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Abstract. In this review, we explain recent progress made in the Babcock–Leighton dynamo models for

the Sun, which have been most successful to explain various properties of the solar cycle. In general, these

models are two-dimensional (2D) axisymmetric and the mean-field dynamo equations are solved in the

meridional plane of the Sun. Various physical processes (e.g., magnetic buoyancy and Babcock–Leighton

mechanism) involved in these models are inherently three-dimensional (3D) processes and could not be

modeled properly in a 2D framework. After pointing out limitations of 2D models (e.g., mean-field Bab-

cock–Leighton dynamo models and surface flux transport models), we describe recently developed next-

generation 3D dynamo models that implement a more sophisticated flux emergence algorithm of buoyant

flux tube rise through the convection zone and capture the Babcock–Leighton process more realistically than

previous 2D models. The detailed results from these 3D dynamo models including surface flux transport

counterparts are presented. We explain the cycle irregularities that are reproduced in 3D dynamo models by

introducing scattering around the tilt angle only. Some results by assimilating observed photospheric con-

vective velocity fields into the 3D models are also discussed, pointing out the wide opportunity that these 3D

models hold to deliver.
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1. Introduction

Since 1955 after Eugene Parker’s first fundamental

idea (Parker 1955) on the origin of the solar magnetic

cycle, it is almost more than half a century, and still,

we do not understand the origin of the solar magnetic

cycle very well. Understanding the solar magnetic

cycle is very important not only because it provides us

a great opportunity to test our existing theory of

plasma physics but also it has utmost societal impor-

tance. The violent solar disturbances (e.g., solar flares

and coronal mass ejections) that are driven by the

magnetic field of the Sun have a strong dependence on

the solar magnetic cycle and can affect the space

environment tremendously.

The space environment is a complex system where

the occurrence of the solar activity manifestations

propagating through the interplanetary space interacts

with the terrestrial magnetosphere, and generates

geomagnetic disturbances, geomagnetic storms, and

aurora. The magnetic field generated by the dynamo

action in the solar convection zone (SCZ) extends in

the solar atmosphere and gets transported outward to

the interplanetary space with the solar plasma mostly

in the form of solar wind. This continuous magnetized

plasma flow in the interplanetary medium interacts

with the planetary magnetic field distorting their

planetary magnetospheres. Besides the background

solar wind, the solar activity transients, e.g., solar

flares and coronal mass ejections also play a major

role in driving large disturbances in space weather,

such as geomagnetic storms, shock waves, and ener-

getic particle events (Gopalswamy et al. 2004;

Manoharan et al. 2004). The solar magnetic cycle

affects the occurrence of transient events (Yashiro

et al. 2004; Robbrecht et al. 2009; Winter et al. 2016)

and the solar wind speed (Tokumaru et al. 2010),

which eventually disrupts the space weather. The total
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solar irradiation which varies with the solar cycle (Wu

et al. 2018) is also a natural driver for climates in the

solar system planets. Hence, a study of the solar

magnetic cycle gives us an understanding of the major

driving forces of space weather. Apart from the space

weather, understanding the solar magnetic cycle gives

us insights to understand the magnetic cycle of other

solar-type stars (Karak et al. 2014a; Hazra et al.
2019) and its effect on the atmosphere of their exo-

planets (Hazra et al. 2020).

Soon after the discovery of a magnetic field in the

sunspot regions (Hale 1909), it was realized that the

solar cycle or sunspot cycle is nothing but the mag-

netic cycle of the Sun. Efforts had been started to

understand why the solar magnetic field behaves in a

particular fashion with a cyclic period of 11 years. The

non-linear interaction between turbulent plasma

motion and the magnetic field inside the SCZ is

responsible for the amplification of the magnetic field.

This non-linear interaction can be understood by

solving a set of magnetohydrodynamic (MHD) equa-

tions that govern the behavior of plasma and magnetic

fields as given below:

ov

ot
þ ðv � rÞv ¼ F� 1

q
rpþ 1

qc
j� Bþ mr2v; ð1Þ

oB

ot
¼ r� ðv� BÞ þ gr2B; ð2Þ

where v;B; m, and g are the velocity, magnetic field,

viscosity, and magnetic diffusivity, respectively.

F represents the gravitational force. Other terms are as

usual. Whereas the fundamental equations are well

established, one of the major challenges for develop-

ing a solar dynamo model is to handle the turbulent

convective motions properly inside the SCZ. The

turbulent stresses in the convection zone (CZ) drive

the large-scale plasma flows such as differential

rotation and meridional circulation, which are very

crucial for the operation of the solar dynamo. Hence,

modeling turbulence in a proper way is very important

to understand large-scale flows and solar dynamo

theory.

Historically, the mean-field approach of turbulence

played a major role in the development of the dynamo

theory. In the mean-field approach, velocity field and

magnetic field are split into two parts, mean and

fluctuating parts:

v ¼ vþ v0; B ¼ Bþ B0; ð3Þ

where overline indicates the mean quantities and

prime denotes the fluctuation from the mean. By

substituting Equation (3) in the magnetic induction

Equation (2), we get

oB

ot
¼ r� ðv� BÞ þ r � nþ gr2B; ð4Þ

where n ¼ v0 � B0 is the mean electromotive force

(EMF) that sustains the dynamo action in the Sun. For

homogeneous isotropic turbulence, the mean EMF can

be written as

n ¼ a �B� br� �B: ð5Þ

Here a represents the classical helical a-effect and b
represents the turbulent diffusivity (see Choudhuri

(1998) for details).

At present, the most promising framework to

explain the properties of the solar magnetic field is the

Babcock–Leighton (BL)/flux transport dynamo (FTD)

model (Choudhuri et al. 1995; Durney 1995, 1997;

Dikpati & Charbonneau 1999; Chatterjee et al. 2004;

Hazra et al. 2014; Karak et al. 2014b). These models

are a class of mean-field dynamo models where the

BL a effect is considered instead of the classical

helical a effect, and meridional flow plays a very

important role. The mean solar magnetic field is

generally assumed to be axisymmetric in these models

and can be decomposed into two parts, namely the

toroidal and poloidal components. Parker (1955) first

suggested that the solar magnetic cycle is a result of

oscillation between the toroidal field and the poloidal

field, and the toroidal and poloidal fields sustain each

other through a cyclic feedback process. For the Sun,

as the equator rotates faster than the pole, the differ-

ential rotation stretches the poloidal field and gener-

ates the toroidal field. When the toroidal field becomes

magnetically buoyant, it rises and pierces the surface

to create the sunspots. The bipolar sunspots always

have an angle in between them (tilt angle) with respect

to the equatorial line because of the Coriolis force that

acted on the toroidal field while it rises through the CZ

due to magnetic buoyancy (D’Silva & Choudhuri

1993). Since the Coriolis force increases with

increasing latitudes, the tilt angle also increases as

sunspots erupt at the higher latitudes, which is first

observed by Joy and known as Joy’s law (Hale et al.
1919). Also, sunspots are the regions of the strong

magnetic field and they diffuse. As a result, the

leading polarity sunspots that are near the equator

cancel with opposite polarity sunspots from the

opposite hemisphere. The trailing polarity sunspots

from each hemisphere advect to the polar region and

generate the large-scale poloidal field. This whole
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mechanism is called the BL mechanism (Babcock

1961; Leighton 1969). This mechanism plays a very

crucial role in the BL dynamo model by converting

the toroidal field to the poloidal field. Once the large-

scale poloidal field is generated on the surface of the

Sun, it is advected to the bottom of the CZ by the

meridional circulation or the turbulent diffusion,

depending upon which one has the faster time scale.

As the BL mechanism needs the involvement of the

longitudinal coordinate over the surface of the Sun

and most of the BL/FTD model follows a two-di-

mensional (2D) axisymmetric formulation in which

the magnetic induction equation is solved in the

meridional plane of the Sun, a parametric approach

has been widely used to capture the BL mechanism in

the 2D BL models.

The BL mechanism is observationally very well

supported. Kitchatinov & Olemskoy (2011) calculated

the global poloidal field by multiplying tilt angle and

the magnetic field strength of active regions for an

individual cycle, which is correlated with the strength

at the minimum of that following cycle. Dasi-Espuig

et al. (2010) also found a significant correlation

between the product of the cycle’s averaged tilt angle

and the strength of the same cycle with the strength of

the next cycle supporting the BL mechanism.

