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Abstract. The propagation of cylindrical shock wave in rotational axisymmetric perfect gas under isother-
mal flow condition with azimuthal magnetic field is investigated. Distributions of gas dynamical quantities are
discussed. The density, magnetic pressure, azimuthal fluid velocity and axial fluid velocity are assumed to be
varying according to power law with distance from the axis of symmetry in the undisturbed medium. Approxi-
mate analytical solutions are obtained by expanding flow variables in power series. Zeroth-order and first-order
approximations are discussed with the aid of power series method. Solutions for zeroth-order approximation
are constructed in approximate analytical form. The effect of flow parameters namely: shock Cowling number
C0, ambient density variation index q and adiabatic exponent γ are studied on the flow variables. Consideration
of magnetic pressure increases the total energy of disturbance of zeroth order while with increase in ambient
density variation index or adiabatic exponent, the total energy of disturbance decreases.

Keywords. Shock wave—rotating fluids—power series method—magnetogasdynamics—similarity solu-
tions—isothermal flow.

1. Introduction

The study of cylindrical shock wave in the presence of
magnetic field in a rotating medium has enormous appli-
cations. Some of the applications include explosion of
long thin wire, experiments on pinch effect, exploding
wire, to certain axially symmetric hypersonic problems
such as the shock envelope behind fast meteor or missile
and many more.

Taylor (1950a, b) studied formation of a blast wave
formed by a very intense explosion. Sakurai (1953,
1954) extended the work of Taylor (1950a, b) to the
case of plane and cylindrical shock wave and using
power series method, he obtained the first and sec-
ond approximations to the solution in Sakurai (1953,
1954) respectively. An important role is played by mag-
netic fields in a number of astrophysical situations. The
various industrial and astrophysical processes involve
applied external magnetic fields (Hartmann 1998; Bal-
ick & Frank 2002). Nath and Vishwakarma (2014)
obtained similarity solutions for the flow behind a
magnetogasdynamic shock in a non-ideal gas with heat
conduction and radiation heat-flux.

The assumption of isothermal flow is physically
realistic, when radiation heat transfer effects are implic-
itly present. As the shock propagates, the temperature
behind it increases and becomes very large so that
there is intense transfer of energy by radiation. This
causes the temperature gradient to approach zero,
that is, the dependent temperature becomes uniform
behind the shock front and the flow becomes isother-
mal (Laumbach & Probstein 1970; Sachdev & Ashraf
1971; Korobeinikov 1976; Zhuravskaya & Levin 1996;
Nath 2011). Lerche (1979, 1981) developed math-
ematical theory of one-dimensional isothermal blast
waves in a magnetic field. Purohit (1974) and Singh
and Vishwakarma (1983) have studied homothermal
flows behind a spherical shock wave in a self-gravitating
gas.

The processes occurring in the outer atmospheres
of stars or planets are significantly affected by their
rotation due to which the explosions in rotating gas
atmospheres are of definite astrophysical interest. Chat-
urani (1971) studied the propagation of cylindrical
shock wave through a gas having solid body
rotation.
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There are other types of self-similar ansatz. The first
one describes the dispersive solutions which can be
found in Barna and Matyas (2013, 2015). In Barna
and Matyas (2015), the analytical self-similar solutions
of the Oberbeck–Boussinesq equations are obtained.
They also have applied a completely different approach,
namely the two-dimensional generalization of the self-
similar ansatz which is well known for one dimension,
for more than half a century (Sedov 1959; Baraneblatt
1979; Zełdovich & Raizer 1968). In Barna and Matyas
(2013), analytical solution for the one-dimensional
compressible Euler equation with heat conduction and
with different kind of equation of state is obtained.
Firstly, they tried to obtain the self-similar physi-
cally important diffusive solutions. If such solutions
are not found, then they obtain the traveling wave
solutions. These dispersive type solutions decay in
time.

Second is the blowup type which can be found in
Suzuki (2013). There the irrotational blowup of the
solution to compressible Euler equation is obtained.
Initially, the author examined the validity of physi-
cal laws such as conservation of mass and energy and
also the decay of total pressure. He observed the non-
existence of global-in-time irrotational solution with
positive mass. These kind of solutions however explode
in finite time.

In the present work, we have studied the problem of
propagation of a one-dimensional unsteady isothermal
flow behind a cylindrical shock wave in axisymmetric
rotating perfect gas under the influence of azimuthal
magnetic field. The medium is considered to obey ideal
gas law. Barna and Matyas (2013) obtained analyti-
cal solution for compressible Euler equation in one
dimension with heat conduction without considering
the effect of magnetic field and rotation of the medium.
Nath (2011) obtained self-similar solutions for the
flow behind the magnetogasdynamic strong cylindrical
shock wave generated by a moving piston in a rotational
axisymmetric perfect gas under isothermal flow condi-
tion. The author has used the approach of Sedov (1959)
to transform the fundamental equations of motion into a
system of ordinary differential equations and the bound-
ary condition into a non-dimensional form. In Nath
(2011), the numerical solutions of the system of ODE’s
are obtained by the Range–Kutta method of fourth order.
In our problem, the approach of Sakurai (1953) has
been used and approximate analytical solutions for the
zeroth order approximation are obtained. The benefit of
this approach over Sedov’s (1959) dimensional analysis
approach is that by using Sakurai’s (1953) approach, we
are able to obtain the solution in analytical form while

in Nath (2011), they obtained the numerical solution
using Sedov’s (1959) approach.

