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Abstract. In this review, we explain recent progress made in the Babcock-Leighton dynamo models for
the Sun, which have been most successful to explain various properties of the solar cycle. In general, these
models are two-dimensional (2D) axisymmetric and the mean-field dynamo equations are solved in the
meridional plane of the Sun. Various physical processes (e.g., magnetic buoyancy and Babcock—Leighton
mechanism) involved in these models are inherently three-dimensional (3D) processes and could not be
modeled properly in a 2D framework. After pointing out limitations of 2D models (e.g., mean-field Bab-
cock—Leighton dynamo models and surface flux transport models), we describe recently developed next-
generation 3D dynamo models that implement a more sophisticated flux emergence algorithm of buoyant
flux tube rise through the convection zone and capture the Babcock—Leighton process more realistically than
previous 2D models. The detailed results from these 3D dynamo models including surface flux transport
counterparts are presented. We explain the cycle irregularities that are reproduced in 3D dynamo models by
introducing scattering around the tilt angle only. Some results by assimilating observed photospheric con-
vective velocity fields into the 3D models are also discussed, pointing out the wide opportunity that these 3D

models hold to deliver.

Keywords.

1. Introduction

Since 1955 after Eugene Parker’s first fundamental
idea (Parker 1955) on the origin of the solar magnetic
cycle, it is almost more than half a century, and still,
we do not understand the origin of the solar magnetic
cycle very well. Understanding the solar magnetic
cycle is very important not only because it provides us
a great opportunity to test our existing theory of
plasma physics but also it has utmost societal impor-
tance. The violent solar disturbances (e.g., solar flares
and coronal mass ejections) that are driven by the
magnetic field of the Sun have a strong dependence on
the solar magnetic cycle and can affect the space
environment tremendously.

The space environment is a complex system where
the occurrence of the solar activity manifestations
propagating through the interplanetary space interacts
with the terrestrial magnetosphere, and generates
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geomagnetic disturbances, geomagnetic storms, and
aurora. The magnetic field generated by the dynamo
action in the solar convection zone (SCZ) extends in
the solar atmosphere and gets transported outward to
the interplanetary space with the solar plasma mostly
in the form of solar wind. This continuous magnetized
plasma flow in the interplanetary medium interacts
with the planetary magnetic field distorting their
planetary magnetospheres. Besides the background
solar wind, the solar activity transients, e.g., solar
flares and coronal mass ejections also play a major
role in driving large disturbances in space weather,
such as geomagnetic storms, shock waves, and ener-
getic particle events (Gopalswamy ef al. 2004;
Manoharan et al. 2004). The solar magnetic cycle
affects the occurrence of transient events (Yashiro
et al. 2004; Robbrecht et al. 2009; Winter et al. 2016)
and the solar wind speed (Tokumaru et al. 2010),
which eventually disrupts the space weather. The total
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solar irradiation which varies with the solar cycle (Wu
et al. 2018) is also a natural driver for climates in the
solar system planets. Hence, a study of the solar
magnetic cycle gives us an understanding of the major
driving forces of space weather. Apart from the space
weather, understanding the solar magnetic cycle gives
us insights to understand the magnetic cycle of other
solar-type stars (Karak er al. 2014a; Hazra et al
2019) and its effect on the atmosphere of their exo-
planets (Hazra et al. 2020).

Soon after the discovery of a magnetic field in the
sunspot regions (Hale 1909), it was realized that the
solar cycle or sunspot cycle is nothing but the mag-
netic cycle of the Sun. Efforts had been started to
understand why the solar magnetic field behaves in a
particular fashion with a cyclic period of 11 years. The
non-linear interaction between turbulent plasma
motion and the magnetic field inside the SCZ is
responsible for the amplification of the magnetic field.
This non-linear interaction can be understood by
solving a set of magnetohydrodynamic (MHD) equa-
tions that govern the behavior of plasma and magnetic
fields as given below:

ov 1 1

4 (v-V)v=F—— —jxB 2 1
6t+(v V)v pr+pCJx +wWv, (1)
oB

5 =V (v x B) + 4 V*B, (2)

where v, B, v, and n are the velocity, magnetic field,
viscosity, and magnetic diffusivity, respectively.
F represents the gravitational force. Other terms are as
usual. Whereas the fundamental equations are well
established, one of the major challenges for develop-
ing a solar dynamo model is to handle the turbulent
convective motions properly inside the SCZ. The
turbulent stresses in the convection zone (CZ) drive
the large-scale plasma flows such as differential
rotation and meridional circulation, which are very
crucial for the operation of the solar dynamo. Hence,
modeling turbulence in a proper way is very important
to understand large-scale flows and solar dynamo
theory.

Historically, the mean-field approach of turbulence
played a major role in the development of the dynamo
theory. In the mean-field approach, velocity field and
magnetic field are split into two parts, mean and
fluctuating parts:

v=v+V, B=B+B, (3)

where overline indicates the mean quantities and
prime denotes the fluctuation from the mean. By
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substituting Equation (3) in the magnetic induction
Equation (2), we get

oB )

==V (vXB)+V X E+VB, 4)
where € =V x B’ is the mean electromotive force
(EMF) that sustains the dynamo action in the Sun. For
homogeneous isotropic turbulence, the mean EMF can
be written as

é=aoB — BV x B. (5)

Here o represents the classical helical a-effect and f8
represents the turbulent diffusivity (see Choudhuri
(1998) for details).

At present, the most promising framework to
explain the properties of the solar magnetic field is the
Babcock-Leighton (BL)/flux transport dynamo (FTD)
model (Choudhuri et al. 1995; Durney 1995, 1997;
Dikpati & Charbonneau 1999; Chatterjee et al. 2004;
Hazra et al. 2014; Karak et al. 2014b). These models
are a class of mean-field dynamo models where the
BL « effect is considered instead of the classical
helical « effect, and meridional flow plays a very
important role. The mean solar magnetic field is
generally assumed to be axisymmetric in these models
and can be decomposed into two parts, namely the
toroidal and poloidal components. Parker (1955) first
suggested that the solar magnetic cycle is a result of
oscillation between the toroidal field and the poloidal
field, and the toroidal and poloidal fields sustain each
other through a cyclic feedback process. For the Sun,
as the equator rotates faster than the pole, the differ-
ential rotation stretches the poloidal field and gener-
ates the toroidal field. When the toroidal field becomes
magnetically buoyant, it rises and pierces the surface
to create the sunspots. The bipolar sunspots always
have an angle in between them (tilt angle) with respect
to the equatorial line because of the Coriolis force that
acted on the toroidal field while it rises through the CZ
due to magnetic buoyancy (D’Silva & Choudhuri
1993). Since the Coriolis force increases with
increasing latitudes, the tilt angle also increases as
sunspots erupt at the higher latitudes, which is first
observed by Joy and known as Joy’s law (Hale et al.
1919). Also, sunspots are the regions of the strong
magnetic field and they diffuse. As a result, the
leading polarity sunspots that are near the equator
cancel with opposite polarity sunspots from the
opposite hemisphere. The trailing polarity sunspots
from each hemisphere advect to the polar region and
generate the large-scale poloidal field. This whole
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mechanism is called the BL mechanism (Babcock
1961; Leighton 1969). This mechanism plays a very
crucial role in the BL dynamo model by converting
the toroidal field to the poloidal field. Once the large-
scale poloidal field is generated on the surface of the
Sun, it is advected to the bottom of the CZ by the
meridional circulation or the turbulent diffusion,
depending upon which one has the faster time scale.
As the BL mechanism needs the involvement of the
longitudinal coordinate over the surface of the Sun
and most of the BL/FTD model follows a two-di-
mensional (2D) axisymmetric formulation in which
the magnetic induction equation is solved in the
meridional plane of the Sun, a parametric approach
has been widely used to capture the BL. mechanism in
the 2D BL models.

The BL mechanism is observationally very well
supported. Kitchatinov & Olemskoy (2011) calculated
the global poloidal field by multiplying tilt angle and
the magnetic field strength of active regions for an
individual cycle, which is correlated with the strength
at the minimum of that following cycle. Dasi-Espuig
et al. (2010) also found a significant correlation
between the product of the cycle’s averaged tilt angle
and the strength of the same cycle with the strength of
the next cycle supporting the BL. mechanism.

