÞ

� ðr2 þ R2Þ2þn
o
; ð43Þ

where

W1ðrÞ ¼
Dnð2þ nÞ þ 2Cð1þ nÞðr2 þ R2Þ1þ

n
2

ðDð2þ nÞ þ Cðr2 þ R2Þ1þ
n
2Þ2

X;

X ¼ ðr2 þ R2Þ�1þn
2

1þ r2

R2

� �n :

All ofq0; p0r, andp
0
t shouldbenegative for r 2 ð0; rbÞ.We

shall verify it with the help of graphical analysis.

6.1 The compact stars PSR J1614-2230 and
EXO 1785-248

To obtain the values of the constants R; C; and D in

the expressions of different model parameters, we

have considered two compact stars PSR J1614-2230

and EXO 1785-248. The observed and estimated

masses and radii of these two stars have been given in
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Tables 1 and 2, respectively. Using the expressions

for R; C; and D from Equations (27) to (29), the

numerical values of these parameters have been

determined for different values of n and presented in

Tables 1 and 2.

By using the mentioned values in Table 1 for the

compact star PSR J1614-2230, we generated the plots

of matter density ðqÞ, radial pressure (pr), transverse
pressure (pt), and anisotropic factor ðDÞ in Figures 2–

4, respectively. The matter density q is a positive,

finite, and monotonically decreasing function of r, i.e.,
the maximum values of these physical model param-

eters are attained at the center of the star. The radial

and transverse pressures pr and pt show the same

behavior as q. Figure 4 shows that D[ 0 for our

model, i.e., anisotropic force is repulsive in nature and

it is necessary for the construction of compact object

(Gokhroo & Mehra 1994). Moreover, at the center of

the star D vanishes. q0; p0r, and p0t all are plotted in

Figure 5 and the figures indicate that all of them take a

negative value and it once again verifies that q; pr,
and pt are monotonically decreasing. The EoS

parameters xr and xt are plotted in Figure 1. From the

profiles, we see that xr is monotonically decreasing

Figure 1. EoS parameters (top) xr, (middle) xt, and

(bottom) ðpr þ 2ptÞ=q are plotted against r inside the stellar
interior for the compact star PSR J1614-2230 for different

values of n mentioned in the figures.

Table 1. Values of the constants R; C; and D for the

compact star PSR J1614-2230 whose observed mass and

radius are given by ð1:97� 0:04ÞM� and 9:69þ0:2
�0:2 km,

respectively (Demorest et al. 2010).

n R (km) C (km-2) D

10 31.2927 3:5469� 10�18 0.1812

15 38.6228 5:0306� 10�27 0.1618

20 44.7698 3:0519� 10�36 0.1512

25 50.1697 9:8459� 10�46 0.1445

50 71.2777 7:1879� 10�96 0.1303

60 78.1406 8:5446� 10�117 0.1278

100 101.033 1:1423� 10�203 0.1228

500 226.332 1:3527� 10�1180 0.1165

1000 320.155 1:3922� 10�2508 0.1158

Table 2. Values of the constants R; C and D for the

compact star EXO 1785-248 whose observed mass and

radius are given by ð1:3� 0:2ÞM� and 8:849þ0:4
�0:4 km,

respectively (Ozel et al. 2009).

n R (km) C (km-2) D

10 34.4082 1:3027� 10�18 0.2912

15 42.3663 1:1916� 10�27 0.2703

20 49.0506 4:6622� 10�37 0.2589

25 54.9275 9:6988� 10�47 0.2517

50 77.9265 7:8923� 10�98 0.2365

60 85.4094 3:9005� 10�119 0.2338

100 110.38 1:5579� 10�207 0.2284

500 247.13 1:0446� 10�1199 0.2217

1000 349.55 9:3898� 10�2547 0.2209
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and xt is a monotonically increasing function of r,
also 0\xr; xt\1 indicate that the underlying matter

distribution is non-exotic in nature. The ratio of stress

tensor to energy ðpr þ 2ptÞ=q is monotonically

decreasing and has been shown graphically in

Figure 1.

Figure 2. Matter density q is plotted against r inside the

stellar interior for the compact star PSR J1614-2230 for

different values of n mentioned in the figure.

Figure 4. Anisotropic factor D is plotted against r inside
the stellar interior for the compact star PSR J1614-2230 for

different values of n mentioned in the figure.