The importance of constructing analytical or exact
solutions in mathematical physics and applied mathe-
matics is that they can be used to classify and understand
the nonlinear phenomena. Fundamental equations of
motion (1)–(6) are coupled non-linear partial differen-
tial equations which are very difficult to solve; even
there is no direct method to obtain the exact solutions
of these type of equations. Thus, Sakurai’s approach is
a way to find the approximate analytical solutions of
these equations. Sakurai’s blast-wave analysis is capa-
ble of yielding results of any desired degree of accuracy;
however there is a great deal of work involved in car-
rying out the required computations. Sakurai obtained
the first approximation in analytical form (see Sakurai
1953) and the second approximation using numeri-
cal method (see Sakurai 1954). Also, Swigart (1960)
extended the work of Sakurai (1953, 1954) to include
third-order terms for the case of cylindrical symmetry.
He used the first and second approximations obtained
by Sakurai (1953, 1954) and obtained the coefficient of
third-order by numerical integration. Freeman (1968)
in his work extended the analysis of Sakurai (1953)
to include variable-energy flows with particular refer-
ence to cylindrical spark channel formation. Freeman
(1968) also pointed out that the second approximation
does not yield results of sufficient accuracy for weak
blast waves. In this work, we have obtained zeroth-
order approximate analytical solution of the problem
using power series expansion of the flow variables, i.e.
we used the approach of Sakurai (1953). The present
work is an extension to the work of Sakurai (1953)
in the case of cylindrical shock, including the effects
of magnetic field in rotational axisymmetric perfect
gas for isothermal flow. Also the components of vor-
ticity vector are taken into account. Following Taylor
(1950a) and Sakurai (1953), solutions are obtained by
expanding the flow variables in the power series of
(C/U )2, where C is the sound of speed in the undis-
turbed fluid and U is the propagation velocity of the
shock wave. The zeroth-order approximate solutions
are constructed in Section 5. The ordinary differen-
tial equations for the first-order approximation to the
flow variables and the boundary conditions are also
presented. The density, magnetic pressure, azimuthal
and axial components of fluid velocity are assumed to
vary according to the power law in ambient medium.
The effect of Cowling number C0, ambient density
variation index q and adiabatic exponent γ on the phys-
ical quantities are shown in Table 1 and Figures 1
and 2.
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Table 1. Values of n and zeroth approximation of total
energy J0 for different values of γ , C0 and q.

γ C0 q n J0

4/3 0.01 −1.7 3.44109 2.83381
5/3 0.01 −1.7 6.07123 2.29411

−1.82 6.48148 3.17389
0.04 −1.7 4.4127 3.4453

−1.82 4.48413 4.05284

2. Equations of motion and boundary conditions

The fundamental equations governing the one-dimensi-
onal unsteady isothermal flow behind a cylindrical
shock in rotational axisymmetric perfect gas with
azimuthal magnetic field are (Nath 2011, 2012a, 2014a;
Singh & Vishwakarma 1983; Nath & Singh 2017)
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where ρ denotes the density; u, v and w denote the
radial, azimuthal and axial components of fluid veloc-
ity �X ; p denotes the pressure; h denotes the magnetic
pressure defined by h = μH∗2/2, μ is the magnetic
permeability and H∗ is the azimuthal magnetic field; r
and t are independent space and time coordinates; T is
the temperature.

Let the radius of the shock front be given by R =
R(t), and U

(= dR
dt

)
be the propagation velocity of the

shock front. The flow variables immediately ahead of
the shock front are

ρ = ρ0 = ρ∗Rq , u = u0 = 0, h = h0 = h∗R−β1,

v = v0 = v∗Rα1, w = w0 = w∗Rα2, (7)

where ρ∗, q, h∗, β1, v∗, α1, w∗ and α2 are constants
and subscript ’0’ denotes the condition just ahead of
the shock front.

The vorticity vector ζ̄ = 1

2
curl �X has the following

components:

ζr = 0, ζθ = −1

2

∂w

∂r
, ζz = 1

2r

∂(rv)

∂r
, (8)

where ζ̄ = ζr êr + ζθ êθ + ζz êz .
For self-similar solutions (Sedov 1959), the shock

velocity is assumed to vary as

U 2 = B2R−α, (9)

where B and α are constants.
The equation of state and internal energy for ideal

gas are

p = 	ρT ; e = p

(γ − 1)ρ
, (10)

where 	 is the gas constant, e is the internal energy per
unit mass of the gas and γ denotes the adiabatic expo-
nent. Rankine–Hugoniot conditions across the shock
are given as (Nath 2011; Nath & Singh 2017)

ρ0U = ρ1(U − u1), (11)

H∗
0 U = H∗
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2+ p0+ 1

2
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2
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(13)

1
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1

ρ1
− Q1

ρ0U
, (14)

v0 = v1, (15)

w0 = w1, (16)

where subscript ‘1’ denotes the conditions immediately
behind the shock front. We have ρ1 = (ρ)r=R , p1 =
(p)r=R , u1 = (u)r=R , h1 = (h)r=R , v1 = (v)r=R
and w1 = (w)r=R at the shock front (r = R(t)), and
Q is the radiation heat flux. Substituting these values in
Equations (11)–(16), we get conditions across the shock
front as

(ρ)r=R = ρ0

β
, (17)

(h)r=R = h0

β2 , (18)

[U − (u)r=R] = Uβ, (19)

(p)r=R = p0 + h0 + ρ0U
2 − (h)r=R − ρ0U

2β, (20)

(v)r=R = v0, (21)

(w)r=R = w0, (22)

where β is the density ratio across the shock front. To
obtain solution using power series, we need to obtain
boundary conditions in terms of

(C
U

)2
(= φ). As in
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Figure 1. Dispersal of zeroth approximate solution of the flow variables in the region behind the cylindrical shock front
for γ = 5/3. (a) Radial fluid velocity F (0); (b) density D(0); (c) pressure P(0); (d) magnetic pressure H (0); (e) azimuthal
fluid velocity V (0); (f) axial fluid velocity W (0); (g) l(0)

θ ; (h) l(0)
z : 1. C0 = 0.01, q = −1.7; 2. C0 = 0.01, q = −1.82; 3.