There is another class of models that treat the BL
mechanism more realistically than the parametric
approach used in the 2D axisymmetric BL. dynamo
models. These are called surface flux transport (SFT)
models (Wang et al. 1989a,b; Baumann et al. 2004; Jiang
et al. 2014a). Note that these are not dynamo models
rather they only consider the evolution of the radial field
on the surface of the Sun. In these models, sunspots are
directly incorporated and the decay of sunspots due to
turbulent diffusivity and corresponding advection of fields
to the pole by meridional circulation is modeled by solv-
ing the radial part of the magnetic induction equation on
the surface (latitude—longitude plane) of the Sun. They
capture the realism of the BL mechanism in great detail
but they have their own limitations.

In both types of models (BL dynamo models and
SFT models), mean flows (e.g., meridional flow and
differential rotation) play a very important role. We
have an overwhelming amount of data from helio-
seismology for mean flows (Thompson et al. 1996;
Antia et al. 2008). For SFT models, the required
surface information of the mean flows is well con-
strained. However, for the BL dynamo model, we
need information about the mean flows inside the
whole CZ, in which the differential rotation is well
mapped (Antia et al. 1998; Schou et al. 1998) but the
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exact nature of meridional circulation is still an active
field of research. In most of the BL dynamo model, a
single-cell meridional circulation encompassing the
whole CZ with a poleward flow near the surface and
an equatorward return flow near the base of the CZ is
assumed. The poleward flow near surface is observed
by helioseismology but detecting the equatorward
return flow is an extremely difficult task because of
very high noise in the helioseismology data near the
bottom of the CZ. However, recently, Gizon et al.
(2020) found a single-cell meridional circulation with
an equatorward return flow in each hemisphere of the
Sun. Also, some of the numerical simulations find the
equatorward return flow due to angular momentum
balance with the solar-like differential rotation (Passos
et al. 2015).

Most 2D BL dynamo models are successful in
explaining various properties and irregularities of the
solar magnetic cycle. However, some of the solar
magnetic features, e.g., active longitudes are beyond
the scope of these axisymmetric 2D dynamo models.
Active longitudes are the longitudinal locations of the
Sun where the solar magnetic activity is strong. The
sunspot data obtained from various observatory show
the evidence of active longitudes on the Sun very
clearly (Berdyugina 2005; Dikpati & Gilman 2005;
Usoskin et al. 2005; Mandal et al. 2017). Also,
recently, a strong quasi-annual variability in the num-
ber of flares and CME driven by the surges of mag-
netism from the activity bands is observed (McIntosh
et al. 2015; Dikpati et al. 2018). A three-dimensional
(3D) dynamo model would be extremely helpful to
reproduce these nonaxisymmetric active longitudes’
features and short-term variability in the solar cycle.

Apart from well-observed magnetic features, some
of the processes involved in the dynamo model are not
well constrained from observations. The toroidal field
generation mechanism from the poloidal field by dif-
ferential rotation is well constrained from helioseis-
mology. However, the flux emergence due to
magnetic buoyancy and creation of sunspots—this
whole process is an inherently 3D process and could
not be modeled properly in 2D. Also, due to the lack
of azimuthal information in 2D models, the realism of
the BL process cannot be captured as it is done in SFT
models. However, the SFT models have their own
limitations for not considering subsurface processes
(e.g., subduction of the magnetic field by meridional
circulation in the polar regions) and the 3D vectorial
nature of the magnetic field. Therefore, the develop-
ment of 3D dynamo models will help in capturing the
3D processes involved in the dynamo model more
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realistically and build a bridge between 2D BL
dynamo models and SFT models. Also, it will help us
with new opportunities to assimilate the observed
photospheric data to probe the interior of the SCZ.
This review is structured as follows. In the next
section, we will briefly describe the advantages and
disadvantages of the 2D models including SFT mod-
els. The formulation of next-generation 3D dynamo
models based on newly developed flux emergence
algorithms and some results are given in Section 3.
The advantage of 3D models compared to the 2D
models in the light of the build up of the polar field is
discussed in Section 4. In Section 5, we discussed
how irregular properties of the solar cycle can be
studied by including a more realistic treatment of tilt
angle scatters around Joy’s law. The opportunity of
observed data assimilation in the 3D models and some
enlightening results including those data are presented
in Section 6. Finally, in Section 7, we summarize and
conclude all results from 3D models indicating the
tremendous possibility that these models have to
emerge as the next-generation dynamo models.

2. 2D models
2.1 2D axisymmetric BL/FTD models

The mean axisymmetric magnetic field of the Sun can
be written as

B =Byp+V xAg, (6)

where By, is the toroidal field and A(;AS is the magnetic
vector potential, curl of which gives rise to the
poloidal field. The toroidal and poloidal field evolu-
tion equations are given below:

0A 1 1
—+ ;(V -V)(sA) =1, <V2 — SZ)A +8(r,0,1),

ot
(7)
0B 1[0 0 , 1
St s+ )| = (-3 )8
1dn, 0(rB)

Here B, is the poloidal field, s = rsin0, and other
terms are as in usual notation. S(r,6) is the source
function that incorporates the flux emergence through
the CZ and subsequent BL process.

In most of the dynamo models, observationally
motivated various analytical profiles of the differential
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rotation () and meridional flow (v,,vy) are used,
which are very close to the helioseismology findings.
A particular profile of differential rotation and
meridional flow is shown in Figure 1. In general, a
single-cell meridional circulation is used. Although
the equatorward return flow near the bottom of the CZ
for the single-cell meridional circulation is extremely
difficult to observe by helioseismology, it is needed in
order to fulfill the mass conservation. However,
recently Gizon et al. (2020) found an equatorward
flow near the bottom of the CZ supporting a single-
cell meridional circulation. This equatorward flow
plays a very important role in advecting the toroidal
field toward the equator against the poleward dynamo
wave (Yoshimura 1975) explaining the equatorward
migration of the sunspots. Even in the case of multi-
cell meridional circulations inside the SCZ, this
equatorward return flow near the bottom of the CZ is
important for the dynamo to work (Hazra et al. 2014).

The parametric approach of modeling magnetic
buoyancy and BL process widely varies across dif-
ferent 2D dynamo models. It can be classified into two
specific approaches, one local buoyancy and another
one as nonlocal buoyancy. In the local buoyancy
treatment, the toroidal field is depleted from the bot-
tom of the CZ once it is more than a critical value and
placed on the surface to account for the poloidal field
generation. The depleted toroidal field is usually
multiplied by an a-parameter, which is confined near
the surface layers. In nonlocal buoyancy treatment, the
toroidal field at the bottom of the CZ is directly

Figure 1. (a) Differential rotation profile. Color scale
represents differential rotation with value 350-480 nHz
from blue to red and (b) the meridional flow streamlines.
Blue contours show the poleward flow at the surface and an
equatorward flow at the bottom of the CZ in the northern
hemisphere and red contours show the same in the southern
hemisphere. From Hazra et al. (2017).
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multiplied with the «-parameter on the surface to
generate the poloidal field. For a detailed discussion
about the treatment of magnetic buoyancy see
Choudhuri & Hazra (2016). In general, both the
treatments of the magnetic buoyancy reproduce the
basic features (e.g., 11-year periodicity, equatorward
migration of sunspots, and polarity reversal) of the
observed solar cycle quite well. However, depending
upon how we treat the magnetic buoyancy in 2D
models, many irregularities of the solar cycle (e.g.,
Waldmeier effect and correlation of decay rate with
next cycle amplitudes) may or may not be reproduced.
Also, Mufioz-Jaramillo et al. (2010) pointed out that
o-parameterization does not correctly depict the rela-
tion between the speed of surface meridional flow and
strength of the polar field, rather another formalism
called Durney’s double-ring algorithm (Durney
1995, 1997) catches the intuitive process of BL
mechanism more physically. Given that many para-
metric formalisms of magnetic buoyancy and the BL.
process in 2D models lead to varied results, the next
step would be to model the flux emergence due to
magnetic buoyancy and subsequent sunspots decay
due to the BL process using a 3D framework (Yeates
& Muiioz-Jaramillo 2013; Miesch & Dikpati 2014;
Miesch & Teweldebirhan 2016; Hazra et al. 2017,
Hazra & Miesch 2018; Karak & Miesch 2018).