There is another class of models that treat the BL

mechanism more realistically than the parametric

approach used in the 2D axisymmetric BL dynamo

models. These are called surface flux transport (SFT)

models (Wanget al.1989a, b; Baumannet al.2004; Jiang

et al. 2014a). Note that these are not dynamo models

rather they only consider the evolution of the radial field

on the surface of the Sun. In these models, sunspots are

directly incorporated and the decay of sunspots due to

turbulent diffusivity and corresponding advection of fields

to the pole by meridional circulation is modeled by solv-

ing the radial part of the magnetic induction equation on

the surface (latitude–longitude plane) of the Sun. They

capture the realism of the BL mechanism in great detail

but they have their own limitations.

In both types of models (BL dynamo models and

SFT models), mean flows (e.g., meridional flow and

differential rotation) play a very important role. We

have an overwhelming amount of data from helio-

seismology for mean flows (Thompson et al. 1996;

Antia et al. 2008). For SFT models, the required

surface information of the mean flows is well con-

strained. However, for the BL dynamo model, we

need information about the mean flows inside the

whole CZ, in which the differential rotation is well

mapped (Antia et al. 1998; Schou et al. 1998) but the

exact nature of meridional circulation is still an active

field of research. In most of the BL dynamo model, a

single-cell meridional circulation encompassing the

whole CZ with a poleward flow near the surface and

an equatorward return flow near the base of the CZ is

assumed. The poleward flow near surface is observed

by helioseismology but detecting the equatorward

return flow is an extremely difficult task because of

very high noise in the helioseismology data near the

bottom of the CZ. However, recently, Gizon et al.
(2020) found a single-cell meridional circulation with

an equatorward return flow in each hemisphere of the

Sun. Also, some of the numerical simulations find the

equatorward return flow due to angular momentum

balance with the solar-like differential rotation (Passos

et al. 2015).

Most 2D BL dynamo models are successful in

explaining various properties and irregularities of the

solar magnetic cycle. However, some of the solar

magnetic features, e.g., active longitudes are beyond

the scope of these axisymmetric 2D dynamo models.

Active longitudes are the longitudinal locations of the

Sun where the solar magnetic activity is strong. The

sunspot data obtained from various observatory show

the evidence of active longitudes on the Sun very

clearly (Berdyugina 2005; Dikpati & Gilman 2005;

Usoskin et al. 2005; Mandal et al. 2017). Also,

recently, a strong quasi-annual variability in the num-

ber of flares and CME driven by the surges of mag-

netism from the activity bands is observed (McIntosh

et al. 2015; Dikpati et al. 2018). A three-dimensional

(3D) dynamo model would be extremely helpful to

reproduce these nonaxisymmetric active longitudes’

features and short-term variability in the solar cycle.

Apart from well-observed magnetic features, some

of the processes involved in the dynamo model are not

well constrained from observations. The toroidal field

generation mechanism from the poloidal field by dif-

ferential rotation is well constrained from helioseis-

mology. However, the flux emergence due to

magnetic buoyancy and creation of sunspots—this

whole process is an inherently 3D process and could

not be modeled properly in 2D. Also, due to the lack

of azimuthal information in 2D models, the realism of

the BL process cannot be captured as it is done in SFT

models. However, the SFT models have their own

limitations for not considering subsurface processes

(e.g., subduction of the magnetic field by meridional

circulation in the polar regions) and the 3D vectorial

nature of the magnetic field. Therefore, the develop-

ment of 3D dynamo models will help in capturing the

3D processes involved in the dynamo model more
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realistically and build a bridge between 2D BL

dynamo models and SFT models. Also, it will help us

with new opportunities to assimilate the observed

photospheric data to probe the interior of the SCZ.

This review is structured as follows. In the next

section, we will briefly describe the advantages and

disadvantages of the 2D models including SFT mod-

els. The formulation of next-generation 3D dynamo

models based on newly developed flux emergence

algorithms and some results are given in Section 3.

The advantage of 3D models compared to the 2D

models in the light of the build up of the polar field is

discussed in Section 4. In Section 5, we discussed

how irregular properties of the solar cycle can be

studied by including a more realistic treatment of tilt

angle scatters around Joy’s law. The opportunity of

observed data assimilation in the 3D models and some

enlightening results including those data are presented

in Section 6. Finally, in Section 7, we summarize and

conclude all results from 3D models indicating the

tremendous possibility that these models have to

emerge as the next-generation dynamo models.

2. 2D models

2.1 2D axisymmetric BL/FTD models

The mean axisymmetric magnetic field of the Sun can

be written as

B ¼ B//̂þr� A/̂; ð6Þ

where B/ is the toroidal field and A/̂ is the magnetic

vector potential, curl of which gives rise to the

poloidal field. The toroidal and poloidal field evolu-

tion equations are given below:

oA

ot
þ 1

s
ðv � rÞðsAÞ ¼ gp r2 � 1

s2

� �
Aþ Sðr; h; tÞ;

ð7Þ

oB

ot
þ 1

r

o

or
ðrvrBÞ þ

o

oh
ðvhBÞ

� �
¼ gt r2 � 1

s2

� �
B

þ sðBp:rÞXþ 1

r

dgt
dr

oðrBÞ
or

: ð8Þ

Here Bp is the poloidal field, s ¼ r sin h, and other

terms are as in usual notation. Sðr; hÞ is the source

function that incorporates the flux emergence through

the CZ and subsequent BL process.

In most of the dynamo models, observationally

motivated various analytical profiles of the differential

rotation (X) and meridional flow (vr; vh) are used,

which are very close to the helioseismology findings.

A particular profile of differential rotation and

meridional flow is shown in Figure 1. In general, a

single-cell meridional circulation is used. Although

the equatorward return flow near the bottom of the CZ

for the single-cell meridional circulation is extremely

difficult to observe by helioseismology, it is needed in

order to fulfill the mass conservation. However,

recently Gizon et al. (2020) found an equatorward

flow near the bottom of the CZ supporting a single-

cell meridional circulation. This equatorward flow

plays a very important role in advecting the toroidal

field toward the equator against the poleward dynamo

wave (Yoshimura 1975) explaining the equatorward

migration of the sunspots. Even in the case of multi-

cell meridional circulations inside the SCZ, this

equatorward return flow near the bottom of the CZ is

important for the dynamo to work (Hazra et al. 2014).

The parametric approach of modeling magnetic

buoyancy and BL process widely varies across dif-

ferent 2D dynamo models. It can be classified into two

specific approaches, one local buoyancy and another

one as nonlocal buoyancy. In the local buoyancy

treatment, the toroidal field is depleted from the bot-

tom of the CZ once it is more than a critical value and

placed on the surface to account for the poloidal field

generation. The depleted toroidal field is usually

multiplied by an a-parameter, which is confined near

the surface layers. In nonlocal buoyancy treatment, the

toroidal field at the bottom of the CZ is directly

a b

Figure 1. (a) Differential rotation profile. Color scale

represents differential rotation with value 350–480 nHz

from blue to red and (b) the meridional flow streamlines.

Blue contours show the poleward flow at the surface and an

equatorward flow at the bottom of the CZ in the northern

hemisphere and red contours show the same in the southern

hemisphere. From Hazra et al. (2017).
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multiplied with the a-parameter on the surface to

generate the poloidal field. For a detailed discussion

about the treatment of magnetic buoyancy see

Choudhuri & Hazra (2016). In general, both the

treatments of the magnetic buoyancy reproduce the

basic features (e.g., 11-year periodicity, equatorward

migration of sunspots, and polarity reversal) of the

observed solar cycle quite well. However, depending

upon how we treat the magnetic buoyancy in 2D

models, many irregularities of the solar cycle (e.g.,

Waldmeier effect and correlation of decay rate with

next cycle amplitudes) may or may not be reproduced.

Also, Muñoz-Jaramillo et al. (2010) pointed out that

a-parameterization does not correctly depict the rela-

tion between the speed of surface meridional flow and

strength of the polar field, rather another formalism

called Durney’s double-ring algorithm (Durney

1995, 1997) catches the intuitive process of BL

mechanism more physically. Given that many para-

metric formalisms of magnetic buoyancy and the BL

process in 2D models lead to varied results, the next

step would be to model the flux emergence due to

magnetic buoyancy and subsequent sunspots decay

due to the BL process using a 3D framework (Yeates

& Muñoz-Jaramillo 2013; Miesch & Dikpati 2014;

Miesch & Teweldebirhan 2016; Hazra et al. 2017;

Hazra & Miesch 2018; Karak & Miesch 2018).

2.2 SFT models

The visible part of the BL process on the surface, i.e., the

dispersion and migration of the sunspot fields after sun-

spots emerge are well captured in the SFT model.