C0 = 0.04, q = −1.7; 4. C0 = 0.04, q = −1.82.

Whitham (1958), the expression for β (0 < β < 1)

is obtained as

(γ − 1)
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+
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)2

− 1

2
β2(γ − 1)

+
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{
C2

γU 2 +(1−β)

}
(γ − 1)

U (p)r=R
=β

(
C

U

)2

+ γβ(1 − β). (23)
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Figure 2. Dispersal of zeroth approximate solution of the flow variables in the region behind the cylindrical shock front for
C0 = 0.01 and q = −1.7. (a) Radial fluid velocity F (0); (b) density D(0); (c) pressure P(0); (d) magnetic pressure H (0); (e)
azimuthal fluid velocity V (0); (f) axial fluid velocity W (0); (g) l(0)

θ ; (h) l(0)
z .

In the above Equation (23), (Q1 −Q0) is assumed to be
negligible in comparison to the product of (p)r=R and
U (Nath 2015, 2016). Therefore, Equation (23) reduces
to the form

(γ − 1)

2
+

(
C

U

)2

− 1

2
β2(γ − 1)

= β

(
C

U

)2

+ γβ(1 − β). (24)

Thus from Equation (24), we get the expression for β

as
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β = (γ − 1)
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Using Equation (25), the shock jump conditions (17)–
(22) become
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(v)r=R = v0, (30)

(w)r=R = w0, (31)

where C2 = γ p0
ρ0

is the square of the speed of sound and

C0 = 2h0
ρ0U2 is the shock Cowling number. For C0 to be

constant, it is necessary that β1 + q − α = 0.
The energy balance equation is given by

ET =
∫ R

0

{
1

2
(u2 + v2 + w2 − (v2

0 + w2
0))

+ 1

(γ − 1)

(
p

ρ
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ρ0

)
+

(
h

ρ
− h0

ρ0

)}
ρrdr,

(32)

where ET expresses the explosion energy per unit area
of the surface of the shock front for cylinder of unit
length.

Consider the relation∫ R

0

ρ

ρ0
rdr = R2

2
, (33)

which is obtained from the Lagrangian equation of con-
tinuity. Using (32) and (33), we obtain
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0
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1

2
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}
rdr

− p0

(γ − 1)

R2

2
− h0

R2

2
− 1

2
(v2

0 + w2
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2
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Using Equations (6) and (10), we obtain

p

(p)r=R
= ρ

(ρ)r=R
. (35)

3. Similarity transformation

On the part of r and t , new independent variables η and
φ are proposed as

r

R
= η;

(
C

U

)2

= φ. (36)

Expressing the physical quantities in the form

u = UF(η, φ), (37)

ρ = ρ0D(η, φ), (38)
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)2

P(η, φ) = p0P(η, φ)/φ, (39)
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U

C

)2

H(η, φ) = p0H(η, φ)/φ, (40)

v = UV (η, φ), (41)

w = UW (η, φ), (42)

where F , D, P , H , V and W are functions of non-
dimensional variables η and φ. Using Equations (36),
(37), we obtain

∂

∂r
= 1

R

∂

∂η
, (43)

D

Dt
= U

R

{
(F − η)

∂

∂η
+ λφ

∂
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where λ = R(dφ/dR)/φ and λ is a function of φ only.
To obtain Equations (45)–(49), substituting (37)–

(44) into the fundamental Equations (1)–(5), we have

(F − η)Dη + λφDφ + D

(
Fη + F

η

)
+ qD = 0,

(45)

D
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2

}
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η

}
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(F − η)Vη + λφVφ + FV

η
− λ

2
V = 0, (48)

(F − η)Wη + λφWφ − λ

2
W = 0, (49)

where the subscripts η and φ refer to differentiation with
respect to η and φ respectively.
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Using Equations (37)–(42) in Equation (34), we
obtain

φ

(
R0

R

)2

= J− φ

2(γ − 1)
−C0γ

4
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4
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2

with dimension of length.

Using transformations (37)–(42), Equations (26)–
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2
.

Using Equations (35), (38), (39), (53) and (54), we
obtain

P(η) =
[

2γ (γ −1)

(γ +1)2

{
1+ 2φ

(γ −1)
− (γ −1)φ

2γ
−φ2

γ

}

+ C0γ (γ − 1)

2(γ + 1)
+ C0γφ

(γ + 1)
− C0γ (γ + 1)

2(γ − 1){
1 − 2φ

(γ − 1)
+ 4φ2

(γ − 1)2 + · · ·
}]

D(η).