Figure 3. (Top) Radial pressure pr and (bottom) trans-

verse pressure pt are plotted against r inside the stellar

interior for the compact star PSR J1614-2230 for different

values of n mentioned in the figures.

Figure 5. (Top) dq=dr and (bottom) dpr=dr; dpt=dr are

plotted against r inside the stellar interior for the compact

star PSR J1614-2230 for different values of n mentioned in

the figures.
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One interesting thing we can note that for larger

values of n, for the model parameters xt and

ðpr þ 2ptÞ=q, the central values of these two physi-

cal quantities increase and at r ¼ 7:3 km, irrespec-

tive of n, all the curves coincide. Moreover for

0\r\7:3, as n increases, the profile corresponding

to a small value of n is dominated by the profile

corresponding to the value of n larger than previous

one. On the other hand, for 7:3\r\rb, the nature of
the curves for these two physical quantities become

the reverse of the former.

6.2 Energy conditions

To be a physically reasonable model, one of the most

important properties that should be satisfied by our

model is energy conditions viz, null energy condition

(NEC), weak energy condition (WEC), strong energy

condition (SEC), and DEC. These energy conditions

are followed if the following inequalities hold

simultaneously:

NEC :: Tlmb
lbm� 0 or qþ pi� 0; ð44Þ

WEC :: Tlma
lam� 0 or q� 0; qþ pi� 0; ð45Þ

DEC :: Tlma
lam� 0 or q� jpij; ð46Þ

SEC :: Tlma
lam � 1

2
Tk
k a

rar � 0 or qþ
X
i

pi� 0;

ð47Þ

where i takes the value of r and t for radial and

transverse pressures. al and bl are time-like

vector and null vector, respectively, and Tlmal is a

non-space-like vector. To check all the inequali-

ties stated above, we have drawn the profiles of

left-hand sides of (44)–(47) in Figure 6 in the

interior of the compact star PSR J1614-2230 for

different values of n. The figures show that all the

energy conditions are satisfied by our model of a

compact star.

6.3 The behavior of mass function

The gravitational mass in a sphere of radius r is given
by

mðrÞ ¼ 4p
Z r

0

x2qðxÞ dx ¼ r

2
1� 1þ r2

R2

� ��n	 

:

ð48Þ

Figure 6. All the energy conditions are plotted against

r inside the stellar interior for the compact star PSR J1614-

2230 for different values of n mentioned in the figures.
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The compactness factor u(r) and surface redshift zs are
defined by

uðrÞ ¼ 4p
r

Z r

0

x2qðxÞ dx ¼ 1

2
1� 1þ r2

R2

� ��n	 

;

ð49Þ

zs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2uðrbÞ
p � 1: ð50Þ

One can easily check that limr!0mðrÞ ¼ 0, which

indicates that the mass function is regular at the center

of the star. What is more, 1þ r2=R2ð Þn [ 1, therefore,

1þ r2=R2ð Þ�n\1 and hence mðrÞ[ 0. As n increases,

1þ r2=R2ð Þ�n
decreases and therefore mass function

increases. So, m(r) is a monotonically increasing

function of r. The twice maximum allowable mass-to-

radius ratios are obtained as 0.5997 and 0.4693 for the

compact stars PSR J1614-2230 and EXO 1785-248,

respectively, and these values lie in the range

2M=rb\8=9, i.e., Buchdahl’s limit is satisfied (Buch-

dahl 1959). The surface redshift of these two stars is

obtained as 0.5806 and 0.372699, respectively.

6.4 Equation of state (EoS)

To construct a model of a compact star, it is a very

common choice among the researchers to use any

specific EoS, which gives a relationship between the

pressure and the density. We still do not know the

relationship between the matter density and the

pressures. To check the variation of pressure with

density, we have plotted pr versus q and pt versus q
in Figure 7, from which one can predict possible

EoS. For the complexity in the expressions of q; pr,
and pt, it is very difficult to obtain a well-known

relation between them. With the help of the

numerical analysis, we have obtained the best-fitted

curve, which gives us a prediction about the rela-

tionship between the matter density and pressure.

We have drawn the profiles for the compact star

PSR J1614-2230 by taking different values of the

dimensionless constant n mentioned in the figures.