However, unlike BL dynamo models, it only solves the

radial component of the magnetic induction equation on

the surface of the Sun in the latitude–longitude plane.

The radial component of the magnetic induction equa-

tion on the surface of the Sun (at r ¼ R�) is given below:

oBr

ot
¼ � 1

R� sin h
o

o/
ðuBrÞ �

1

R� sin h
o

oh
ðvBr sin hÞ

þ gH
1

R2
� sin h

o

oh
sin h

oBr

oh

� �
þ 1

R2
� sin2 h

o2Br

o/2

� �

þ Sðh;/; tÞ þ DðBrÞ: ð9Þ

The radial component of the magnetic field (Br) has

been used as a passive scaler here that can be mixed

and advected to the pole under the effective action of

differential rotation, i.e., the velocity in the longitu-

dinal direction (u), latitudinal meridional flow (v), and

turbulent diffusion (gH). Sðh;/; tÞ incorporates the

new fluxes that emerge from the surface below. DðBrÞ
is the term that takes care of the decay of the magnetic

field due to radial diffusion. Historically, this model

plays a tremendous role in understanding the BL

process and subsequent build up of the polar field. In

this model, one can study in detail that how individual

sunspot pair contributes to the build up of the polar

field, and how the latitudinal position of the sunspots

and their tilt angle distribution are going to affect the

strength of the polar field. The main limitation of the

model is not accounting for many important physics

by ignoring the vectorial nature of the magnetic field

and by not incorporating the subsurface processes.

There are some studies that show that the subduction

of the poloidal field by the meridional flow sinking

underneath the solar surface plays a very important

role in the dynamics of the magnetic field (Dikpati &

Choudhuri 1994, 1995; Choudhuri & Dikpati 1999).

Since these processes cannot be incorporated in 2D

SFT models, the advected radial magnetic flux near

the polar region tends to get piled up and it can only

be neutralized by the opposite polarity flux advected

there. Therefore, if the additional flux of opposite

polarity is not advected to the polar regions, the polar

field may reach an asymptotic value (see Figure 6 of

Jiang et al. 2014a). One may get a secular drift of the

polar field while modeling several cycles if the flux of

the succeeding cycle is unable to properly neutralize

the polar flux of the preceding cycle. Baumann et al.
(2004, 2006) proposed a way of fixing this problem by

adding an ad hoc decay term corresponding to the

radial diffusion, which is not included in the SFT

model. Hence, although SFT models played a very

important role in elucidating the BL process, it has

some inherent limitations that it cannot handle the

dynamics of the magnetic field in the polar regions

appropriately.

The next step would be to develop the 3D kinematic

BL dynamo models where the fluid motions are still

provided and the evolution of the magnetic field

would be in 3D. These models can incorporate the

attractive features of the 2D BL dynamo models and

SFT models while being free from the limitations of

both of the models.

3. 3D kinematic dynamo models

3D dynamo models are the next-generation dynamo

models that implement the BL process with high

observational fidelity and treat magnetic flux emer-

gence through the SCZ much more realistically than
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2D dynamo models. In these models, the total non-

axisymmetric magnetic field of the Sun is considered

and their evolution is studied by solving the magnetic

induction equation in a 3D rotating spherical shell

with a radius ranging from r ¼ 0:69R� to r ¼ R� as

given below:

oB

ot
¼ r� ðv� B� gr� BÞ þ Sðr; h;B; tÞ; ð10Þ

where Bðr; h;/; tÞ is written in terms of toroidal and

poloidal magnetic potentials A and C such that

B ¼ r� ðAr̂Þ þ r �r� ðCr̂Þ:

g is the magnetic diffusivity inside the SCZ and v is

the mean flow. In most of the cases, a radial field at

the surface and a conducting lower boundary have

been used as boundary conditions for solving Equa-

tion (10). Although the magnetic field is in 3D, the

velocity fields are still axisymmetric in general.

However, Hazra & Miesch (2018) considered the

effect of nonaxisymmetric velocity fields to study the

BL process. The source term Sðr; h; tÞ incorporates the

BL process and magnetic flux emergence through the

SCZ. The inherent 3D nonaxisymmetric features of

flux emergence due to magnetic buoyancy is now

modeled more realistically in 3D models. Different

treatments on every aspect of flux emergence and BL

processes in the 3D framework are discussed in the

next subsections.

3.1 Flux emergence

First time in a 3D framework, Yeates & Muñoz-

Jaramillo (2013) modeled the full process of 3D

emergence of flux tube considering its interaction

with convective flows while rising through the

SCZ. Their procedure is really unique in the way

that it incorporates key features of emerging flux

tubes, as suggested by the thin-flux tube and

anelastic MHD simulations, and allows the flux

emergence in a more consistent way than artificial

flux deposition on the surface of the Sun. This

treatment of flux emergence in the dynamo

framework would enhance our understanding of the

emergence and decay of sunspots as a source for

creating the poloidal field from the toroidal field.

In Figure 2, the emergence of two isolated flux

tubes at two different latitudes (0� and 30�) are

shown. It is clear from the simulation that the

rotational shear of the emerging flux tube leads to

the relative movement of the flux tube with respect

to its roots, which is very important for the mag-

netic configuration near the eruption site.

Another method that has been developed to incor-

porate flux emergence and the corresponding creation

of sunspots is called the ‘‘Spotmaker’’ algorithm

(Miesch & Dikpati 2014; Miesch & Teweldebirhan

2016; Hazra et al. 2017; Karak & Miesch 2018). This

method is different from the flux emergence procedure

adopted in Yeates & Muñoz-Jaramillo (2013). In the

Spotmaker algorithm, the spots are placed on the sur-

face of the Sun based on dynamo-generated toroidal

field near the base of the CZ. In this method, the time

required for flux to travel through the CZ is neglected

with respect to the time scale of the solar cycle.

As a first step, the spot-producing toroidal field is

calculated at the tachocline by averaging a toroidal

field over the radius from r ¼ 0:70R� to r ¼ 0:71R�.

Then the bipolar spot is placed once the averaged

Figure 2. This figure is taken from Yeates & Munoz-Jaramillo (2013) showing a single flux tube emergence on day 25 at

two different latitudes (a) at 30� N and 0� latitudes. Red and blue on the surface show positive and negative polarity Br,

respectively. (b) Colored contours show a cut of B/ inside the CZ and contours on the surface show Br (on day 25). The

magnetic field lines in the equatorial plane on days 15 and 25 are shown in (c) and (d). All color bars are in units of Gauss.
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toroidal field near the tachocline exceeds a threshold

value Bt as shown in Figure 3(a). The corresponding

potential field approximation of the placed sunspot is

also shown in Figure 3(b). The placement of a spot

pair on the surface in latitude and longitude is decided

by the location where the averaged toroidal field

crosses the threshold value. However, after emer-

gence, the spots are not connected to their parent flux

tubes. A potential field extrapolation below the sur-

face of each spot pair is used for the subsurface

structure. The subsurface structure of each spot is

shown in Figure 4(a) and (b).

After deciding the locations of the spot pair, the

timing for sunspots appearance is determined by a

time delay probability density function motivated

from the observed sunspots data. For example, if a

sunspot pair appears at time t0, then the timing of

the next emergence event will be at t1 ¼ t0 þ Dn,

where Dn is chosen randomly based on the time

delay probability distribution function PðDÞ (Miesch

& Teweldebirhan 2016). Once the sunspot pairs are

placed on the surface of the sun based on the

locations and timing determined by the toroidal field

and time delay probability distribution function

(PDF), their subsequent evolution due to differential

rotation, meridional circulation, and turbulent dif-

fusion generates the poloidal field naturally via the

BL mechanism. The Spotmaker algorithm captures

much better the sunspots properties after emergence,

i.e., the late phase of the flux emergence on the

surface while the procedure adopted in Yeates &

Muñoz-Jaramillo (2013) captures the early phase of

the flux emergence better.

Recently, Kumar et al. (2019) have employed the

dynamical flux emergence by considering upward

vortical flows and subsequent evolution of the spots to

create the poloidal field. Unlike Yeates & Muñoz-

Jaramillo (2013), they are able to obtain a self-excited

dynamo but this dynamic flux emergence algorithm

gives rise to the overlapping sunspot distribution near

the minima. A comparative study of different flux

emergence algorithms to explain various irregular

properties might be very helpful to constrain the exact

flux emergence method.