(58)

Differentiating Equation (50) with respect to φ, we
obtain the expression for λ as

λ=
(q+2)

[
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The non-dimensional components of the vorticity vec-
tor lr = ζr

(U/R)
, lθ = ζθ

(U/R)
, lz = ζz

(U/R)
are given by

lr = 0, (60)

lθ = −1

2
Wη, (61)

lz = 1

2η
(V + ηVη). (62)

4. Solution construction in power series in φ

When the shock wave is formed, the shock front velocity
U becomes larger than the sound velocity C for strong

shock and φ = (C
U

)2
is considered to be small there. To

construct the solution, the non-dimensional flow vari-
ables F , P , D, H , V and W can be expanded in power
series in φ as

F = F (0) + φF (1) + φ2F (2) + · · · + φk F (k) + · · · ,

D = D(0) + φD(1) + φ2D(2) + · · · + φk D(k) + · · · ,

P = P(0) + φP(1) + φ2P(2) + · · · + φk P(k) + · · · ,

H = H (0) + φH (1) + φ2H (2) + · · · + φk H (k) + · · · ,

V = V (0) + φV (1) + φ2V (2) + · · · + φkV (k) + · · · ,

W = W (0)+φW (1)+φ2W (2)+· · · + φkW (k) + · · · ,

(63)

where F (k), D(k), P(k), H (k), V (k) andW (k) are all func-
tions of η only and (k = 0, 1, 2, 3, . . .).

Inserting (63) into expression (51), we get

J = J0(1 + σ1φ + σ2φ
2 + σ3φ

3 + · · · ), (64)

where

J0 =
∫ 1

0

{
γ

2
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+ 1

(γ − 1)
P(0) + H (0)

}
ηdη, (65)

σ1 J0 =
∫ 1

0
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γ

2
D(1)[(F (0))2 + (V (0))2 + (W (0))2]

+γ [F (0)F (1) + V (0)V (1) + W (0)W (1)]D(0)

+ 1

(γ − 1)
P(1) + H (1)

}
ηdη, (66)

and so on. Using (64) in (50), we get
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{[
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− γ
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+
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]
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2+· · ·
}

. (67)
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Using (36), (67) becomes

(
C

U

)2 (
R0

R

)2

= J0

{[
1−C0γ

4J0
− γ

4J0

(
v∗2

B2 +w∗2
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)]

+
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2J0(γ −1)

) (
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)2

+σ2

(
C

U

)4

+· · ·
}

.

(68)

By using (59) and (64), λ in Equation (59) may be
expressed as

λ = (q + 2)[1 + λ1φ + λ2φ
2 + · · · ], (69)

where

λ1 =
σ1 − 1

2J0(γ − 1)

1 − γC0

4J0
− γ

4J0

(
v∗2

B2 + w∗2

B2

) ,

λ2 = 2σ2

1 − γC0

4J0
− γ

4J0

(
v∗2

B2 + w∗2

B2

) , . . .

and so on. Now, substituting (63) and (69) in Equations
(45)–(49) and comparing the like powers of φ on both
sides, we obtain the following system of equations: For
the zeroth power of φ, we have the following set of
equations:

(F (0) − η)D(0)
η + D(0)

(
F (0)

η + F (0)

η

)
+ qD(0) = 0,

(70)

(F (0) − η)D(0)F (0)
η + 1

γ

(
P(0)

η + H (0)
η + 2H (0)

η

)

− (q + 2)

2
F (0)D(0) − D(0)(V (0))2

η
= 0, (71)

P(0) =
[

2γ (γ − 1)

(γ + 1)2 − 2γ 2C0

(γ 2 − 1)

]
D(0), (72)

(F (0) − η)H (0)
η − 2H (0) + 2H (0)F (0)

η = 0, (73)

(F (0) − η)V (0)
η + 1

η
F (0)V (0) − (q + 2)

2
V (0) = 0,

(74)

(F (0) − η)W (0)
η − (q + 2)

2
W (0) = 0. (75)

For the first power of φ, we have the following set of
equations

(F (0) − η)D(1)
η + F (1)D(0)

η + (q + 2)D(1)

+ D(0)

(
F (1)

η + F (1)

η

)
+ D(1)

(
F (0)

η + F (0)

η

)

+ qD(1) = 0, (76)

F (1)D(0)F (0)
η + (F (0) − η)(D(1)F (0)

η + D(0)F (1)
η )

+ (q + 2)F (1)D(0) − (q + 2)

2
[F (0)D(1)

+ F (1)D(0) + λ1F
(0)D(0)]

+ 1

γ

[
P(1)

η + H (1)
η + 2H (1)

η

]

− 1

η
[D(1)(V (0))2 + 2V (0)V (1)D(0)] = 0, (77)

P(1) =
[

2γ (γ − 1)

(γ + 1)2

{
2

(γ − 1)
− (γ − 1)

2γ

}

+ C0γ

(γ + 1)
+ C0γ (γ + 1)

(γ − 1)2

]
D(0)

+
[

2γ (γ − 1)

(γ + 1)2 +C0γ (γ −1)

2(γ +1)
−C0γ (γ + 1)

2(γ −1)

]
D(1),

(78)

(F (0) − η)H (1)
η − (q + 2)λ1H

(0) + F (1)H (0)
η

+ 2H (0)F (1)
η + 2H (1)F (0)

η + qH (1) = 0, (79)

(F (0) − η)V (1)
η + F (1)V (0)

η + (q + 2)V (1)

+ 1

η
[F (0)V (1) + F (1)V (0)]

− (q + 2)

2
[λ1V

(0) + V (1)] = 0, (80)

(F (0) − η)W (1)
η + F (1)W (0)

η + (q + 2)W (1)

− (q + 2)

2
[λ1W

(0) + W (1)] = 0. (81)

Using (63) in Equations (52)–(57), we obtain the shock
jump conditions for zeroth power of φ as

F (0)(1) = 2

(γ + 1)
, D(0)(1) = (γ + 1)

(γ − 1)
,

P(0)(1) = 2γ

(γ + 1)
+ C0γ

2
− γC0(γ + 1)2

2(γ − 1)2 ,

H (0)(1) = 1

2
γC0

(γ + 1)2

(γ − 1)2 ,

V (0)(1) = v∗(ρ∗C0)
1/2

(2h∗)1/2 , W (0)(1) = w∗(ρ∗C0)
1/2

(2h∗)1/2 .