6.5 Mass–radius curves

The mass–radius relation for different values of the

dimensionless parameter n for the compact star PSR

J1614-2230 is shown in Figure 8. In the following

table, we have given the maximum allowable mass for

different values of n and we have also obtained the

corresponding radius from the figure.

n
Maximum

mass (M=M�)
Radius

(km)

10 2.915 12.01

15 2.831 11.81

25 2.738 11.44

60 2.648 11.04

1000 2.572 10.7

It is evident from the calculation that the maximum

mass of compact star decreases as n increases.

Figure 7. (Top) pr versus q and (bottom) pt versus q are

plotted against r inside the stellar interior for the compact

star PSR J1614-2230 for different values of n mentioned in

the figures.

Figure 8. Maximum allowable mass versus radius is

plotted against r inside the stellar for different values of

n mentioned in the figure.
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7. Stability analysis

7.1 Harrison–Zeldovich–Novikov stability criterion

A stability condition for the model of compact

star proposed by Harrison (1965) and Zeldovich &

Novikov (1971) depending on the mass and cen-

tral density of the star. They suggested that for

stable configuration oM=oqc [ 0, otherwise the

system will be unstable, where M and qc
denote the mass and central density of the com-

pact star.

For our present model

oM

oqc
¼ 4

3
pr3b 1þ j

3n
qcr

2
b

� ��n�1

: ð51Þ

The above expression of oM=oqc is positive and

hence the stability condition is well satisfied. The

variation of the mass function and oM=oqc with

respect to the central density is depicted in

Figure 9.

7.2 Stability under three forces

The stability of our present model under three dif-

ferent forces viz, gravitational force, hydrostatics

force, and anisotropic force can be described by the

following equation:

�MGðqþ prÞ
r2

B

A
� dpr

dr
þ 2

r
ðpt � prÞ ¼ 0; ð52Þ

known as the TOV equation, where MGðrÞ repre-

sents the gravitational mass within the radius r,
which can be derived from the Tolman–Whittaker

formula and Einstein’s field equations and is defined

by

MGðrÞ ¼ r2
A0

B
: ð53Þ

Plugging the value of MGðrÞ in Equation (52), this

equation can be rewritten as

Fg þ Fh þ Fa ¼ 0; ð54Þ

where

Fg ¼ �
Cð2þ nÞr 1þ r2

R2

� ��n

ðr2 þ R2Þ�1þn
2W1ðrÞ

4p
;

ð55Þ

Fh ¼
1

4pr3
�1þ 1þ r2

R2

� ��n	

þ
r2 1þ r2

R2

� ��n

nðrÞ

ðr2 þ R2ÞðDð2þ nÞ þ Cðr2 þ R2Þ1þ
n
2Þ2

3
5; ð56Þ

Fa ¼
1� 1þr2

R2

� ��n

ðð1þnÞr2þR2Þ
r2þR2

4pr2
ð57Þ

and

nðrÞ ¼ D2nð2þ nÞ2 þ CDnð2þ nÞðr2 þ R2Þ
n
2U

þ C2ðr2 þ R2Þ1þn�ð4þ nð7þ 2nÞÞr2 þ nR2

;

U ¼ ð4þ nÞr2 þ 2R2:

The three different forces acting on the system

are shown in Figure 10 for different values of

n. The figures show that gravitational force is

negative and dominating in nature, which is

counterbalanced by the combined effect of

hydrostatics and anisotropic forces to keep the

system in equilibrium.

Figure 9. (Top) The variation of the mass function and

(bottom) oM=oqc are plotted with respect to central density

qc inside the stellar interior for different values of

n mentioned in the figures.
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7.3 Causality condition and method of cracking

For a physically acceptable model, the radial and

transverse velocity of sound should lie in the range

V2
r ; V

2
t 2 ½0; 1�, known as causality condition. Where

radial ðV2
r Þ and transverse velocity ðV2

t Þ of sound are

defined as

V2
r ¼ p0r

q0
; V2

t ¼ p0t
q0
: ð58Þ

The expressions for q0; p0r, and p0t have been given in

Equations (41)–(43).

Now, due to the complexity of the expression it is very

difficult to verify the causality condition analytically. The

profiles of V2
r and V2

t are shown in Figure 11. It is clear

from the figure that both V2
r and V2

t lie in the reasonable

range. So, it can be concluded that the causality condition

is well satisfied. Next, we want to concentrate on the

stability factor of the present model, which is defined as

V2
t � V2

r . For the stability of a compact star model,

Herrera (1992) proposed the method of ‘cracking’ and

using thismethod, Abreu et al. (2007) proposed that for a

potentially stable configuration, V2
t � V2

r\0. From

Figure 11 (bottom panel), we see that the stability factor

is negative and hence we conclude that our model is

potentially stable everywhere within the stellar interior.