3.2 Dynamo quenching and BL process

One of the main issues related to the kinematic

approach of dynamo modeling is not accounting for

the Lorentz force feedback on the mean flows. Pre-

sumably, for the Sun, the kinematic approach is not at

all a bad approximation because the observed tor-

sional oscillation, i.e., the cyclic variation of the dif-

ferential rotation is not very significant (Antia & Basu

2000; Chakraborty et al. 2009) and the results

obtained from these models are quite in good agree-

ment with the observations. However, in the kinematic

framework, the dynamo needs to be quenched for a

given velocity field to suppress its unlimited growth.

In the Spotmaker algorithm, the flux being deposited

on spot pairs is suppressed by a quenching factor:

Us ¼ 2U0

jBðhs;/s; tÞj
Bq

1023

1 þ ðBðh;/Þ=B2
qÞ

2
Mx; ð11Þ

where B is the toroidal field averaged over the

tachocline and Bq is the quenching field strength

usually assumed to be 105 G. The U0 factor is the

amplification factor, which can be adjusted to make

dynamo action to be supercritical. If we choose

/0 � 1, which will give a flux of 1023 Mx in the

strongest active region closed to the observations with

Figure 3. Structure of a typical spot pair produced by the

‘‘Spotmaker’’ algorithm following Joy’s law tilt. (a)

Orthogonal projection of Br at the solar surface associated

with two spots at the mid-latitude. Red and blue show

positive and negative polarity of sunspots, respectively. (b)

The poloidal field associated with the spot pairs. The

potential field used for a subsurface structure extended up to

0:95R�. This figure is taken from Miesch & Dikpati (2014).

Figure 4. The detailed subsurface structure of magnetic

field lines in a sunspot pair is shown from Miesch &

Teweldebirhan (2016). The volume rendering shows mag-

netic field lines (red contours) below the solar surface at two

different vantage points (a) east of the sunspot pair looking

west and (b) underneath the sunspot pair looking up. The

surface of the Sun is shown by the blue surface.
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the subsurface toroidal field strength equivalent to the

quenching field strength.

Another very physical way to incorporate dynamo

quenching is by introducing a quenching factor in the

tilt angle between the bipolar magnetic regions

(BMRs). As the strongest flux tubes get less affected

by the Coriolis force while rising fast through the

SCZ, we expect the tilt angle to be quenched when the

cycle strength is strong. Karak & Miesch (2017) used

the tilt angle quenching as the dynamo saturation

mechanism and were able to get a self-sustained

dynamo solution.

3.3 Evolution of dynamo-generated fields

We present results from the self-sustained 3D kine-

matic dynamo models called surface flux transport and

Babcock–Leighton (STABLE) dynamo model here,

which have mostly been presented in Miesch &

Dikpati (2014), Miesch & Teweldebirhan (2016),

Hazra et al. (2017), Karak & Miesch (2017), and

Hazra & Miesch (2018). The butterfly diagram is

mostly considered as the signature of the cyclic

properties of the solar cycle. In Figure 5(a) and (c),

the butterfly diagram, i.e., the time latitude diagram of

azimuthal averaged toroidal and radial fields are

shown at r ¼ 0:71R� and r ¼ R�, respectively. The

butterfly diagrams show a cyclic behavior in both

toroidal and radial fields with a nearly 13-year peri-

odicity. The fine tuning of meridional flow speed or

turbulent diffusion can give us exactly the 11-year

period of the solar cycle but we want to explore the

overall properties of the solar magnetic activity. The

equatorward propagation of the sunspot field is clear

from the radial field evolution diagram (Figure 5a).

The sunspot producing field, i.e., the toroidal field also

shows an equator migration with time (Figure 5c)

presumably due to the equatorward meridional circu-

lation near the bottom of the CZ. Since there is no

physical sunspot number in most of the previous 2D

models, the toroidal field at the bottom of the CZ is

considered as a proxy of the sunspot number. How-

ever, for the 3D model, we have physical sunspots on

the surface that contributes to the polar field. The

disintegration and migration of the sunspot field due to

meridional circulation, differential rotation, and tur-

bulent diffusion give rise to a poleward migration of

trailing flux that reverses the polar field according to

the BL mechanism (see Figure 5a).

a b

dc

Figure 5. Magnetic cycles from a standard STABLE simulation taken from Hazra & Miesch (2018). (a) The azimuthal

averaged Br is shown as a function of time and latitudes, highlighting three cycles. Red and blue show positive and

negative polarity, respectively. The color scale is set from �200 G (blue) to ?200 G (red). (b) Mean polar field, i.e., the

averaged radial field over latitudes poleward of � 88� for the same three cycles is shown. Polar field reversals are shown

using the dotted lines. Blue and red correspond to the northern and southern hemispheres, respectively. (c) Time–latitude

plot of the azimuthal averaged mean toroidal field B̂/ at r ¼ 0:7R� (bottom of the CZ). The color scale saturates at

±50 kG, with red and blue denoting eastward and westward fields, respectively. (d) Evolution of mean toroidal flux near

the base of the CZ averaged over the northern (blue) and southern (red) hemispheres for the same three cycles.
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In Figure 5(b) and (d), the evolution of polar flux

and averaged toroidal flux over each hemisphere is

shown. Polar flux is calculated by averaging a radial

field on the polar region above �85� latitudes, while

toroidal flux is calculated over the whole CZ in each

hemisphere. The opposite phase difference between

the evolution of toroidal flux and polar flux makes it

clear that the polar field reaches a minimum value

while the toroidal field is maximum, i.e., during the

solar maximum in accordance with the observation.

The solar active longitudes could not be explained

from our 3D model because the longitudinal infor-

mation of sunspot formation is still random in our

model. The dynamo-generated field near the tacho-

cline is randomly put on the surface to form sunspots

when it crosses a particular threshold value (see

Section 3.1 for details). A promising theory to explain

these active longitudes and their time variation

involves hydrodynamic (HD) and MHD Rossby

waves inside the Sun and has been developed over the

past 20 years (see, e.g., Dikpati & McIntosh (2020)

and references therein). The interaction of Rossby

waves with differential rotation and toroidal fields

generates tachocline nonlinear oscillations (TNOs),

which are very robust features of the tachocline in

MHD shallow water models and are demonstrated to

be responsible for both solar active longitudes and

short-term solar seasonal/sub-seasonal variability

(Dikpati & Gilman 2005; McIntosh et al. 2015;

Dikpati et al. 2018). The inclusion of the TNOs in the

3D model while modeling the flux emergence from

the tachocline to the surface would be very crucial in

modeling active longitudes and the solar seasonal/sub-

seasonal variability. The 3D dynamo models are

capable of reproducing most of the aspects of the solar

magnetic field with a very good promise to include

many observational data for a greater understanding of

solar magnetic activity as we explain in the next

sections.

4. Behavior of SFT in the 3D dynamo model

The addition of an extra azimuthal dimension in the

3D models allows us to investigate the behavior of

flux transport on the surface of the Sun. Hence, one of

the main aspects that we can address after constructing

a self-excited 3D dynamo model is how an individual

sunspot pair contributes to the building up of the polar

field and whether our understanding gained from the

3D models necessitates the revision of some insights

gained from 2D SFT models. In order to do that an

individual sunspot pair on each hemisphere is placed

at a particular latitude and let them evolve under the

axisymmetric mean flows and turbulent diffusion.

Hazra et al. (2017) explored a few cases by putting a

single sunspot pair in the northern hemisphere, two

sunspot pairs symmetrically in two hemispheres, and

two sunspot pairs in two hemispheres at two different

longitudes as well (not symmetric). We discussed here

only one case in detail, where two sunspot pairs are

placed symmetrically in two hemispheres.

4.1 Build up of polar field from two sunspot pairs
in two hemispheres

The ‘‘Spotmaker’’ algorithm (as explained in Sec-

tion 3.1) is used to place two sunspot pairs symmet-

rically across the equator at two hemispheres at ±5�

latitudes. The magnetic flux in each spot is chosen as

1 � 1022 Mx and its radius is taken to be 21.71 Mm.

To make the result of our simulation more clearly

visible, the radius of each sunspot is chosen somewhat

larger than the actual sunspot. After placing the sun-

spots successfully, we allow our code to evolve the

magnetic field from these sunspot pairs leading to the

build up of the polar field. The snapshots of the radial

magnetic field (Br) at different times during the evo-

lution of the magnetic field are shown in Figure 6.

Figure 7 shows the evolution of the toroidal field and

the poloidal field at different times after the initial

placement of the sunspot pairs. As soon as a sunspot

pair is placed using the ‘‘Spotmaker’’ algorithm, some

toroidal field arises below the surface at once because

the magnetic loop connecting two sunspots below has

a toroidal component. Also, a more toroidal field is

generated because of the latitudinal differential rota-

tion in the CZ.