(82)

The shock jump conditions for first power of φ are
obtained as
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F (1)(1) = −2

(γ + 1)
, D(1)(1) = −2(γ + 1)

(γ − 1)2 ,

P(1)(1) = −(γ − 1)

(γ + 1)
+ 2γC0(γ + 1)2

(γ − 1)3 ,

H (1)(1) = −2γC0(γ + 1)2

(γ − 1)3 , V (1)(1) = 0,

W (1)(1) = 0. (83)

The first step of the solution of the problem under con-
sideration is to solve the system of ODEs (70)–(75) for
F (0), P(0), D(0), H (0), V (0) and W (0) with the boundary
conditions (82). We obtain the zeroth-order approxima-
tions to the solutions of the shock waves in the form

u = UF (0)(η), ρ = ρ0D
(0)(η),

p = p0(U/C)2P(0)(η),

h = p0(U/C)2H (0)(η), v = UV (0)(η),

w = UW (0)(η). (84)

We obtain zeroth-order approximation to J0 from (65)
by substituting the values of F (0), P(0), D(0), H (0), V (0)

and W (0).
Similarly to obtain the first-order approximation to

the solution, we need to substitute the zeroth-order
approximations F (0), P(0), D(0), H (0), V (0) and W (0)

in Equations (76)–(81) to obtain a system of ordinary
differential equations which involve an indeterminate
parameter λ1.

5. The zeroth-order approximation

We rewrite Equations (70)–(75) in the following form:

D(0)
η /D(0) =

(
F (0)

η + F (0)

η
+ q

)
/(η − F (0)), (85)

(F (0) − η)D(0)F (0)
η + 1

γ

(
P(0)

η + H (0)
η + 2H (0)

η

)

− (q + 2)

2
F (0)D(0) − D(0)(V (0))2

η
= 0, (86)

P(0) =
[

2γ (γ − 1)

(γ + 1)2 − 4γ 2C0

2(γ 2 − 1)

]
D(0), (87)

H (0)
η /H (0) = (2F (0)

η − 2)/(η − F (0)), (88)

V (0)
η /V (0) = 1

(η − F (0))

[
F (0)

η
− (q + 2)

2

]
, (89)

W (0)
η /W (0) = 1

(F (0) − η)

(q + 2)

2
. (90)

Using Equations (85), (87) and (88) in Equation (86),
we obtain

F (0)
η =

(η − F (0))

η
D(0)(V (0))2 + (q + 2)

2
(η − F (0))F (0)D(0)

[
2(γ − 1)

(γ + 1)2 − 2γC0

(γ 2 − 1)

]
D(0) + 2H (0)

γ
− (η − F (0))2D(0)

−

[
2(γ − 1)

(γ + 1)2 − 2γC0

(γ 2 − 1)

]
D(0)

(
F (0)

η
+ q

)
+ 2H (0)

γ
− 2H (0)(η − F (0))

ηγ[
2(γ − 1)

(γ + 1)2 − 2γC0

(γ 2 − 1)

]
D(0) + 2H (0)

γ
− (η − F (0))2D(0)

. (91)

Using Equation (82), the above Equation (91) becomes

F (0)
η (1) =

v∗2ρ∗C0

2h∗ + (q+2)

(γ +1)
− (γ +1)

(γ −1)

[
2(γ −1)

(γ +1)2 − 2γC0

(γ 2 − 1)

] [
2

(γ + 1)
+ q

]
− C0(γ + 1)

(γ − 1)
+ C0(γ + 1)2

(γ − 1)2[
2(γ − 1)

(γ +1)2 − 2γC0

(γ 2 − 1)

]
(γ +1)

(γ −1)
+C0(γ +1)2

(γ − 1)2 − (γ − 1)

(γ + 1)

.

(92)
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Also from (60)–(62) and using (89) and (90), the non-
dimensional components of the vorticity vector for
zeroth order approximation are obtained as

l(0)
r = 0, (93)

l(0)
θ = 1

4
(q + 2)

W (0)

(η − F (0))
, (94)

l(0)
z = 1

2η

[
V (0) + (q + 2)ηV (0)

2(F (0) − η)
− F (0)V (0)

(F (0) − η)

]
.