7.4 Adiabatic index

For a particular stellar configuration, Bondi (1964)

examined that a Newtonian isotropic sphere will be in

equilibrium if the adiabatic index C[ 4=3 and it gets

modified for a relativistic anisotropic fluid sphere.

Based on these results, the stability of an anisotropic

stellar configuration depends on the adiabatic index Cr

given by

Cr ¼
qþ pr
pr

dpr
dq

;

¼ 2r2ðDnð2þ nÞ þ 2Cð1þ nÞv1þn
2Þ

vðDð2þ nÞ
�
1� 1þ r2

R2

� �nÞ þ Cv
n
2W2ðrÞÞ

V2
r ; ð59Þ

where

W2ðrÞ ¼ ð5þ 2nÞr2 þ R2 � 1þ r2

R2

� �n

ðr2 þ R2Þ;

v ¼ r2 þ R2;

and the expression of dpr=dq has been given in the

previous subsection.

Figure 10. Gravitational, hydrostatics, and anisotropic

forces are plotted against r inside the stellar interior for the
compact star PSR J1614-2230 for different values of

n mentioned in the figures.
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For our present model, the profiles of Cr are shown

in Figure 12 for different values of n. From the figure,

we see that the profile of the radial adiabatic index is a

monotonically increasing function of r and Cr [ 4=3
everywhere within the stellar configuration and hence

the condition of stability is satisfied.

8. Discussion

The present paper provides a new generalized model

of a compact star by assuming a physically reasonable

metric potential together with a pressure anisotropy.

We matched our interior solution to the exterior

Schwarzschild line element at the boundary to fix the

values of the different constants. From the boundary

conditions we have obtained the values of R; C, andD
for the compact stars PSR J1614-2230 and EXO 1785-

248 with masses 1.97 and 1:3M�, respectively, and
radii 9.69 and 8.85 km, respectively, in Tables 1

and 2 for different values of the dimensionless

parameter n. From the tables, it is clear that the

numerical values of the constants C and D decrease

with increasing n, whereas the numerical values of R
increase with n increasing. One notable thing is that

the numerical values of C decrease rapidly whereas

the numerical value of D decreases steadily. All the

profiles are depicted for the compact star PSR J1614-

2230. We have plotted the profiles of matter density

(q), radial pressure (get the following expressionspr),
and transverse pressure (pt) for different values of n
and we see that all are positive and monotonically

decreasing functions of r. The values of the model

parameters such as central density, surface density,

central pressure, surface transverse pressure, and the

central value of the radial adiabatic index for the

above-mentioned two stars are presented in Tables 3

and 4. We also note that the central values of pressure

and density decreases with increasing n, it is evident
from Table 2 as well as from Figures 2 and 3. On the

other hand, the surface density of the star increases as

n increases. Plugging G and c in the expression of q
and pr, we obtained the central density and central

pressure for different values of n, which lie in the

range 1:57� 1015�1:64� 1015 g=cm3
and 2:05�

1035�2:26� 1035 dyn=cm2
, respectively. It can also

be noted that the surface density lies in the range

Figure 11. (Top) The square of the radial velocity ðV2
r Þ,

(middle) the square of the transverse velocity ðV2
t Þ, and

(bottom) the stability factor V2
t � V2

r are plotted against

r inside the stellar interior for the compact star PSR

J1614-2230 for different values of n mentioned in the

figures.

Figure 12. Cr is plotted against r inside the stellar interior
for the compact star PSR J1614-2230 for different values of

n mentioned in the figure.
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7:43� 1014�7:62� 1014 g=cm3
for the compact star