2.2 SFT models

The visible part of the BL process on the surface, i.e., the
dispersion and migration of the sunspot fields after sun-
spots emerge are well captured in the SFT model.
However, unlike BL dynamo models, it only solves the
radial component of the magnetic induction equation on
the surface of the Sun in the latitude—longitude plane.
The radial component of the magnetic induction equa-
tion on the surface of the Sun (at r = R,) is given below:

B, 1 @ 1

d ,
o Rusin0d¢ (uBy) = R sin 000 (vB, sin 0)
+ny [;E (sin 063,) + éﬁ]
R2 sin 00 00 ) " R2 sin® 0 ¢p?
+5(0, ¢,1) + D(B,). )

The radial component of the magnetic field (B,) has
been used as a passive scaler here that can be mixed
and advected to the pole under the effective action of
differential rotation, i.e., the velocity in the longitu-
dinal direction (u), latitudinal meridional flow (v), and
turbulent diffusion (7). S(0,¢,t) incorporates the
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new fluxes that emerge from the surface below. D(B,)
is the term that takes care of the decay of the magnetic
field due to radial diffusion. Historically, this model
plays a tremendous role in understanding the BL
process and subsequent build up of the polar field. In
this model, one can study in detail that how individual
sunspot pair contributes to the build up of the polar
field, and how the latitudinal position of the sunspots
and their tilt angle distribution are going to affect the
strength of the polar field. The main limitation of the
model is not accounting for many important physics
by ignoring the vectorial nature of the magnetic field
and by not incorporating the subsurface processes.
There are some studies that show that the subduction
of the poloidal field by the meridional flow sinking
underneath the solar surface plays a very important
role in the dynamics of the magnetic field (Dikpati &
Choudhuri 1994, 1995; Choudhuri & Dikpati 1999).
Since these processes cannot be incorporated in 2D
SFT models, the advected radial magnetic flux near
the polar region tends to get piled up and it can only
be neutralized by the opposite polarity flux advected
there. Therefore, if the additional flux of opposite
polarity is not advected to the polar regions, the polar
field may reach an asymptotic value (see Figure 6 of
Jiang et al. 2014a). One may get a secular drift of the
polar field while modeling several cycles if the flux of
the succeeding cycle is unable to properly neutralize
the polar flux of the preceding cycle. Baumann et al.
(2004, 2006) proposed a way of fixing this problem by
adding an ad hoc decay term corresponding to the
radial diffusion, which is not included in the SFT
model. Hence, although SFT models played a very
important role in elucidating the BL process, it has
some inherent limitations that it cannot handle the
dynamics of the magnetic field in the polar regions
appropriately.

The next step would be to develop the 3D kinematic
BL dynamo models where the fluid motions are still
provided and the evolution of the magnetic field
would be in 3D. These models can incorporate the
attractive features of the 2D BL dynamo models and
SFT models while being free from the limitations of
both of the models.

3. 3D kinematic dynamo models

3D dynamo models are the next-generation dynamo
models that implement the BL process with high
observational fidelity and treat magnetic flux emer-
gence through the SCZ much more realistically than
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2D dynamo models. In these models, the total non-
axisymmetric magnetic field of the Sun is considered
and their evolution is studied by solving the magnetic
induction equation in a 3D rotating spherical shell
with a radius ranging from r = 0.69 R to r = R, as
given below:

oB

E:Vx (vxB—nV xB)+S8(r,0,B,1),

where B(r, 0, ¢, 1) is written in terms of toroidal and
poloidal magnetic potentials A and C such that

B =V x (AF) 4+ V x V x (CF).

(10)

n is the magnetic diffusivity inside the SCZ and v is
the mean flow. In most of the cases, a radial field at
the surface and a conducting lower boundary have
been used as boundary conditions for solving Equa-
tion (10). Although the magnetic field is in 3D, the
velocity fields are still axisymmetric in general.
However, Hazra & Miesch (2018) considered the
effect of nonaxisymmetric velocity fields to study the
BL process. The source term S(r, 0, ¢) incorporates the
BL process and magnetic flux emergence through the
SCZ. The inherent 3D nonaxisymmetric features of
flux emergence due to magnetic buoyancy is now
modeled more realistically in 3D models. Different
treatments on every aspect of flux emergence and BL.
processes in the 3D framework are discussed in the
next subsections.

3.1 Flux emergence

First time in a 3D framework, Yeates & Muifoz-
Jaramillo (2013) modeled the full process of 3D
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emergence of flux tube considering its interaction
with convective flows while rising through the
SCZ. Their procedure is really unique in the way
that it incorporates key features of emerging flux
tubes, as suggested by the thin-flux tube and
anelastic MHD simulations, and allows the flux
emergence in a more consistent way than artificial
flux deposition on the surface of the Sun. This
treatment of flux emergence in the dynamo
framework would enhance our understanding of the
emergence and decay of sunspots as a source for
creating the poloidal field from the toroidal field.
In Figure 2, the emergence of two isolated flux
tubes at two different latitudes (0° and 30°) are
shown. It is clear from the simulation that the
rotational shear of the emerging flux tube leads to
the relative movement of the flux tube with respect
to its roots, which is very important for the mag-
netic configuration near the eruption site.

Another method that has been developed to incor-
porate flux emergence and the corresponding creation
of sunspots is called the “Spotmaker” algorithm
(Miesch & Dikpati 2014; Miesch & Teweldebirhan
2016; Hazra et al. 2017; Karak & Miesch 2018). This
method is different from the flux emergence procedure
adopted in Yeates & Muioz-Jaramillo (2013). In the
Spotmaker algorithm, the spots are placed on the sur-
face of the Sun based on dynamo-generated toroidal
field near the base of the CZ. In this method, the time
required for flux to travel through the CZ is neglected
with respect to the time scale of the solar cycle.

As a first step, the spot-producing toroidal field is
calculated at the tachocline by averaging a toroidal
field over the radius from » = 0.70 R to r = 0.71 R.
Then the bipolar spot is placed once the averaged
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Figure 2. This figure is taken from Yeates & Munoz-Jaramillo (2013) showing a single flux tube emergence on day 25 at
two different latitudes (a) at 30° N and 0° latitudes. Red and blue on the surface show positive and negative polarity B,,
respectively. (b) Colored contours show a cut of By inside the CZ and contours on the surface show B, (on day 25). The
magnetic field lines in the equatorial plane on days 15 and 25 are shown in (c¢) and (d). All color bars are in units of Gauss.
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Figure 3. Structure of a typical spot pair produced by the
“Spotmaker” algorithm following Joy’s law tilt. (a)
Orthogonal projection of B, at the solar surface associated
with two spots at the mid-latitude. Red and blue show
positive and negative polarity of sunspots, respectively. (b)
The poloidal field associated with the spot pairs. The
potential field used for a subsurface structure extended up to
0.95 R . This figure is taken from Miesch & Dikpati (2014).

Figure 4. The detailed subsurface structure of magnetic
field lines in a sunspot pair is shown from Miesch &
Teweldebirhan (2016). The volume rendering shows mag-
netic field lines (red contours) below the solar surface at two
different vantage points (a) east of the sunspot pair looking
west and (b) underneath the sunspot pair looking up. The
surface of the Sun is shown by the blue surface.

toroidal field near the tachocline exceeds a threshold
value B; as shown in Figure 3(a). The corresponding
potential field approximation of the placed sunspot is
also shown in Figure 3(b). The placement of a spot
pair on the surface in latitude and longitude is decided
by the location where the averaged toroidal field
crosses the threshold value. However, after emer-
gence, the spots are not connected to their parent flux
tubes. A potential field extrapolation below the sur-
face of each spot pair is used for the subsurface
structure. The subsurface structure of each spot is
shown in Figure 4(a) and (b).

After deciding the locations of the spot pair, the
timing for sunspots appearance is determined by a
time delay probability density function motivated
from the observed sunspots data. For example, if a
sunspot pair appears at time fy, then the timing of
the next emergence event will be at t; =1+ A,,
where A, is chosen randomly based on the time
delay probability distribution function P(A) (Miesch
& Teweldebirhan 2016). Once the sunspot pairs are
placed on the surface of the sun based on the
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locations and timing determined by the toroidal field
and time delay probability distribution function
(PDF), their subsequent evolution due to differential
rotation, meridional circulation, and turbulent dif-
fusion generates the poloidal field naturally via the
BL mechanism. The Spotmaker algorithm captures
much better the sunspots properties after emergence,
i.e., the late phase of the flux emergence on the
surface while the procedure adopted in Yeates &
Muiioz-Jaramillo (2013) captures the early phase of
the flux emergence better.