(95)

Following Taylor (1950a), the approximate solution of
F (0) of F is supposed to be of the form

F (0)(η) = η

γ
+ Aηn, (96)

where A and n are constants. Using Equations (96) and
(82), the constant A is given by

A = (γ − 1)

γ (γ + 1)
. (97)

Substituting the value of F (0)
η at η = 1 from (92) in (96),

and using value of A from Equation (97), we obtain the
value of n as

n = γ (γ +1)

(γ −1)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v∗2ρ∗C0

2h∗ + (q+2)

(γ +1)
− (γ +1)

(γ −1)

[
2(γ − 1)

(γ +1)2 − 2γC0

(γ 2−1)

](
2

(γ +1)
+q

)
−C0(γ +1)

(γ −1)
+C0(γ +1)2

(γ − 1)2[
2(γ −1)

(γ +1)2 − 2γC0

(γ 2 − 1)

]
(γ +1)

(γ −1)
+C0(γ +1)2

(γ −1)2 − (γ −1)

(γ +1)

− 1

γ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(98)

Further substituting Equation (96) with values of A and
n from (97) and (98) into Equations (85) and (87)–(90),
these equations are integrated to yield

D(0)(η) = (γ + 1)

(γ − 1)
η

{
(2 + qγ )

(γ − 1)

}

[
γ

γ + 1 − ηn−1

]{
(2+qγ )

(n−1)(γ −1)
+(n+1)

(n−1)

}

, (99)

P(0)(η) =
[

2γ (γ − 1)

(γ + 1)2 − 2γ 2C0

(γ 2 − 1)

]
D(0)(η), (100)

H (0)(η) = γC0(γ +1)2

2(γ −1)2 η−2
[

γ

γ +1−ηn−1

]2

, (101)

V (0)(η) = v∗(ρ∗C0)
1/2

(2h∗)1/2

[
γ

γ + 1 − ηn−1

]{
2 − γ (q + 2)

2(γ − 1)(n − 1)
+ 1

(n − 1)

}

η

{
2 − γ (q + 2)

2(γ − 1)

}

, (102)

W (0)(η) = w∗(ρ∗C0)
1/2

(2h∗)1/2

[
γ

γ + 1 − ηn−1

] γ (q + 2)

2(γ − 1)(1 − n)
η

−γ (q + 2)

2(γ − 1) ,

(103)

where the boundary conditions (82) are used to deter-
mine the integration constants.

6. The first-order approximation

In this section, we shall derive the system of differential
equations for the first-order approximation F (1), P(1),
D(1), H (1), V (1), W (1) to the flow variables F , P , D, H ,
V and W . We have the system of Equations (76)–(81)
and the boundary conditions (83).

Splitting F (1), P(1), D(1), H (1), V (1) and W (1) as

F (1) = F (1)
1 + λ1F

(1)
2 , D(1) = D(1)

1 + λ1D
(1)
2 ,

P(1) = P(1)
1 + λ1P

(1)
2 ,

H (1) = H (1)
1 + λ1H

(1)
2 , V (1) = V (1)

1 + λ1V
(1)
2 ,

W (1) = W (1)
1 + λ1W

(1)
2 , (104)

and using (104) in (76)–(81), we get two set of equations
for F (1)

1 , P(1)
1 , D(1)

1 , H (1)
1 , V (1)

1 , W (1)
1 and F (1)

2 , P(1)
2 ,

D(1)
2 , H (1)

2 , V (1)
2 , W (1)

2 , independent of λ1.
For zeroth power of λ1, we have the set of equations

(F (0) − η)D(1)
1η + F (1)

1 D(0)
η + (q + 2)D(1)

1

+ D(0)

[
F (1)

1η + F (1)
1

η

]
+ D(1)

1

[
F (0)

η + F (0)

η

]
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+ qD(1)
1 = 0, (105)

F (1)
1 D(0)F (0)

η + (F (0) − η)[D(1)
1 F (0)

η + D(0)F (1)
1η ]

+ (q + 2)D(0)F (1)
1 − (q+2)

2
[F (1)

1 D(0)+F (0)D(1)
1 ]

+ 1

γ

[
P(1)

1η + H (1)
1η + 2H (1)

1

η

]

− 1

η
[V (0)2D(1)

1 + 2V (0)D(0)V (1)
1 ] = 0, (106)

P(1)
1 =

[
2γ (γ − 1)

(γ + 1)2

{
2

(γ − 1)
− (γ − 1)

2γ

}

+ C0γ

(γ + 1)
+ C0γ (γ + 1)

(γ − 1)2

]
D(0)

+
[

2γ (γ − 1)

(γ +1)2 +C0γ (γ −1)

2(γ +1)
−C0γ (γ +1)

2(γ −1)

]
D(1)

1 ,

(107)

(F (0) − η)H (1)
1η + F (1)

1 H (0)
η + 2H (0)F (1)

1η +
+ 2H (1)

1 F (0)
η + qH (1)

1 = 0, (108)

(F (0) − η)V (1)
1η + F (1)

1 V (0)
η + (q + 2)V (1)

1

+ 1

η
[F (0)V (1)

1 + F (1)
1 V (0)] − (q + 2)

2
V (1)

1 = 0,

(109)

F (1)
1 W (0)

η + (F (0) − η)W (1)
1η + (q + 2)

2
W (1)

1 = 0,

(110)

and for first power of λ1, we have

(F (0) − η)D(1)
2η + F (1)

2 D(0)
η + (q + 2)D(1)

2

+ D(0)

[
F (1)

2η + F (1)
2

η

]
+ D(1)

2

[
F (0)

η + F (0)

η

]

+ qD(1)
2 = 0, (111)

F (1)
2 D(0)F (0)

η + (F (0) − η)[D(1)
2 F (0)

η + D(0)F (1)
2η ]

+ (q + 2)D(0)F (1)
2 − (q + 2)

2
[F (1)

2 D(0)

+ F (0)D(1)
2 + F (0)D(0)]

+ 1

γ

[
P(1)

2η + H (1)
2η + 2H (1)