If the two pairs of sunspots are sufficiently close to

the equator, then leading polarity sunspots from both

hemispheres get canceled by diffusion across the

equator. The trailing polarity sunspots are preferen-

tially transported to the higher latitudes and get

stretched by differential rotation. The meridional cir-

culation takes almost 3 years to bring flux of Br to

produce a positive patch at the northern hemisphere

and a negative patch in the southern hemisphere as

shown in Figure 6. The polar magnetic patches form

with the polarity of the trailing sunspots. However, a

careful look at Figure 6 shows some evidence of

opposite polarity of what we see in the poles at
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mid-latitudes even two sunspots are placed symmet-

rically at sufficiently low latitudes in both the hemi-

spheres. To understand the physics of what is

happening, we need to focus on the poloidal field lines

plot in the bottom panel of Figure 7(f)–(g). After

magnetic fluxes from the leading sunspots near the

equator cancel out, we get initial poloidal field lines

spanning both hemispheres. As is clear from the early

stage of magnetic field evolution (Figure 7f), we have

Br only at high latitudes. In the later stage, when

meridional circulation drags the poloidal field lines

toward poles, eventually polar fields in two hemi-

spheres get detached, as a result of which Br again

appears at lower latitudes having the opposite polarity

of Br at high latitudes.

In the 2D SFT model, only the fluxes from the

following polarities are advected toward the poles and

we eventually get polar patches that are not sur-

rounded by the opposite polarity patches, as found in

the 3D models. The outward spreading magnetic field

from the polar patches by diffusion is eventually

balanced by the inward advection by the meridional

circulation and an asymptotic steady state is reached

in the SFT model, with an asymptotic magnetic dipole

that does not change with time (see Figure 6 of Jiang

et al. 2014a). However, for the 3D case, a different

scenario arises because of the 3D structure of the

magnetic field. As r � B ¼ 0;
R
B � dS integrated over

the whole surface has to be zero at any time. This

means that during any time interval, equal amounts of

positive and negative magnetic fluxes need to disap-

pear below the surface due to the subduction process.

Hence, the low-latitude emergence of the Br is due to

the 3D structure of the magnetic fields. Since full

vectorial nature is not considered in the SFT model,

low latitudes Br would never appear in that model.

Because breakup of the poloidal field and the

appearance of Br at the low latitudes with opposite

polarity, it is possible for the poloidal field to be

subducted below the surface in the two hemispheres as

the meridional circulation sinks downward in the polar

regions. Hence, in contrast to the SFT models where

polar fields have nothing to cancel them and therefore

persist, the polar fields disappear after some time in

the 3D model.

Next, we present results by placing two sunspot

pairs symmetrically at different latitudes in the two

hemispheres. The evolution of the polar field for

sunspot pairs placed at different latitudes is shown in

Figure 8. The sunspot pairs that are placed at high

latitudes advects less path to the poles and lost less

flux due to diffusion and as a result, the polar field

becomes stronger for high latitudes of emergence.

Eventually, the polar field disappears in all cases due

to subduction by the meridional flows and diffusion.

Figure 8 can be directly compared with the left panel

Figure 6. The evolution of radial magnetic fields on the

surface of the Sun for sunspot emergence in two hemi-

spheres at ±5� latitudes during (a) 0.025 year, (b) 0.25 year,

(c) 1.02 years, (d) 2.03 years, (e) 3.05 years, and (f) 4.06

years. Here, white and black show the outward and inward

going radial field, respectively. In each case, the color scale

is set at ± maximum values of the magnetic field. For

example, in case (a), the color scale is set at ±4.66 and

±0.10 G is the color scale for (f). From Hazra et al. (2017).

a

f g h i j

c d eb

Figure 7. Snapshots of axisymmetric toroidal field lines

(a)–(e) and axisymmetric poloidal field lines (f)–(j) are

shown at five different times—(a), (f) = 1.02 years, (b), (g)

= 3.05 years, (c), (h) = 5.08 years, (d), (i) = 7.11 years, and

(e), (j) = 9.15 years. Line contours in frames (a)–(e) show

B̂/ (azimuthal averaged) with red and blue indicating

eastward and westward fields, respectively. The filled

contour represents the strength of the mean toroidal fields

(color scale = ±1.5 G). The square root of poloidal

magnetic potential with potential field extrapolation above

the surface (up to r ¼ 1:25R) is shown in frame (f)–(j).

Blue contours denote the clockwise direction of the field.

Contour levels corresponding to the poloidal fields strengths

of ±0.02 G are fixed as maximum and minimum, respec-

tively. Taken from Hazra et al. (2017).

   22 Page 10 of 21 J. Astrophys. Astr.           (2021) 42:22 



of Figure 6 of Jiang et al. (2014a) where the time

evolution of axial dipole moments is shown. This

comparison makes the difference between the 3D

model and the SFT model completely clear. In the

SFT model, the cross equator diffusion for the sunspot

pairs that are put at sufficiently high latitudes is neg-

ligible and fluxes of both polarities are advected to the

polar region, and eventually, the axial dipole moment

becomes zero. In the case of sunspots pair placed at

low latitudes in the SFT model, only the fluxes from

the following polarity sunspots reach the poles and

give rise to an asymptotic axial dipole. The situation

becomes completely different in the 3D model.

However, we see the persistence of polar fields for a

longer time when the initial sunspots are placed at

lower latitudes. The sunspot pairs appearing in lower

latitudes is somewhat more effective in creating the

poloidal field even in the 3D model. This finding is

also in agreement with the results of Dasi-Espuig

et al. (2010) who found a better correlation between

the average tilt of a cycle and the strength of the next

cycle if more weight is given to sunspot pairs at low

latitudes while computing the average tilt.

Although the difference between the result of the

SFT model and the 3D model is notable, it may be

offset to some extent by including efficient downward

radial pumping. Karak & Cameron (2016) have shown

that downward radial pumping due to strongly strati-

fied convection near the solar surface can suppress the

upward diffusion of toroidal and poloidal fields.

Hence, turbulent pumping can help to produce a

steady polar field that might persist indefinitely. The

exact role of this turbulent pumping needs to be

investigated thoroughly.

4.2 Contribution of anti-Hale sunspot pairs
to the polar field

Since the build up of the polar field is much realisti-

cally captured in the 3D model compared to the SFT

models, we now address another important question

that whether the anti-Hale sunspot pairs have a large

effect on the polar field in the 3D dynamo model. It is

well known that some of the BMRs appear on the

solar surface with wrong magnetic polarities not

obeying Hale’s polarity law. While flux tubes rise

through the SCZ, it gets affected by the action of

turbulence (Longcope & Choudhuri 2002; Weber

et al. 2011). As a result, we see a spread of tilt angles

around Joy’s law (Hale et al. 1919). Due to the spread

in tilt angles around Joy’s law, it is quite expected that

a few outliers would violate Hale’s law. A study by

Stenflo & Kosovichev (2012) estimated about 4% of

medium and large sunspots violate Hale’s law. Since

this is a small percentage of sunspot numbers, it is not

surprising that due to statistical fluctuation, these anti-

Hale sunspots appear in some particular cycles com-

pared to the other cycles. Jiang et al. (2015) suggested

on the basis of their SFT calculations that the

appearance of a few large anti-Hale sunspot pairs at a

particular cycle can significantly decrease the strength

of the polar field at the end of that cycle and this is the

reason for the weak polar field at the end of cycle 23

but not cycle 21 or 22.

A large anti-Hale sunspot pair is placed manually

by hand in different phases during a cycle in 3D and

its effect on the build up of a polar field is studied in

the 3D model. The magnetic flux in the anti-Hale

sunspot pairs is chosen 25 times the magnetic flux

carried by other regular sunspots to make its effect

more clearly visible. The tilt angle for the anti-Hale

pair is taken as 30�. We consider four different cases

to understand how the appearance of an anti-Hale

sunspot pair at different emergence latitudes and dif-

ferent phases of the cycle affects the polar field. As

sunspots generally appear at high latitudes in the early

phase of the cycle and at low latitudes in the late

phase, we consider one case by placing the anti-Hale

sunspot pair at the high latitude of 40� in the early

phase and another case by putting the anti-Hale pair in

the late phase at 10�. In the other two cases, the anti-

Hale sunspot pair is placed at 40� and 10� latitudes

Figure 8. Time evolution of polar field for different

emergence angle (kemg) of sunspot pairs in both hemi-

spheres from Hazra et al. (2017). Black solid, red dotted,

green dashed, blue dash-dotted, and magenta long dash-

dotted lines show the polar field for the sunspot emergence

at 5�; 10�; 20�; 30�, and 40�, respectively. The unit of the

magnetic field is in milliGauss and time is given in years.
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(different case studies) in the middle phase of the

cycle. Figure 9 shows the time–latitude plot (‘‘but-

terfly diagram’’) of the radial magnetic field for these

four cases. The time evolution of the polar field in

these four cases along with a case without an anti-Hale

sunspot pair is shown in Figure 10, where the effect of

the anti-Hale pair on the polar field is clearly visible.