Recently, Kumar et al. (2019) have employed the
dynamical flux emergence by considering upward
vortical flows and subsequent evolution of the spots to
create the poloidal field. Unlike Yeates & Muiioz-
Jaramillo (2013), they are able to obtain a self-excited
dynamo but this dynamic flux emergence algorithm
gives rise to the overlapping sunspot distribution near
the minima. A comparative study of different flux
emergence algorithms to explain various irregular
properties might be very helpful to constrain the exact
flux emergence method.

3.2 Dynamo quenching and BL process

One of the main issues related to the kinematic
approach of dynamo modeling is not accounting for
the Lorentz force feedback on the mean flows. Pre-
sumably, for the Sun, the kinematic approach is not at
all a bad approximation because the observed tor-
sional oscillation, i.e., the cyclic variation of the dif-
ferential rotation is not very significant (Antia & Basu
2000; Chakraborty er al. 2009) and the results
obtained from these models are quite in good agree-
ment with the observations. However, in the kinematic
framework, the dynamo needs to be quenched for a
given velocity field to suppress its unlimited growth.
In the Spotmaker algorithm, the flux being deposited
on spot pairs is suppressed by a quenching factor:

|B(0y, ¢y, 1)] 10%
B, 1+ (B(0,9)/B2)

®, = 2, Mx,  (11)

where B is the toroidal field averaged over the
tachocline and B, is the quenching field strength
usually assumed to be 10°G. The @, factor is the
amplification factor, which can be adjusted to make
dynamo action to be supercritical. If we choose
¢o~ 1, which will give a flux of 10> Mx in the
strongest active region closed to the observations with
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Figure 5. Magnetic cycles from a standard STABLE simulation taken from Hazra & Miesch (2018). (a) The azimuthal
averaged B, is shown as a function of time and latitudes, highlighting three cycles. Red and blue show positive and
negative polarity, respectively. The color scale is set from —200 G (blue) to +200 G (red). (b) Mean polar field, i.e., the
averaged radial field over latitudes poleward of £ 88° for the same three cycles is shown. Polar field reversals are shown
using the dotted lines. Blue and red correspond to the northern and southern hemispheres, respectively. (c) Time—-latitude
plot of the azimuthal averaged mean toroidal field B:,s at r = 0.7Rs (bottom of the CZ). The color scale saturates at
450 kG, with red and blue denoting eastward and westward fields, respectively. (d) Evolution of mean toroidal flux near
the base of the CZ averaged over the northern (blue) and southern (red) hemispheres for the same three cycles.

the subsurface toroidal field strength equivalent to the
quenching field strength.

Another very physical way to incorporate dynamo
quenching is by introducing a quenching factor in the
tilt angle between the bipolar magnetic regions
(BMRs). As the strongest flux tubes get less affected
by the Coriolis force while rising fast through the
SCZ, we expect the tilt angle to be quenched when the
cycle strength is strong. Karak & Miesch (2017) used
the tilt angle quenching as the dynamo saturation
mechanism and were able to get a self-sustained
dynamo solution.

3.3 Evolution of dynamo-generated fields

We present results from the self-sustained 3D kine-
matic dynamo models called surface flux transport and
Babcock-Leighton (STABLE) dynamo model here,
which have mostly been presented in Miesch &
Dikpati (2014), Miesch & Teweldebirhan (2016),
Hazra et al. (2017), Karak & Miesch (2017), and
Hazra & Miesch (2018). The butterfly diagram is
mostly considered as the signature of the cyclic
properties of the solar cycle. In Figure 5(a) and (c),

the butterfly diagram, i.e., the time latitude diagram of
azimuthal averaged toroidal and radial fields are
shown at r = 0.71 R, and r = R, respectively. The
butterfly diagrams show a cyclic behavior in both
toroidal and radial fields with a nearly 13-year peri-
odicity. The fine tuning of meridional flow speed or
turbulent diffusion can give us exactly the 11-year
period of the solar cycle but we want to explore the
overall properties of the solar magnetic activity. The
equatorward propagation of the sunspot field is clear
from the radial field evolution diagram (Figure 5a).
The sunspot producing field, i.e., the toroidal field also
shows an equator migration with time (Figure 5c)
presumably due to the equatorward meridional circu-
lation near the bottom of the CZ. Since there is no
physical sunspot number in most of the previous 2D
models, the toroidal field at the bottom of the CZ is
considered as a proxy of the sunspot number. How-
ever, for the 3D model, we have physical sunspots on
the surface that contributes to the polar field. The
disintegration and migration of the sunspot field due to
meridional circulation, differential rotation, and tur-
bulent diffusion give rise to a poleward migration of
trailing flux that reverses the polar field according to
the BL mechanism (see Figure 5a).
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In Figure 5(b) and (d), the evolution of polar flux
and averaged toroidal flux over each hemisphere is
shown. Polar flux is calculated by averaging a radial
field on the polar region above +85° latitudes, while
toroidal flux is calculated over the whole CZ in each
hemisphere. The opposite phase difference between
the evolution of toroidal flux and polar flux makes it
clear that the polar field reaches a minimum value
while the toroidal field is maximum, i.e., during the
solar maximum in accordance with the observation.

The solar active longitudes could not be explained
from our 3D model because the longitudinal infor-
mation of sunspot formation is still random in our
model. The dynamo-generated field near the tacho-
cline is randomly put on the surface to form sunspots
when it crosses a particular threshold value (see
Section 3.1 for details). A promising theory to explain
these active longitudes and their time variation
involves hydrodynamic (HD) and MHD Rossby
waves inside the Sun and has been developed over the
past 20 years (see, e.g., Dikpati & Mclntosh (2020)
and references therein). The interaction of Rossby
waves with differential rotation and toroidal fields
generates tachocline nonlinear oscillations (TNOs),
which are very robust features of the tachocline in
MHD shallow water models and are demonstrated to
be responsible for both solar active longitudes and
short-term solar seasonal/sub-seasonal variability
(Dikpati & Gilman 2005; Mclntosh er al. 2015;
Dikpati et al. 2018). The inclusion of the TNOs in the
3D model while modeling the flux emergence from
the tachocline to the surface would be very crucial in
modeling active longitudes and the solar seasonal/sub-
seasonal variability. The 3D dynamo models are
capable of reproducing most of the aspects of the solar
magnetic field with a very good promise to include
many observational data for a greater understanding of
solar magnetic activity as we explain in the next
sections.

4. Behavior of SFT in the 3D dynamo model

The addition of an extra azimuthal dimension in the
3D models allows us to investigate the behavior of
flux transport on the surface of the Sun. Hence, one of
the main aspects that we can address after constructing
a self-excited 3D dynamo model is how an individual
sunspot pair contributes to the building up of the polar
field and whether our understanding gained from the
3D models necessitates the revision of some insights
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gained from 2D SFT models. In order to do that an
individual sunspot pair on each hemisphere is placed
at a particular latitude and let them evolve under the
axisymmetric mean flows and turbulent diffusion.
Hazra et al. (2017) explored a few cases by putting a
single sunspot pair in the northern hemisphere, two
sunspot pairs symmetrically in two hemispheres, and
two sunspot pairs in two hemispheres at two different
longitudes as well (not symmetric). We discussed here
only one case in detail, where two sunspot pairs are
placed symmetrically in two hemispheres.

4.1 Build up of polar field from two sunspot pairs
in two hemispheres

The “Spotmaker” algorithm (as explained in Sec-
tion 3.1) is used to place two sunspot pairs symmet-
rically across the equator at two hemispheres at £5°
latitudes. The magnetic flux in each spot is chosen as
1 x 10?* Mx and its radius is taken to be 21.71 Mm.
To make the result of our simulation more clearly
visible, the radius of each sunspot is chosen somewhat
larger than the actual sunspot. After placing the sun-
spots successfully, we allow our code to evolve the
magnetic field from these sunspot pairs leading to the
build up of the polar field. The snapshots of the radial
magnetic field (B,) at different times during the evo-
lution of the magnetic field are shown in Figure 6.
Figure 7 shows the evolution of the toroidal field and
the poloidal field at different times after the initial
placement of the sunspot pairs. As soon as a sunspot
pair is placed using the “Spotmaker” algorithm, some
toroidal field arises below the surface at once because
the magnetic loop connecting two sunspots below has
a toroidal component. Also, a more toroidal field is
generated because of the latitudinal differential rota-
tion in the CZ.