2

η

]

− 1

η
[V (0)2D(1)

2 + 2V (0)D(0)V (1)
2 ] = 0, (112)

P(1)
2 =

[
2γ (γ −1)

(γ +1)2 +C0γ (γ −1)

2(γ +1)
−C0γ (γ +1)

2(γ −1)

]
D(1)

2 ,

(113)

(F (0) − η)H (1)
2η − (q + 2)H (0) + F (1)

2 H (0)
η

+ 2H (0)F (1)
2η + 2H (1)

2 F (0)
η + qH (1)

2 = 0, (114)

(F (0) − η)V (1)
2η + F (1)

2 V (0)
η + (q + 2)V (1)

2

+ 1

η
[F (0)V (1)

2 + F (1)
2 V (0)]

− (q + 2)

2
[V (1)

2 + V (0)] = 0, (115)

F (1)
2 W (0)

η + (F (0) − η)W (1)
2η − (q + 2)

2
[W (1)

2

+ W (0)] + (q + 2)W (1)
2 = 0. (116)

Substituting the values from (104) in (83) and equating
to zero the coefficient of zeroth and first power of λ1,
we obtain

F (1)
1 (1) = −2

(γ + 1)
, D(1)

1 (1) = −2(γ + 1)

(γ − 1)2 ,

P(1)
1 (1) = −(γ − 1)

(γ + 1)
+ 2γC0(γ + 1)2

(γ − 1)3 ,

H (1)
1 (1) = −2γC0(γ + 1)2

(γ − 1)3 , V (1)
1 (1) = 0,

W (1)
1 (1) = 0 (117)

and

F (1)
2 (1) = 0, D(1)

2 (1) = 0, P(1)
2 (1) = 0,

H (1)
2 (1) = 0, V (1)

2 (1) = 0, W (1)
2 (1) = 0. (118)

By using (96), (99)–(103), (117) and (118), the system
of Equations (105)–(110) for F (1)

1 , D(1)
1 , P(1)

1 , H (1)
1 ,

V (1)
1 , W (1)

1 and the system of Equations (111)–(116)

for F (1)
2 , D(1)

2 , P(1)
2 , H (1)

2 , V (1)
2 , W (1)

2 can be integrated

numerically. After substituting the values of F (1)
1 , D(1)

1 ,

P(1)
1 , H (1)

1 , V (1)
1 , W (1)

1 and F (1)
2 , D(1)

2 , P(1)
2 , H (1)

2 , V (1)
2 ,

W (1)
2 obtained above in (66), we have the following

equation to determine λ1,

λ1 =
I1 − 1

2(γ − 1)

J0 − γC0

4
− γ

4

(
v∗2 + w∗2

B2

)
− I2

, (119)
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where

I1 =
∫ 1

0

{
γ

2
D(1)

1 [(F (0))2 + (V (0))2 + (W (0))2]

+γ [F (0)F (1)
1 + V (0)V (1)

1 + W (0)W (1)
1 ]D(0)

+ 1

(γ − 1)
P(1)

1 + H (1)
1

}
ηdη,

and

I2 =
∫ 1

0

{
γ

2
D(1)

2 [(F (0))2 + (V (0))2 + (W (0))2]

+γ [F (0)F (1)
2 + V (0)V (1)

2 + W (0)W (1)
2 ]D(0)

+ 1

(γ − 1)
P(1)

2 + H (1)
2

}
ηdη.

With the above values of λ1 and F (1)
1 , D(1)

1 , P(1)
1 , H (1)

1 ,

V (1)
1 , W (1)

1 and F (1)
2 , D(1)

2 , P(1)
2 , H (1)

2 , V (1)
2 , W (1)

2 we
can calculate F (1), D(1), P(1), H (1), V (1), W (1) using
(104).

7. Results and discussion

In the case of zeroth order approximate analytical solu-
tion, the distributions of the flow variables radial fluid
velocity F (0), density D(0), pressure P(0), magnetic
pressure H (0), azimuthal fluid velocity V (0) and axial
fluid velocity W (0), are drawn using Equations (96)
and (99)–(103) and are shown in Figures 1(a)–(f). The
zeroth approximation of non-dimensional components
of vorticity vector l(0)

θ and l(0)
z , are drawn using Equa-

tions (94) and (95) respectively and are illustrated in
Figures 1(g)–(h). The values of shock Cowling number
C0 are taken to be 0.01, 0.04; and the values of ambient
density variation index q to be −1.7, −1.82 for calcu-
lations. The values of adiabatic exponent γ are taken to
be as 5/3 and 4/3. For fully ionized gas γ = 5/3 and
for relativistic gases γ = 4/3, which are applicable to
the interstellar medium. These two values of γ mark the
most general range of values seen in real stars.