It is found that an anti-Hale pair near the low-lati-

tude like 10� at any phase of the cycle does not have

much effect on the polar field as it is clear from

Figure 10. The opposite fluxes from the two sunspots

neutralize each other before they reach the poles,

which becomes quite apparent from Figure 9(b) and

(d). The anti-Hale pair at low latitudes produce a surge

behind them but it does not reach the pole. If the anti-

Hale pair appears at the high latitudes, its effect is

certainly much more pronounced. The surges in these

cases reach the poles as we see in Figure 9(a) and (c).

When the anti-Hale pair appears at 40� but at the early

phase of the cycle, the build up of the polar field is

weakened and delayed, but eventually the polar field

reaches almost the strength of the polar field that we

expect in the absence of the anti-Hale sunspot pair

(Figure 10). However, if that pair appears in the

middle phase of a cycle, the polar field can be reduced

by about 17%. Note that this large reduction arises

because the anti-Hale sunspot pair is unrealistically

large. In conclusion, an anti-Hale sunspot pair could

affect the build up of the polar field—especially if

they appear at high latitudes and in the middle phase

of a cycle but the effect does not appear to be very

dramatic.

a b

dc

Figure 9. Time–latitude diagram of the radial field on the solar surface with an ‘‘anti-Hale’’ sunspot pair at different

latitudes and different phases of the solar cycle. (a) At the early phase of the cycle and at 40� latitude, (b) late phase of the

cycle and 10� latitude, (c) middle phase and 40�, and (d) middle phase and 10� latitude. Color scale saturates at ±15 kG for

all four cases. Taken from Hazra et al. (2017).

Figure 10. Time evolution of a polar field for one

complete solar cycle with the ‘‘anti-Hale’’ sunspot pair at

different locations and different times of the cycle taken

from Hazra et al. (2017). A case of a regular cycle with no

anti-Hale sunspot pair is plotted in the solid black line. The

red dotted line shows the poloidal field evolution with an

anti-Hale pair at 40� latitude at an early phase of the cycle.

The green dashed line indicates a poloidal field with an anti-

Hale pair at 10� and a late phase. Blue dashed and magenta

long dashed lines represent the poloidal field with an anti-

Hale pair at the middle of the cycle but at 10� and at 40�

latitudes, respectively.
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On the other hand, recent calculation by Nagy et al.
(2017) using their 2 � 2D hybrid dynamo model

showed that an individual large anti-Hale pair appear

as far as 20� from the equator can still have a sig-

nificant effect on the polar field. The strongest effect

on the subsequent cycle occurs when a large pair

emerges around cycle maxima but at low latitudes.

This finding is also in accordance with Jiang et al.
(2015) that suggested the weakness of the polar field

at the end of cycle 23 was due to the appearance of

several anti-Hale sunspot pairs. Since some of the

results from the 3D model differ from SFT models due

to low-latitude poloidal flux emergence, we believe

the difference occurs in the result of the effect of the

anti-Hale pair on the polar field in our model and other

models is a consequence of the same low-latitude

poloidal flux emergence. However, this suggestion

merits further detailed study in order to arrive at a firm

conclusion.

5. Irregularities of the solar cycle from
3D models

The 3D dynamo model is used to study the irregularity

of the solar cycle as well. The plausible causes of

irregularity in the solar cycle in the BL dynamo

framework include variation in different flux transport

mechanisms (convective transport and transport by

meridional circulation), differential rotation, and ran-

domness in the BL process. Modeling stochastic

variation in convective flows is a challenging prob-

lem. It needs the unified understanding of small- and

large-scale dynamo action and has been studied by a

few groups (e.g., Kitchatinov et al. 1994; Karak et al.
2014b). The influence of variation in meridional flow

is found to be very important to give rise to cycle

variability including grand minima and grand max-

ima (Charbonneau & Dikpati 2000; Karak &

Choudhuri 2011, 2013; Hazra et al. 2015; Hazra &

Choudhuri 2019). From helioseismology, a weak

variation in the differential rotation is known to exist

(see Chakraborty et al. (2009) and references therein

for details) but the observed correlation between

polar flux at the cycle minimum and the

sunspot number of the following cycle suggest that the

X-effect is largely linear and not a major source of

irregularity in the solar cycle (Jiang et al. 2007; Wang

et al. 2009).

Direct observations of the polar field for the last few

cycles (Svalgaard et al. 2005), as well as some polar

proxies such as polar faculae, polar network index

available for the last 100 years, show a clear

strong cycle-to-cycle variations in the polar field

(Muñoz-Jaramillo et al. 2013; Priyal et al. 2014;

Hazra & Choudhuri 2019). The amount of polar

field generation mainly depends on the tilt angle

between BMRs, their magnetic fluxes, and the speed

of the meridional circulation. Particularly, the scatter

of tilt angles around mean, presumably caused by

the effect of convective turbulence on the rising flux

tubes plays a major role. Recently, Jiang et al.
(2014a) studied that the tilt angle scatters led to a

variation of the polar field by about 30% for cycle

17. Hence, the random scatter in active regions tilt

is considered as a possible mechanism to explain

the irregularity of the solar cycle (Choudhuri 1992;

Charbonneau & Dikpati 2000; Choudhuri et al.
2007).

Random scatter in the BMR tilt angles has been

studied previously within the context of 2D BL

dynamo models (Choudhuri 1992; Charbonneau &

Dikpati 2000; Jiang et al. 2007; Choudhuri &

Karak 2009; Hazra et al. 2015), SFT models (Jiang

et al. 2014b) and in a coupled 2 � 2D BL/SFT model

(Lemerle & Charbonneau 2017). For the first time,

Karak & Miesch (2017) have considered the random

scatter in the tilt angles in the STABLE 3D dynamo

model framework. In the STABLE model, the stan-

dard Joy’s law is used for tilt angle d ¼ d0 cos h, while

implementing the ‘‘Spotmaker’’ algorithm to put

bipolar sunspots on the surface of the Sun. To include

tilt angle scatter around its mean, a random fluctuating

component (df) is added around Joy’s law as

d ¼ d0 cos hþ df : ð12Þ

According to observations, Joy’s law is a statistical

law and there is a considerable scatter around it

(Howard 1991; Stenflo & Kosovichev 2012). By

analyzing BMRs data measured during 1976–2008,

Wang et al. (2015) reported that the fluctuation of the

tilt (df) roughly follow a Gaussian distribution as

given below:

f ðdfÞ ¼
1

rd
ffiffiffiffiffiffi
2p

p exp½�d2
f =2r2

d	; ð13Þ

where rd ¼ 15�.
Also, Karak & Miesch (2017) implemented a tilt

angle quenching as the main source of dynamo

quenching instead of flux quenching (Equation 11) as

used in previous STABLE papers (Miesch &

Dikpati 2014; Miesch & Teweldebirhan 2016;
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Hazra et al. 2017; Hazra & Miesch 2018). Finally, the

tilt used to study the irregularity is given by

d ¼ d0 cos hþ df

1 þ Bðh;/; tÞ=B2
q

; ð14Þ

where d0 ¼ 35� and other terms are as usual. The

simulated solar cycle, i.e., the sunspot time series

(smoothed over 3 months) is shown in Figure 11.

Black and red represent the sunspot numbers in the

northern and southern hemispheres, respectively. The

cycle-to-cycle variation of the amplitude of the mean

polar flux is � 35%. This result is in agreement with

the study of Jiang et al. (2014a), who found a 30%

variation in the polar field after introducing tilt angle

scatter.

The strength of the magnetic field and the number of

bipolar sunspots per cycle has increased in comparison

with the case without tilt angle scattering. The variation

in the peak SSN in this simulation is 41%, while the

observed variation during the period of 1749–2017 in

sunspot number data is 32%. Also, the hemispheric

asymmetry is observed in the simulated time series of

the sunspot numbers. By zooming in Figure 11 care-

fully, one can clearly find a temporal lag and excess of

sunspots numbers between two hemispheres. However,

like the real Sun, the STABLE model always tends to

correct any hemispheric or temporal asymmetry pro-

duced in a cycle and no extended asymmetry is seen.