If the two pairs of sunspots are sufficiently close to
the equator, then leading polarity sunspots from both
hemispheres get canceled by diffusion across the
equator. The trailing polarity sunspots are preferen-
tially transported to the higher latitudes and get
stretched by differential rotation. The meridional cir-
culation takes almost 3 years to bring flux of B, to
produce a positive patch at the northern hemisphere
and a negative patch in the southern hemisphere as
shown in Figure 6. The polar magnetic patches form
with the polarity of the trailing sunspots. However, a
careful look at Figure 6 shows some evidence of
opposite polarity of what we see in the poles at
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Figure 6. The evolution of radial magnetic fields on the
surface of the Sun for sunspot emergence in two hemi-
spheres at £5° latitudes during (a) 0.025 year, (b) 0.25 year,
(c) 1.02 years, (d) 2.03 years, (e) 3.05 years, and (f) 4.06
years. Here, white and black show the outward and inward
going radial field, respectively. In each case, the color scale
is set at = maximum values of the magnetic field. For

example, in case (a), the color scale is set at +4.66 and
40.10 G is the color scale for (f). From Hazra et al. (2017).

Figure 7. Snapshots of axisymmetric toroidal field lines
(a)—(e) and axisymmetric poloidal field lines (f)-(j) are
shown at five different times—(a), (f) = 1.02 years, (b), (g)
= 3.05 years, (¢), (h) = 5.08 years, (d), (i) = 7.11 years, and
(e), G) = 9.15 years. Line contours in frames (a)—(e) show
BA¢ (azimuthal averaged) with red and blue indicating
eastward and westward fields, respectively. The filled
contour represents the strength of the mean toroidal fields
(color scale = 1.5 G). The square root of poloidal
magnetic potential with potential field extrapolation above
the surface (up to r = 1.25R) is shown in frame (f)-(j).
Blue contours denote the clockwise direction of the field.
Contour levels corresponding to the poloidal fields strengths
of £0.02 G are fixed as maximum and minimum, respec-
tively. Taken from Hazra et al. (2017).

mid-latitudes even two sunspots are placed symmet-
rically at sufficiently low latitudes in both the hemi-
spheres. To understand the physics of what is
happening, we need to focus on the poloidal field lines
plot in the bottom panel of Figure 7(f)—(g). After
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magnetic fluxes from the leading sunspots near the
equator cancel out, we get initial poloidal field lines
spanning both hemispheres. As is clear from the early
stage of magnetic field evolution (Figure 7f), we have
B, only at high latitudes. In the later stage, when
meridional circulation drags the poloidal field lines
toward poles, eventually polar fields in two hemi-
spheres get detached, as a result of which B, again
appears at lower latitudes having the opposite polarity
of B, at high latitudes.

In the 2D SFT model, only the fluxes from the
following polarities are advected toward the poles and
we eventually get polar patches that are not sur-
rounded by the opposite polarity patches, as found in
the 3D models. The outward spreading magnetic field
from the polar patches by diffusion is eventually
balanced by the inward advection by the meridional
circulation and an asymptotic steady state is reached
in the SFT model, with an asymptotic magnetic dipole
that does not change with time (see Figure 6 of Jiang
et al. 2014a). However, for the 3D case, a different
scenario arises because of the 3D structure of the
magnetic field. As V- B =0, [B - dS integrated over
the whole surface has to be zero at any time. This
means that during any time interval, equal amounts of
positive and negative magnetic fluxes need to disap-
pear below the surface due to the subduction process.
Hence, the low-latitude emergence of the B, is due to
the 3D structure of the magnetic fields. Since full
vectorial nature is not considered in the SFT model,
low latitudes B, would never appear in that model.
Because breakup of the poloidal field and the
appearance of B, at the low latitudes with opposite
polarity, it is possible for the poloidal field to be
subducted below the surface in the two hemispheres as
the meridional circulation sinks downward in the polar
regions. Hence, in contrast to the SFT models where
polar fields have nothing to cancel them and therefore
persist, the polar fields disappear after some time in
the 3D model.

Next, we present results by placing two sunspot
pairs symmetrically at different latitudes in the two
hemispheres. The evolution of the polar field for
sunspot pairs placed at different latitudes is shown in
Figure 8. The sunspot pairs that are placed at high
latitudes advects less path to the poles and lost less
flux due to diffusion and as a result, the polar field
becomes stronger for high latitudes of emergence.
Eventually, the polar field disappears in all cases due
to subduction by the meridional flows and diffusion.
Figure 8 can be directly compared with the left panel
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Figure 8. Time evolution of polar field for different
emergence angle (Aemg) of sunspot pairs in both hemi-
spheres from Hazra et al. (2017). Black solid, red dotted,
green dashed, blue dash-dotted, and magenta long dash-
dotted lines show the polar field for the sunspot emergence
at 5°,10°,20°,30°, and 40°, respectively. The unit of the
magnetic field is in milliGauss and time is given in years.

of Figure 6 of Jiang et al. (2014a) where the time
evolution of axial dipole moments is shown. This
comparison makes the difference between the 3D
model and the SFT model completely clear. In the
SFT model, the cross equator diffusion for the sunspot
pairs that are put at sufficiently high latitudes is neg-
ligible and fluxes of both polarities are advected to the
polar region, and eventually, the axial dipole moment
becomes zero. In the case of sunspots pair placed at
low latitudes in the SFT model, only the fluxes from
the following polarity sunspots reach the poles and
give rise to an asymptotic axial dipole. The situation
becomes completely different in the 3D model.
However, we see the persistence of polar fields for a
longer time when the initial sunspots are placed at
lower latitudes. The sunspot pairs appearing in lower
latitudes is somewhat more effective in creating the
poloidal field even in the 3D model. This finding is
also in agreement with the results of Dasi-Espuig
et al. (2010) who found a better correlation between
the average tilt of a cycle and the strength of the next
cycle if more weight is given to sunspot pairs at low
latitudes while computing the average tilt.

Although the difference between the result of the
SFT model and the 3D model is notable, it may be
offset to some extent by including efficient downward
radial pumping. Karak & Cameron (2016) have shown
that downward radial pumping due to strongly strati-
fied convection near the solar surface can suppress the
upward diffusion of toroidal and poloidal fields.
Hence, turbulent pumping can help to produce a
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steady polar field that might persist indefinitely. The
exact role of this turbulent pumping needs to be
investigated thoroughly.

4.2 Contribution of anti-Hale sunspot pairs
to the polar field

Since the build up of the polar field is much realisti-
cally captured in the 3D model compared to the SFT
models, we now address another important question
that whether the anti-Hale sunspot pairs have a large
effect on the polar field in the 3D dynamo model. It is
well known that some of the BMRs appear on the
solar surface with wrong magnetic polarities not
obeying Hale’s polarity law. While flux tubes rise
through the SCZ, it gets affected by the action of
turbulence (Longcope & Choudhuri 2002; Weber
et al. 2011). As a result, we see a spread of tilt angles
around Joy’s law (Hale et al. 1919). Due to the spread
in tilt angles around Joy’s law, it is quite expected that
a few outliers would violate Hale’s law. A study by
Stenflo & Kosovichev (2012) estimated about 4% of
medium and large sunspots violate Hale’s law. Since
this is a small percentage of sunspot numbers, it is not
surprising that due to statistical fluctuation, these anti-
Hale sunspots appear in some particular cycles com-
pared to the other cycles. Jiang et al. (2015) suggested
on the basis of their SFT calculations that the
appearance of a few large anti-Hale sunspot pairs at a
particular cycle can significantly decrease the strength
of the polar field at the end of that cycle and this is the
reason for the weak polar field at the end of cycle 23
but not cycle 21 or 22.

A large anti-Hale sunspot pair is placed manually
by hand in different phases during a cycle in 3D and
its effect on the build up of a polar field is studied in
the 3D model. The magnetic flux in the anti-Hale
sunspot pairs is chosen 25 times the magnetic flux
carried by other regular sunspots to make its effect
more clearly visible. The tilt angle for the anti-Hale
pair is taken as 30°. We consider four different cases
to understand how the appearance of an anti-Hale
sunspot pair at different emergence latitudes and dif-
ferent phases of the cycle affects the polar field. As
sunspots generally appear at high latitudes in the early
phase of the cycle and at low latitudes in the late
phase, we consider one case by placing the anti-Hale
sunspot pair at the high latitude of 40° in the early
phase and another case by putting the anti-Hale pair in
the late phase at 10°. In the other two cases, the anti-
Hale sunspot pair is placed at 40° and 10° latitudes
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Figure 9. Time-latitude diagram of the radial field on the solar surface with an “anti-Hale” sunspot pair at different
latitudes and different phases of the solar cycle. (a) At the early phase of the cycle and at 40° latitude, (b) late phase of the
cycle and 10° latitude, (c) middle phase and 40°, and (d) middle phase and 10° latitude. Color scale saturates at =15 kG for

all four cases. Taken from Hazra et al. (2017).