PSR J1614-2230. Also, the central density and central

pressure for different values of n lies in the range

1:36� 1015�1:32� 1015 g=cm3
and 8:802� 1034�

1:005� 1035 dyn=cm2
, respectively, and surface den-

sity lies in the range 6:96� 1014�7:14� 1014 g=cm3

for the compact star EXO 1785-248. From the figure,

it is clear that the transverse pressure pt always

dominates the radial pressure pr and it creates a pos-

itive pressure anisotropy and hence repulsive force

toward the boundary. With the help of graphical rep-

resentation, we have shown that our model satisfies all

the energy conditions, and ðpr þ 2ptÞ=q is monotoni-

cally decreasing and \1. The radial adiabatic index

Cr [ 4=3 and the causality conditions are satisfied by

our model. The stability conditions of the model have

been tested under different conditions. The EoS

parameter xr is a monotonically decreasing function

of r but xt is monotonically increasing. Both of them

lie in the range 0\xr; xt\1 (Figure 1). The forces

acting on the present model are depicted in Figure 10

and it shows the effect of gravitational force (Fg) and

anisotropic force (Fa) are increased with the increas-

ing value of n. The central values of the radial adia-

batic index for the compact stars PSR J1614-2230 and

EXO 1785-248 are obtained in Tables 3 and 4. We

see that the central values of the radial adiabatic index

increases as n increases. So, one can conclude that the

increasing value of n makes the system more stable in

respect of the test of the adiabatic index. One can also

note that the central values of radial and transverse

velocities of sound increase with the increasing values

of n. To check the behavior of the radial and

Table 3. The numerical values of the central density qc, surface density qs, central pressure
pc, the value of the radial adiabatic index Cr at the center and surface transverse pressure ptðrbÞ
have been obtained for different values of n for the compact star PSR J1614-2230.

qc qs pc ptðrbÞ
n (g cm�3) (g cm�3) (dyn cm�2) Cr0 (dyn cm�2)

10 1:6448� 1015 7:4341� 1014 2:0506� 1035 1.9691 1:28407� 1035

15 1:6196� 1015 7:4950� 1014 2:1228� 1035 2.06909 1:25671� 1035

20 1:6071� 1015 7:5258� 1014 2:1583� 1035 2.12086 1:24282� 1035

25 1:5998� 1015 7:5445� 1014 2:1795� 1035 2.15254 1:23442� 1035

50 1:5851� 1015 7:5822� 1014 2:2213� 1035 2.21738 1:21746� 1035

60 1:5827� 1015 7:5885� 1014 2:2282� 1035 2.22839 1:21461� 1035

100 1:5779� 1015 7:6012� 1014 2:2420� 1035 2.25058 1:2089� 1035

500 1:5721� 1015 7:6165� 1014 2:2585� 1035 2.27754 1:20202� 1035

1000 1:5714� 1015 7:6184� 1014 2:2606� 1035 2.28094 1:20116� 1035

Table 4. The numerical values of the central density qc, surface density qs, central pressure
pc, the value of the radial adiabatic index Cr at the center and surface transverse pressure ptðrbÞ
have been obtained for different values of n for the compact star EXO 1785-248.

qc qs pc ptðrbÞ
n (g cm�3Þ (g cm�3) (dyn cm�2) Cr0 (dyn cm�2)

10 1:3604� 1015 6:9696� 1014 8:8028� 1034 2.3168 8:5476� 1034

15 1:3460� 1015 7:0253� 1014 9:2288� 1034 2.4278 8:2944� 1034

20 1:3389� 1015 7:0537� 1014 9:4396� 1034 2.4849 8:1657� 1034

25 1:3346� 1015 7:0708� 1014 9:5653� 1034 2.5196 8:0878� 1034

50 1:3262� 1015 7:1055� 1014 9:8151� 1034 2.5906 7:9305� 1034

60 1:3248� 1015 7:1113� 1014 9:8565� 1034 2.6026 7:9041� 1034

100 1:3220� 1015 7:1230� 1014 9:9392� 1034 2.6268 7:8511� 1034

500 1:3186� 1015 7:1370� 1014 1:0038� 1035 2.6561 7:7872� 1034

1000 1:3182� 1015 7:1388� 1014 1:0050� 1035 2.6598 7:7792� 1034
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transverse pressures with the matter density, we draw

the profiles of pr versus q and pt versus q in Figure 7.

The potential stability condition of the present model

is also satisfied. So, we can conclude that solution

obtained in this paper can be used as a successful

model for the description of ultra-compact stars.

9. Conclusion

In the article, we have explored a new uncharged

anisotropic solution by assuming modified Finch–

Skea ansatz for the coefficient of grr. We have

assumed a physically reasonable anisotropic factor to

generate our solution. However, the obtained physical

parameters are well-behaved at the interior as well as

possess finite values at the centre. In the construction

of the stellar models we further assumed pt [ pr. The
stability is examined by the relativistic adiabatic

index, and the adiabatic radial and tangential sound

speeds. The stellar models obtained in this paper could

play a significant role in the description of internal

structure of compact stars.
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