The effect of shock Cowling number C0, ambient
density variation index q and adiabatic exponent γ for
cylindrical shock on the zeroth approximate solution
of physical quantities are illustrated in Table 1 and
Figures 1 and 2. Table 1 exhibits the values of n and
zeroth approximation for total energy of disturbance
J0 in case of cylindrical shock for different values of
C0, q and γ . From Table 1, it is obtained that with
increase in C0 or q, the value of n decreases; whereas
with increase in γ , the value of n increases. Also it is

obtained that due to consideration of magnetic pres-
sure, the total energy of disturbance for zeroth order
increases, i.e. the shock strength decreases; whereas
increase in ambient density variation index or adiabatic
exponent decreases the total energy of disturbance for
zeroth order, i.e. there is increase in shock strength.
Figures 1 and 2 exhibit the distribution of zeroth order
analytical solutions of flow variables radial fluid veloc-
ity F (0), density D(0), pressure P(0), magnetic pressure
H (0), azimuthal fluid velocity V (0), axial fluid velocity
W (0) and non-dimensional components of vorticity vec-
tor l(0)

θ and l(0)
z for different values of γ ,C0 and q. From

Figures 1 and 2, it is shown that as we move inwards
from the shock front towards the axis of symmetry, the
radial fluid velocity, azimuthal fluid velocity and axial
component of vorticity vector l(0)

z decrease and tend
to zero; whereas density, pressure, magnetic pressure,
axial fluid velocity and azimuthal component of votic-
ity vector l(0)

θ increase. From Figure 1, it is obtained
that variation in values of C0 and q have similar effects
on flow variables: pressure, azimuthal and axial com-
ponents of fluid velocity and azimuthal component of
vorticity vector l(0)

θ . However increase in value of γ

has reverse effect on pressure, axial fluid velocity and
azimuthal component of vorticity vector l(0)

θ as the effect
of C0 or q on these flow variables.

The importance of constructing analytical or exact
solutions in mathematical physics and applied mathe-
matics is that they can be used to classify and understand
the nonlinear phenomena. The potential applications of
this study could include analysis of data from explod-
ing wire experiments, and axially symmetric hypersonic
flow problems associated with meteors or re-entry vehi-
cles (see Hutchens 1995; Nath 2012b, 2014b, 2015).

The higher order approximate analytical solutions
can be obtained by using the approach of Sakurai
(1954). However, in most of the cases, the first order or
higher order solutions cannot be obtained analytically.
For obtaining first- or higher-order solutions, imple-
mentation of a numerical scheme is required which
requires the complete solution of zeroth order equa-
tions.

7.1 Effects of increase in value of shock Cowling
number C0 on zeroth approximate solution of flow
variables

Magnetic pressure, azimuthal fluid velocity, axial fluid
velocity, azimuthal and axial components of vortic-
ity vector l(0)

θ and l(0)
z increase with increase in C0

(see Figures 1(d)–(h)); whereas pressure decreases (see
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Figure 1(c)). There is slight increase in radial fluid
velocity (see Figure 1(a)) with increase in C0. Density
is not affected with variation in C0 (see Figure 1(b)).

7.2 Effects of increase in value of ambient density
variation index q on on zeroth approximate solution of
flow variables

The azimuthal fluid velocity, axial fluid velocity and
azimuthal component of vorticity vector l(0)

θ increase
(see Figure 1(e)–(g)) with increase in q; whereas den-
sity and pressure decrease (see Figure 1(b),(c)) with
increase in q. A small change in q does not affect radial
fluid velocity significantly (see Figure 1(a)). The mag-
netic pressure is not affected with variation in q (see
Figure 1(d)). The axial component of vorticity vector
l(0)
z increases in general (see Figure 1(h)).

7.3 Effects of increase in value of adiabatic exponent
γ on zeroth approximate solution of flow variables

With increase in γ , the flow variables radial fluid veloc-
ity, magnetic pressure, axial fluid velocity and azimuthal
component of vorticity vector l(0)

θ decrease (see Figures
2(a), (d), (f), (g)); whereas pressure and azimuthal
fluid velocity increase (see Figure 2(c), (e)). Density
decreases near shock but increases as we move inwards
from the shock to the axis of symmetry (see Figure 2(b)).
The axial component of vorticity vector l(0)

z decreases
near shock but increases near the axis of symmetry as
we move inwards from shock to the axis of symmetry
(see Figure 2(h)).

8. Conclusions

In the present problem, we have obtained the zeroth
order approximate analytical solutions for cylindrically
symmetric motion of a magnetogasdynamic shock in
axisymmetric perfect gas under isothermal flow con-
dition. The approximate analytical representation and
the distribution of the flow variables are obtained. Pre-
supposing the gas dynamical model for cylindrical
geometry, under the influence of azimuthal magnetic
field in a rotating medium can be fruitful for the study
of experiments on pinch effect, exploding wires, and so
forth. Study of cylindrical shock waves is not only asso-
ciated with the explosion of a long thin wire but also to
certain axially symmetrical hypersonic flow problems,
such as the shock envelope behind a fast meteor, or

missile (see Lin 1954). From the present study, we can
conclude the following:

(i) The increase in value of C0 increases the mag-
netic pressure, azimuthal fluid velocity, axial fluid
velocity, l(0)

θ and l(0)
z ; however it decreases the

pressure.
(ii) Increase in value of q has similar effect as that of

ambient magnetic pressure on flow variables pres-
sure, azimuthal fluid velocity, axial fluid velocity
and l(0)

θ .
(iii) Increase in value of γ has reverse effect as that

of ambient magnetic pressure on flow variables
pressure, magnetic pressure, axial fluid velocity
and l(0)

θ .
(iv) From the figures, it obtained that as we move

inwards from the shock front towards the axis of
symmetry, the radial fluid velocity, azimuthal fluid
velocity and axial component of vorticity vector
l(0)
z decrease and tend to zero; whereas density,

pressure, magnetic pressure, axial fluid velocity
and azimuthal component of vorticity vector l(0)

θ

increase.
(v) Consideration of magnetic pressure increases the

total energy of disturbance of zeroth order while
with increase in ambient density variation index or
adiabatic exponent, the total energy of disturbance
decreases.
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