Similar results were also reported using 2D models by

Chatterjee & Choudhuri (2006).

In this 3D model, the cycle period has considerable

variation around its mean of 10.5 years. In the FTD, the

cycle period is largely determined by the speed of the

meridional flow. However, while introducing scatter at

a tilt angle, the speed of meridional flow is kept con-

stant. Hence, the variation in the cycle period occurred

due to the fluctuation and nonlinearities in the BMR

emergence. Basically, when the polar field of a cycle

becomes stronger due to the tilt fluctuations, spots in the

next cycle take a longer time to reverse the previous

cycle flux, which makes a longer cycle. On the other

hand, a stronger polar field makes the toroidal field

stronger, which leads to more frequent BMR emer-

gence. This effect acts to reverse the polar field quickly

and makes the cycle period shorter, although it is

inhibited by the tilt angle quenching. Therefore, the tilt

angle quenching makes a major role in deciding which

effect is prominent and how the period will be varied.

Hence, the introduction of an observed tilt angle scatter

in the Sun may be sufficient to account for the irregu-

larities observed in the solar cycle.

In 2D BL dynamo models, some of the features of

the solar cycle (e.g., Waldmeier effect and correlation

between decay rate and amplitude of the next cycle)

are not reproduced by introducing randomness in the

BL process. So, a variation in the meridional circu-

lation was necessary to explain these features. In the

3D dynamo model, a small correlation arises between

the cycle amplitude and the period of the previous

cycle (r ¼ �0:24) by only including tilt angle scatter,

while the observed correlation is r ¼ �0:67. Hence, it

needs a separate study whether other irregular prop-

erties of the solar cycle can be recovered by intro-

ducing tilt angle scatter around Joy’s law or we need

to introduce fluctuation in the meridional circulation

as well.

Figure 11 which includes a tilt angle scatter fol-

lowing a Gaussian distribution with rd ¼ 15� pro-

duces very weak and strong cycles and a few Dalton-

like extended periods of weak activity (e.g., around

700 years). However, it does not produce any Maun-

der-like grand minimum or grand maximum. Keeping

the possibility in mind that the weaker BMRs might

have bigger scatter in their tilt and study of tilt angles

does show cycle-to-cycle variations in the tilt angle

(Stenflo & Kosovichev 2012; Jiang et al. 2014a;

Lemerle & Charbonneau 2017), the scatter distribu-

tion around mean tilt is doubled. Now rd ¼ 30� is

considered instead of 15�. Interestingly, this large

fluctuation in the tilt angle does not affect the dynamo

operation and dynamo never dies. The cyclic behavior

is always maintained. Several episodes of weak

Figure 11. Smoothed (over 3 months) monthly sunspot number is plotted with time. Black and red lines show north and

south sunspot numbers, respectively. The dotted line represents the mean of peak sunspot numbers for the last 13 observed

solar cycles. This figure is taken from Karak & Miesch (2017).
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magnetic activity, i.e., maunder-like grand minima

arise from this simulation. This simulation produces

occasional periods of stronger magnetic activity or

grand maxima as well (see Karak & Miesch (2017) for

more details).

6. Incorporation of the surface convection

The advantage of extra dimension in the 3D dynamo

model allows to explore the implementation of over-

whelming observational data available for the Sun. In the

STABLE model, Hazra & Miesch (2018) incorporate 3D

convective flow fields for the first time in a BL dynamo

framework to study their effect on the solar cycle. The

dispersal and migration of surface fields are modeled as an

effective turbulent diffusion in most of the BL models, but

they have incorporated the realistic convective flow to

capture the BL process more realistically by exploiting the

3D capabilities of the STABLE model.

The observed line-of-sight velocity on the photo-

sphere measured with the SOHO/MDI Dopplergram

instrument is included in the model. 2D maps of the

line-of-sight velocity component measured using MDI

Dopplergram are shown in Figure 12(a). These

velocities in the photosphere are predominantly hori-

zontal and include all information of differential

rotation, meridional circulation, other unwanted sig-

nals such as convective blueshift, spacecraft motion,

and instrumental artifacts. In order to reconstruct the

complete 2D convective spectrum of the surface of the

Sun, one needs to model the data to get rid of all

unwanted information. Hathaway (2012a,b) has

devised such a model that subtracted all unwanted

above-mentioned signals and computed the

convective power spectrum. After that, a horizontal

velocity field is calculated based on that observed

spectrum using a series of spherical harmonics with

randomized phases. A sample of surface Dopplergram

from the simulated horizontal velocity field is shown

in Figure 12(b). The power spectrum of the horizontal

velocity is also shown in Figure 12(c). The peak

around l ¼ 130 shows supergranulation.

In order to incorporate the empirical surface

velocity field Vsðh;/; tÞ (Figure 12b) into STABLE, a

radial structure is specified and the surface field is

extrapolated downward into the CZ no deeper than

r = 0:9R�. As convection is very vigorous near the

surface layers than the deeper CZ, the convective

velocity fields are kept confined near the surface

layers. Also, these velocities are nonaxisymmetric and

they affect the transport and amplification of the

magnetic field, which can influence the time evolution

of the mean fields.

Note that global convective simulations are fully

capable of simulating global-scale convective motions

but no global simulation model can accurately capture

smaller-scale convective motions near the surface of

the Sun such as granulation and supergranulation. This

is because it would require both extremely high res-

olution and some very important physical processes

such as non-LTE radiative transfer, ionization, and

full compressibility. However, these small-scale con-

vective motions are most important to the breakup and

dispersal of BMRs and relevant to the BL process. For

this reason, we incorporate convection in a manner

that is consistent with the pragmatic approach of

kinematic dynamo modeling.

Soon after the implementation of convective flows

in the STABLE simulation along with other regular

Figure 12. (a) Line-of-sight (Doppler) velocity on the solar photosphere measured using the SOHO/MDI instrument on 4

June 1996. (b) Simulated line-of-sight velocity obtained from the empirical model developed by Hathaway et al. (2000)

and Hathaway (2012a,b). Hathaway’s models are designed to reproduce the observed horizontal Doppler velocity power

spectrum with randomized phases. (c) Horizontal velocity spectra for the convective flow field used here (dotted line) and

for Hathaway’s simulated flow field (solid line) at r ¼ R�. Small discrepancies at large ‘ arise because we only extract the

divergent component. Taken from Hazra & Miesch (2018).
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ingredients of the model, it is realized that convective

flows do operate as a small-scale dynamo disrupting

the operation of the large-scale magnetic cycle. Sev-

eral approaches are considered to suppress the small-

scale dynamo action but the only effective way is to

make the convective flows acting only on the radial

component of the magnetic field. This also helps to

realistically capture the horizontal transport of the

vertical magnetic field on the surface layers. Also,

note that a background diffusivity 5 � 1011 cm2 s�1 is

used to maintain dipolar parity. This background dif-

fusivity helps to suppress small-scale dynamo as well.

The results with an explicit convective transport as

the effective transport mechanism of a large-scale

magnetic field on the surface are shown in Figure 13.

The time evolution of the radial field on the surface

(Figure 13a) is comparable with the observed radial

field evolution but the presence of mixed polarity near

the pole has no counterpart in the observation. The

existence of the mixed polarity can be attributed to the

tendency for the convective motions to disperse and

migrate the BMR field without dissipating them. As a

consequence, both polarities are migrated toward the

pole and concentrated into strong, alternating bands.

The polar flux plot in Figure 13(b) shows somewhat

more variability and a sharper decay near the end of

each cycle. This variability occurs due to the existence

of mixed polarity fields that cross into the polar

regions before they cancel each other. The slower

decay phase implies a longer interval of the polar flux

generation by poleward migrating magnetic streams,

which persists almost the entire cycle.

The long sustained supply of poloidal flux to the

poles throughout most of the cycle has consequences

in toroidal field generation. The polar flux behaves as

the seed for the next cycle and when it is transported

to the base of the CZ by meridional circulation,

it promotes sustained toroidal flux generation by

X-effect, more precisely at the mid-latitudes where the

latitudinal shear is strongest. This scenario is evident

from Figure 13(c). Throughout most of the cycle, a

strong toroidal field persists near �50��60�. This

existence of strong toroidal flux in the mid-latitude

also accounts for the distortion of the integrated

toroidal flux curve shown in Figure 13(d).