(different case studies) in the middle phase of the
cycle. Figure 9 shows the time-latitude plot (“but-
terfly diagram”) of the radial magnetic field for these
four cases. The time evolution of the polar field in
these four cases along with a case without an anti-Hale
sunspot pair is shown in Figure 10, where the effect of
the anti-Hale pair on the polar field is clearly visible.

It is found that an anti-Hale pair near the low-lati-
tude like 10° at any phase of the cycle does not have
much effect on the polar field as it is clear from
Figure 10. The opposite fluxes from the two sunspots
neutralize each other before they reach the poles,
which becomes quite apparent from Figure 9(b) and
(d). The anti-Hale pair at low latitudes produce a surge
behind them but it does not reach the pole. If the anti-
Hale pair appears at the high latitudes, its effect is
certainly much more pronounced. The surges in these
cases reach the poles as we see in Figure 9(a) and (c).
When the anti-Hale pair appears at 40° but at the early
phase of the cycle, the build up of the polar field is
weakened and delayed, but eventually the polar field
reaches almost the strength of the polar field that we
expect in the absence of the anti-Hale sunspot pair
(Figure 10). However, if that pair appears in the
middle phase of a cycle, the polar field can be reduced
by about 17%. Note that this large reduction arises
because the anti-Hale sunspot pair is unrealistically
large. In conclusion, an anti-Hale sunspot pair could
affect the build up of the polar field—especially if
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Figure 10. Time evolution of a polar field for one

complete solar cycle with the “anti-Hale” sunspot pair at
different locations and different times of the cycle taken
from Hazra et al. (2017). A case of a regular cycle with no
anti-Hale sunspot pair is plotted in the solid black line. The
red dotted line shows the poloidal field evolution with an
anti-Hale pair at 40° latitude at an early phase of the cycle.
The green dashed line indicates a poloidal field with an anti-
Hale pair at 10° and a late phase. Blue dashed and magenta
long dashed lines represent the poloidal field with an anti-
Hale pair at the middle of the cycle but at 10° and at 40°
latitudes, respectively.

they appear at high latitudes and in the middle phase
of a cycle but the effect does not appear to be very
dramatic.
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On the other hand, recent calculation by Nagy et al.
(2017) using their 2 x 2D hybrid dynamo model
showed that an individual large anti-Hale pair appear
as far as 20° from the equator can still have a sig-
nificant effect on the polar field. The strongest effect
on the subsequent cycle occurs when a large pair
emerges around cycle maxima but at low latitudes.
This finding is also in accordance with Jiang et al.
(2015) that suggested the weakness of the polar field
at the end of cycle 23 was due to the appearance of
several anti-Hale sunspot pairs. Since some of the
results from the 3D model differ from SFT models due
to low-latitude poloidal flux emergence, we believe
the difference occurs in the result of the effect of the
anti-Hale pair on the polar field in our model and other
models is a consequence of the same low-latitude
poloidal flux emergence. However, this suggestion
merits further detailed study in order to arrive at a firm
conclusion.

5. Irregularities of the solar cycle from
3D models

The 3D dynamo model is used to study the irregularity
of the solar cycle as well. The plausible causes of
irregularity in the solar cycle in the BL dynamo
framework include variation in different flux transport
mechanisms (convective transport and transport by
meridional circulation), differential rotation, and ran-
domness in the BL process. Modeling stochastic
variation in convective flows is a challenging prob-
lem. It needs the unified understanding of small- and
large-scale dynamo action and has been studied by a
few groups (e.g., Kitchatinov et al. 1994; Karak et al.
2014b). The influence of variation in meridional flow
is found to be very important to give rise to cycle
variability including grand minima and grand max-
ima (Charbonneau & Dikpati 2000; Karak &
Choudhuri 2011, 2013; Hazra et al. 2015; Hazra &
Choudhuri 2019). From helioseismology, a weak
variation in the differential rotation is known to exist
(see Chakraborty et al. (2009) and references therein
for details) but the observed correlation between
polar flux at the cycle minimum and the
sunspot number of the following cycle suggest that the
Q-effect is largely linear and not a major source of
irregularity in the solar cycle (Jiang et al. 2007; Wang
et al. 2009).

Direct observations of the polar field for the last few
cycles (Svalgaard et al. 2005), as well as some polar

Page 13 of 21 22

proxies such as polar faculae, polar network index
available for the last 100 years, show a clear
strong cycle-to-cycle variations in the polar field
(Munoz-Jaramillo et al. 2013; Priyal et al. 2014;
Hazra & Choudhuri 2019). The amount of polar
field generation mainly depends on the tilt angle
between BMRs, their magnetic fluxes, and the speed
of the meridional circulation. Particularly, the scatter
of tilt angles around mean, presumably caused by
the effect of convective turbulence on the rising flux
tubes plays a major role. Recently, Jiang et al.
(2014a) studied that the tilt angle scatters led to a
variation of the polar field by about 30% for cycle
17. Hence, the random scatter in active regions tilt
is considered as a possible mechanism to explain
the irregularity of the solar cycle (Choudhuri 1992;
Charbonneau & Dikpati 2000; Choudhuri et al.
2007).

Random scatter in the BMR tilt angles has been
studied previously within the context of 2D BL
dynamo models (Choudhuri 1992; Charbonneau &
Dikpati 2000; Jiang et al. 2007; Choudhuri &
Karak 2009; Hazra et al. 2015), SFT models (Jiang
et al. 2014b) and in a coupled 2 x 2D BL/SFT model
(Lemerle & Charbonneau 2017). For the first time,
Karak & Miesch (2017) have considered the random
scatter in the tilt angles in the STABLE 3D dynamo
model framework. In the STABLE model, the stan-
dard Joy’s law is used for tilt angle § = d cos 0, while
implementing the “Spotmaker” algorithm to put
bipolar sunspots on the surface of the Sun. To include
tilt angle scatter around its mean, a random fluctuating
component (Jr) is added around Joy’s law as

0 = 0¢ cos 0 + Os. (12)

According to observations, Joy’s law is a statistical
law and there is a considerable scatter around it
(Howard 1991; Stenflo & Kosovichev 2012). By
analyzing BMRs data measured during 1976-2008,
Wang et al. (2015) reported that the fluctuation of the
tilt (6¢) roughly follow a Gaussian distribution as
given below:

1
f(0r) o2
where g5 = 15°.

Also, Karak & Miesch (2017) implemented a tilt
angle quenching as the main source of dynamo
quenching instead of flux quenching (Equation 11) as
used in previous STABLE papers (Miesch &
Dikpati 2014; Miesch & Teweldebirhan 2016;

exp[—d; /273),

(13)
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Figure 11. Smoothed (over 3 months) monthly sunspot number is plotted with time. Black and red lines show north and

south sunspot numbers, respectively. The dotted line represents the mean of peak sunspot numbers for the last 13 observed
solar cycles. This figure is taken from Karak & Miesch (2017).

Hazra et al. 2017; Hazra & Miesch 2018). Finally, the
tilt used to study the irregularity is given by
d¢ cos 0 + O¢

* =11 B0, §.1)/B2

(14)

where 0yp = 35° and other terms are as usual. The
simulated solar cycle, i.e., the sunspot time series
(smoothed over 3 months) is shown in Figure 11.
Black and red represent the sunspot numbers in the
northern and southern hemispheres, respectively. The
cycle-to-cycle variation of the amplitude of the mean
polar flux is ~35%. This result is in agreement with
the study of Jiang et al. (2014a), who found a 30%
variation in the polar field after introducing tilt angle
scatter.

The strength of the magnetic field and the number of
bipolar sunspots per cycle has increased in comparison
with the case without tilt angle scattering. The variation
in the peak SSN in this simulation is 41%, while the
observed variation during the period of 1749-2017 in
sunspot number data is 32%. Also, the hemispheric
asymmetry is observed in the simulated time series of
the sunspot numbers. By zooming in Figure 11 care-
fully, one can clearly find a temporal lag and excess of
sunspots numbers between two hemispheres. However,
like the real Sun, the STABLE model always tends to
correct any hemispheric or temporal asymmetry pro-
duced in a cycle and no extended asymmetry is seen.
Similar results were also reported using 2D models by
Chatterjee & Choudhuri (2006).

In this 3D model, the cycle period has considerable
variation around its mean of 10.5 years. In the FTD, the
cycle period is largely determined by the speed of the
meridional flow. However, while introducing scatter at
a tilt angle, the speed of meridional flow is kept con-
stant. Hence, the variation in the cycle period occurred
due to the fluctuation and nonlinearities in the BMR
emergence. Basically, when the polar field of a cycle
becomes stronger due to the tilt fluctuations, spots in the
next cycle take a longer time to reverse the previous
cycle flux, which makes a longer cycle. On the other

hand, a stronger polar field makes the toroidal field
stronger, which leads to more frequent BMR emer-
gence. This effect acts to reverse the polar field quickly
and makes the cycle period shorter, although it is
inhibited by the tilt angle quenching. Therefore, the tilt
angle quenching makes a major role in deciding which
effect is prominent and how the period will be varied.
Hence, the introduction of an observed tilt angle scatter
in the Sun may be sufficient to account for the irregu-
larities observed in the solar cycle.

In 2D BL dynamo models, some of the features of
the solar cycle (e.g., Waldmeier effect and correlation
between decay rate and amplitude of the next cycle)
are not reproduced by introducing randomness in the
BL process. So, a variation in the meridional circu-
lation was necessary to explain these features. In the
3D dynamo model, a small correlation arises between
the cycle amplitude and the period of the previous
cycle (r = —0.24) by only including tilt angle scatter,
while the observed correlation is r = —0.67. Hence, it
needs a separate study whether other irregular prop-
erties of the solar cycle can be recovered by intro-
ducing tilt angle scatter around Joy’s law or we need
to introduce fluctuation in the meridional circulation
as well.

Figure 11 which includes a tilt angle scatter fol-
lowing a Gaussian distribution with o5 = 15° pro-
duces very weak and strong cycles and a few Dalton-
like extended periods of weak activity (e.g., around
700 years). However, it does not produce any Maun-
der-like grand minimum or grand maximum. Keeping
the possibility in mind that the weaker BMRs might
have bigger scatter in their tilt and study of tilt angles
does show cycle-to-cycle variations in the tilt angle
(Stenflo & Kosovichev 2012; Jiang et al. 2014a;
Lemerle & Charbonneau 2017), the scatter distribu-
tion around mean tilt is doubled. Now g5 = 30° is
considered instead of 15°. Interestingly, this large
fluctuation in the tilt angle does not affect the dynamo
operation and dynamo never dies. The cyclic behavior
is always maintained. Several episodes of weak
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magnetic activity, i.e., maunder-like grand minima
arise from this simulation. This simulation produces
occasional periods of stronger magnetic activity or
grand maxima as well (see Karak & Miesch (2017) for
more details).

6. Incorporation of the surface convection

The advantage of extra dimension in the 3D dynamo
model allows to explore the implementation of over-
whelming observational data available for the Sun. In the
STABLE model, Hazra & Miesch (2018) incorporate 3D
convective flow fields for the first time in a BL dynamo
framework to study their effect on the solar cycle. The
dispersal and migration of surface fields are modeled as an
effective turbulent diffusion in most of the BL models, but
they have incorporated the realistic convective flow to
capture the BL process more realistically by exploiting the
3D capabilities of the STABLE model.

The observed line-of-sight velocity on the photo-
sphere measured with the SOHO/MDI Dopplergram
instrument is included in the model. 2D maps of the
line-of-sight velocity component measured using MDI
Dopplergram are shown in Figure 12(a). These
velocities in the photosphere are predominantly hori-
zontal and include all information of differential
rotation, meridional circulation, other unwanted sig-
nals such as convective blueshift, spacecraft motion,
and instrumental artifacts. In order to reconstruct the
complete 2D convective spectrum of the surface of the
Sun, one needs to model the data to get rid of all
unwanted information. Hathaway (2012a,b) has

devised such a model that subtracted all unwanted
signals

above-mentioned and computed the

Figure 12.
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convective power spectrum. After that, a horizontal
velocity field is calculated based on that observed
spectrum using a series of spherical harmonics with
randomized phases. A sample of surface Dopplergram
from the simulated horizontal velocity field is shown
in Figure 12(b). The power spectrum of the horizontal
velocity is also shown in Figure 12(c). The peak
around / = 130 shows supergranulation.

In order to incorporate the empirical surface
velocity field V(0, ¢, t) (Figure 12b) into STABLE, a
radial structure is specified and the surface field is
extrapolated downward into the CZ no deeper than
r = 0.9R.. As convection is very vigorous near the
surface layers than the deeper CZ, the convective
velocity fields are kept confined near the surface
layers. Also, these velocities are nonaxisymmetric and
they affect the transport and amplification of the
magnetic field, which can influence the time evolution
of the mean fields.

Note that global convective simulations are fully
capable of simulating global-scale convective motions
but no global simulation model can accurately capture
smaller-scale convective motions near the surface of
the Sun such as granulation and supergranulation. This
is because it would require both extremely high res-
olution and some very important physical processes
such as non-LTE radiative transfer, ionization, and
full compressibility. However, these small-scale con-
vective motions are most important to the breakup and
dispersal of BMRs and relevant to the BL process. For
this reason, we incorporate convection in a manner
that is consistent with the pragmatic approach of
kinematic dynamo modeling.

Soon after the implementation of convective flows
in the STABLE simulation along with other regular

100 200 300 400 500
spherical harmonic degree ¢

(a) Line-of-sight (Doppler) velocity on the solar photosphere measured using the SOHO/MDI instrument on 4

June 1996. (b) Simulated line-of-sight velocity obtained from the empirical model developed by Hathaway et al. (2000)
and Hathaway (2012a,b). Hathaway’s models are designed to reproduce the observed horizontal Doppler velocity power
spectrum with randomized phases. (c) Horizontal velocity spectra for the convective flow field used here (dotted line) and
for Hathaway’s simulated flow field (solid line) at r = R. Small discrepancies at large ¢ arise because we only extract the

divergent component. Taken from Hazra & Miesch (2018).
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ingredients of the model, it is realized that convective
flows do operate as a small-scale dynamo disrupting
the operation of the large-scale magnetic cycle. Sev-
eral approaches are considered to suppress the small-
scale dynamo action but the only effective way is to
make the convective flows acting only on the radial
component of the magnetic field. This also helps to
realistically capture the horizontal transport of the
vertical magnetic field on the surface layers. Also,
note that a background diffusivity 5 x 10" cm?s~! is
used to maintain dipolar parity. This background dif-
fusivity helps to suppress small-scale dynamo as well.
The results with an explicit convective transport as
the effective transport mechanism of a large-scale
magnetic field on the surface are shown in Figure 13.
The time evolution of the radial field on the surface
(Figure 13a) is comparable with the observed radial
field evolution but the presence of mixed polarity near
the pole has no counterpart in the observation. The
existence of the mixed polarity can be attributed to the
tendency for the convective motions to disperse and
migrate the BMR field without dissipating them. As a
consequence, both polarities are migrated toward the
pole and concentrated into strong, alternating bands.
The polar flux plot in Figure 13(b) shows somewhat
more variability and a sharper decay near the end of
each cycle. This variability occurs due to the existence
of mixed polarity fields that cross into the polar
regions before they cancel each other. The slower
decay phase implies a longer interval of the polar flux
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generation by poleward migrating magnetic streams,
which persists almost the entire cycle.

The long sustained supply of poloidal flux to the
poles throughout most of the cycle has consequences
in toroidal field generation. The polar flux behaves as
the seed for the next cycle and when it is transported
to the base of the CZ by meridional circulation,
it promotes sustained toroidal flux generation by
Q-effect, more precisely at the mid-latitudes where the
latitudinal shear is strongest. This scenario is evident
from Figure 13(c). Throughout most of the cycle, a
strong toroidal field persists near +50°—60°. This
existence of strong toroidal flux in the mid-latitude
also accounts for the distortion of the integrated
toroidal flux curve shown in Figure 13(d).