Hazra & Miesch (2018) also address the question of

whether the convective transport accurately parame-

terized by a turbulent diffusion or is it fundamentally

nondiffusive? In case it is possible to represent con-

vective transport using a turbulent diffusion then what

value of surface diffusivity is optimal? To answer

those questions, a few simulations are performed by

changing the surface diffusivity value ranging from

1 � 1013 to 8 � 1011 cm2 s�1.

The surface butterfly diagrams for those few cases

are shown in Figure 14. Qualitatively, the convective

case bears the greatest resemblance to the case with

surface diffusivity of 3 � 1011 cm2 s�1. This conclu-

sion is based on the width of the poleward migrating

streams, the structure of polar field concentration and

a b

dc

Figure 13. Same as Figure 5 but for the case that includes surface convective flows. The color scale saturates at

(a) ±500 G and (c) ±100 kG. From Hazra & Miesch (2018).
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the relative strength of the polar and low-latitude

fields, as well as the location of the active latitudes.

Some more quantitative analysis such as calculation

of poleward migration speed, dynamo efficiency

shows that a turbulent diffusion coefficient of 3 �
1011 cm2 s�1 adequately captures the SFT as in the

case with an explicit convective transport but it does

not adequately capture the dissipation of magnetic

energy (Hazra & Miesch 2018). Approximating

convective transport with a turbulent diffusion will

have an adverse effect on the dynamo efficiency,

which in turn will produce artificially weak mean

fields and shorter cycles. However, it is found that

replacing turbulent diffusion with convective transport

does not improve the fidelity to the butterfly diagrams,

giving rise to the mixed polarity fields in the polar

regions.

7. Conclusions

Although many alternative solar dynamo models have

been proposed, the BL dynamo model has remained

the most promising leading framework to explain

various properties of the solar cycle so far, because it

is firmly based on solar observations and provides a

robust mechanism to produce cyclic dynamo activity.

However, the BL model is kinematic and solves only

axisymmetric mean-field dynamo equations. The

velocity fields are not calculated from the first prin-

ciple in these models rather they are provided from

observations. The basic MHD equations are solved in

global MHD models, which have progressed a lot

recently (Charbonneau 2014) to reproduce the cyclic

activity but they are far away from actual solar

parameters. Also, the BL model involves many

physical processes (e.g., BL process and magnetic

buoyancy) that rather have been parameterized very

simplistic ways (Dikpati & Charbonneau 1999;

Chatterjee et al. 2004; Karak et al. 2014b). The 3D

kinematic BL dynamo models emerge out as a next-

generation dynamo model that holds the promise to

model all physical processes more realistically than

previous 2D BL models and have the capability to

include non-kinematic effects such as back reaction

due to the Lorentz force on the flows.

The development of such a kind of 3D model has

been started very recently (Yeates & Muñoz-

Jaramillo 2013; Miesch & Dikpati 2014; Miesch &

Teweldebirhan 2016; Hazra et al. 2017; Karak &

Miesch 2017; Lemerle & Charbonneau 2017; Kumar

et al. 2019). The rise of toroidal flux tube due to

magnetic buoyancy and subsequent creation of sun-

spots, which is one of the backbone of BL models, is

captured more realistically by including existing

knowledge from 3D MHD flux tube emergence sim-

ulations as well as observations. Some authors (Yeates

& Muñoz-Jaramillo 2013; Kumar et al. 2019) have

a b 

d c 

Figure 14. Butterfly diagram of azimuthal averaged Br at r ¼ R� for (a) convective case that includes surface convective flows

(Br scale ¼ �500 G), (b) case with gtop ¼ 3 � 1012 cm2 s�1 (Br scale = ± 200 G), (c) case with gtop ¼ 1013 cm2 s�1 (Br scale =

± 30 G), and (d) case with gtop ¼ 8 � 1011 cm2 s�1 (Br scale = ± 800 G). From Hazra & Miesch (2018).
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modeled the buoyant rise of flux tube by applying a

radial outward velocity and a vortical velocity

simultaneously to a localized part of the toroidal flux

tube near the bottom of the CZ assuming that parent

flux tubes for sunspots remained connected to its root.

Whereas others (e.g., the STABLE model; Miesch &

Dikpati 2014; Miesch & Teweldebirhan 2016; Hazra

et al. 2017) have assumed that the sunspots get

quickly disconnected from the parent flux tube and

place the sunspots based on the information of toroidal

flux near the base of the CZ. In this case, a subsurface

structure of sunspots is also specified up to a radius of

0:9R� from the surface. The latter scenario is pre-

ferred as it is argued by Longcope & Choudhuri

(2002) and Rempel (2005) that sunspots get quickly

disconnected from their parent flux tubes. Recently,

Whitbread et al. (2019) also argued based on the

surface flux evolution that BMRs need to be discon-

nected from the base of the CZ more rapidly to get

better evolution of the surface fields. Our present

buoyancy algorithm limits the model in order to

explain active longitudes (Mandal et al. 2017). How-

ever, it has the capability to include TNOs, which are

believed to be one of the major drivers of the active

longitudes of the Sun (Dikpati & Gilman 2005;

Dikpati et al. 2018).

The 3D models also study how the solar polar field

builds up from the decay of one tilted bipolar sunspot

pair and two symmetrically situated sunspot pairs in

two hemispheres. It is found that the polar field arising

from such sunspot pairs eventually disappears due to

the emergence of poloidal flux at low latitudes and

subsequent subduction by the meridional flow. These

processes are not included in 2D SFT models and the

polar field in that models can only be neutralized by

diffusion with a field of opposite polarity. So, we

conclude that one has to be cautious in interpreting the

results of 2D SFT models pertaining to polar fields as

SFT models do not capture the dynamics of the polar

fields more realistically.

How a few large sunspot pairs violating Hale’s law

could affect the strength of the polar field is also

studied in the 3D models. It is found that anti-Hale

pairs do affect solar polar field—especially if they

appear at higher latitudes and during the mid-phase of

the cycle but the effect is not very dramatic.

Irregularities of the solar cycle are also studied in

great detail using 3D models. In contrast to the pre-

vious 2D BL dynamo models where randomness

arises in the BL mechanism due to the scatter of the

tilt angle across Joy’s law is included using a

stochastic random parameterization as a cause of

irregularity, 3D models actually incorporate the scat-

ter of tilt angle physically in the model. Motivated

from the observational findings, a scatter of tilt around

Joy’s law is modeled using a Gaussian distribution.

The cycle irregularities are reproduced quite nicely

including grand minima and grand maxima by varying

the parameter of the scatter distribution (Karak &

Miesch 2017).

The 3D capability of these models is exploited to

incorporate high-resolution observed data into the

dynamo simulations directly to study their effect on

the solar cycle. In the BL dynamo models, the con-

vective flows on the surface of the Sun play a key role

in the migration and dispersion of the sunspot fields.

Usually, these whole procedures are modeled using an

effective turbulent diffusion. This might be because of

the unavailability of enough resolution and framework

to incorporate convective flows in the simulation.

With the newly developed 3D model, realistic con-

vective flows based on solar observation are incor-

porated in order to improve the fidelity of convective

transport. This new study shows that approximating

convective transport using a turbulent diffusion

underestimates dynamo efficiency producing weaker

mean fields and shorter cycles.

3D kinematic dynamo models are capable of pro-

ducing many attractive features of the solar cycle that

were previously not possible by 2D BL dynamo

models or 2D SFT models individually. These models

incorporate all attractive aspects of both models while

being free from the limitation of both. The time

evolution of the simulated surface magnetic field can

be used to study their effect on the topology of corona

and the properties of the solar wind. These models

also help us to directly assimilate observed surface

data and study their interaction with the solar interior.

The direct incorporation of surface data will help us to

predict correctly the polar field and hence in predict-

ing the next cycle amplitude. Presently, a snapshot of

observed convective flows is only incorporated to

study their effect on the surface evolution of the field

and effect on the dynamo cycle. In the future, it will

be a really important step to assimilate the time-

evolving convective flow fields as well as the

observed surface magnetograms to constrain the polar

field at the end of the cycle. Presently, a small-scale

dynamo action after assimilating convective flow

fields is encountered, which disrupts large-scale

dynamo activity. This small-scale dynamo action can

be handled properly if we include Lorentz force

feedback to saturate them. Including Lorentz force

feedback in the 3D dynamo model would be the next
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step to make these models more suitable to study solar

and stellar magnetic cycles.
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