Hazra & Miesch (2018) also address the question of
whether the convective transport accurately parame-
terized by a turbulent diffusion or is it fundamentally
nondiffusive? In case it is possible to represent con-
vective transport using a turbulent diffusion then what
value of surface diffusivity is optimal? To answer
those questions, a few simulations are performed by
changing the surface diffusivity value ranging from
1 x 10" to 8 x 10" cm?s™".

The surface butterfly diagrams for those few cases
are shown in Figure 14. Qualitatively, the convective
case bears the greatest resemblance to the case with
surface diffusivity of 3 x 10'' cm?s~!. This conclu-
sion is based on the width of the poleward migrating
streams, the structure of polar field concentration and
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Figure 13. Same as Figure 5 but for the case that includes surface convective flows. The color scale saturates at

(a) £500 G and (c) £100 kG. From Hazra & Miesch (2018).
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Figure 14. Butterfly diagram of azimuthal averaged B, at r = R, for (a) convective case that includes surface convective flows
(Br scale = 500 G), (b) case with 7, = 3 x 10> cm? s™! (Br scale = + 200 G), (c) case with ., = 10" cm* s~ (Br scale =
+ 30 G), and (d) case with 1, = 8 x 10" cm?s™" (Br scale = & 800 G). From Hazra & Miesch (2018).

the relative strength of the polar and low-latitude
fields, as well as the location of the active latitudes.

Some more quantitative analysis such as calculation
of poleward migration speed, dynamo efficiency
shows that a turbulent diffusion coefficient of 3 X
10" cm? s~ adequately captures the SFT as in the
case with an explicit convective transport but it does
not adequately capture the dissipation of magnetic
energy (Hazra & Miesch 2018). Approximating
convective transport with a turbulent diffusion will
have an adverse effect on the dynamo efficiency,
which in turn will produce artificially weak mean
fields and shorter cycles. However, it is found that
replacing turbulent diffusion with convective transport
does not improve the fidelity to the butterfly diagrams,
giving rise to the mixed polarity fields in the polar
regions.

7. Conclusions

Although many alternative solar dynamo models have
been proposed, the BL dynamo model has remained
the most promising leading framework to explain
various properties of the solar cycle so far, because it
is firmly based on solar observations and provides a
robust mechanism to produce cyclic dynamo activity.
However, the BL. model is kinematic and solves only
axisymmetric mean-field dynamo equations. The

velocity fields are not calculated from the first prin-
ciple in these models rather they are provided from
observations. The basic MHD equations are solved in
global MHD models, which have progressed a lot
recently (Charbonneau 2014) to reproduce the cyclic
activity but they are far away from actual solar
parameters. Also, the BL model involves many
physical processes (e.g., BL process and magnetic
buoyancy) that rather have been parameterized very
simplistic ways (Dikpati & Charbonneau 1999;
Chatterjee et al. 2004; Karak et al. 2014b). The 3D
kinematic BL dynamo models emerge out as a next-
generation dynamo model that holds the promise to
model all physical processes more realistically than
previous 2D BL models and have the capability to
include non-kinematic effects such as back reaction
due to the Lorentz force on the flows.

The development of such a kind of 3D model has
been started very recently (Yeates & Muiloz-
Jaramillo 2013; Miesch & Dikpati 2014; Miesch &
Teweldebirhan 2016; Hazra et al. 2017; Karak &
Miesch 2017; Lemerle & Charbonneau 2017; Kumar
et al. 2019). The rise of toroidal flux tube due to
magnetic buoyancy and subsequent creation of sun-
spots, which is one of the backbone of BL models, is
captured more realistically by including existing
knowledge from 3D MHD flux tube emergence sim-
ulations as well as observations. Some authors (Yeates
& Muiioz-Jaramillo 2013; Kumar et al. 2019) have
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modeled the buoyant rise of flux tube by applying a
radial outward velocity and a vortical velocity
simultaneously to a localized part of the toroidal flux
tube near the bottom of the CZ assuming that parent
flux tubes for sunspots remained connected to its root.
Whereas others (e.g., the STABLE model; Miesch &
Dikpati 2014; Miesch & Teweldebirhan 2016; Hazra
et al. 2017) have assumed that the sunspots get
quickly disconnected from the parent flux tube and
place the sunspots based on the information of toroidal
flux near the base of the CZ. In this case, a subsurface
structure of sunspots is also specified up to a radius of
0.9R; from the surface. The latter scenario is pre-
ferred as it is argued by Longcope & Choudhuri
(2002) and Rempel (2005) that sunspots get quickly
disconnected from their parent flux tubes. Recently,
Whitbread et al. (2019) also argued based on the
surface flux evolution that BMRs need to be discon-
nected from the base of the CZ more rapidly to get
better evolution of the surface fields. Our present
buoyancy algorithm limits the model in order to
explain active longitudes (Mandal et al. 2017). How-
ever, it has the capability to include TNOs, which are
believed to be one of the major drivers of the active
longitudes of the Sun (Dikpati & Gilman 2005;
Dikpati et al. 2018).

The 3D models also study how the solar polar field
builds up from the decay of one tilted bipolar sunspot
pair and two symmetrically situated sunspot pairs in
two hemispheres. It is found that the polar field arising
from such sunspot pairs eventually disappears due to
the emergence of poloidal flux at low latitudes and
subsequent subduction by the meridional flow. These
processes are not included in 2D SFT models and the
polar field in that models can only be neutralized by
diffusion with a field of opposite polarity. So, we
conclude that one has to be cautious in interpreting the
results of 2D SFT models pertaining to polar fields as
SFT models do not capture the dynamics of the polar
fields more realistically.

How a few large sunspot pairs violating Hale’s law
could affect the strength of the polar field is also
studied in the 3D models. It is found that anti-Hale
pairs do affect solar polar field—especially if they
appear at higher latitudes and during the mid-phase of
the cycle but the effect is not very dramatic.

Irregularities of the solar cycle are also studied in
great detail using 3D models. In contrast to the pre-
vious 2D BL dynamo models where randomness
arises in the BL mechanism due to the scatter of the
tilt angle across Joy’s law is included using a
stochastic random parameterization as a cause of

J. Astrophys. Astr. (2021) 42:22

irregularity, 3D models actually incorporate the scat-
ter of tilt angle physically in the model. Motivated
from the observational findings, a scatter of tilt around
Joy’s law is modeled using a Gaussian distribution.
The cycle irregularities are reproduced quite nicely
including grand minima and grand maxima by varying
the parameter of the scatter distribution (Karak &
Miesch 2017).

The 3D capability of these models is exploited to
incorporate high-resolution observed data into the
dynamo simulations directly to study their effect on
the solar cycle. In the BL dynamo models, the con-
vective flows on the surface of the Sun play a key role
in the migration and dispersion of the sunspot fields.
Usually, these whole procedures are modeled using an
effective turbulent diffusion. This might be because of
the unavailability of enough resolution and framework
to incorporate convective flows in the simulation.
With the newly developed 3D model, realistic con-
vective flows based on solar observation are incor-
porated in order to improve the fidelity of convective
transport. This new study shows that approximating
convective transport using a turbulent diffusion
underestimates dynamo efficiency producing weaker
mean fields and shorter cycles.

3D kinematic dynamo models are capable of pro-
ducing many attractive features of the solar cycle that
were previously not possible by 2D BL dynamo
models or 2D SFT models individually. These models
incorporate all attractive aspects of both models while
being free from the limitation of both. The time
evolution of the simulated surface magnetic field can
be used to study their effect on the topology of corona
and the properties of the solar wind. These models
also help us to directly assimilate observed surface
data and study their interaction with the solar interior.
The direct incorporation of surface data will help us to
predict correctly the polar field and hence in predict-
ing the next cycle amplitude. Presently, a snapshot of
observed convective flows is only incorporated to
study their effect on the surface evolution of the field
and effect on the dynamo cycle. In the future, it will
be a really important step to assimilate the time-
evolving convective flow fields as well as the
observed surface magnetograms to constrain the polar
field at the end of the cycle. Presently, a small-scale
dynamo action after assimilating convective flow
fields is encountered, which disrupts large-scale
dynamo activity. This small-scale dynamo action can
be handled properly if we include Lorentz force
feedback to saturate them. Including Lorentz force
feedback in the 3D dynamo model would be the next
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step to make these models more suitable to study solar
and stellar magnetic cycles.
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