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Abstract. We have investigated the spatially homogeneous and isotropic Friedmann–Robertson–Walker
(FRW) universe filled with barotropic fluid and dark energy in the framework of the Brans–Dicke theory
of gravitation. Here we have discussed three models: (i) law of variation for Hubble’s parameter, which leads to
a constant value of deceleration parameter, (ii) hybrid expansion law model, and (iii) special form of deceleration
parameter model. We have found that among all these derived models, the most suitable standard cosmolog-
ical model according to the recent cosmological observations is the model with special form of deceleration
parameter.
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1. Introduction

Many observational evidences such as data from type Ia
supernovae (Riess et al. 1998; Perlmutter et al. 1999a;
2003; de Bernardis et al. 2000), Cosmic Microwave
Background (CMB) (Spergel et al. 2003, 2007) and
Sloan Digital Sky Survey (SDSS) (Tegmark et al.
2004a, b) have suggested to accept the fact that the uni-
verse is currently experiencing a phase of accelerated
expansion. This expansion is due to unknown energy
having negative pressure called dark energy (DE). The
DE equation of state is p = ωDρ, where ωD(<0) is
not necessarily constant. There are many candidates of
DE such as cosmological constant �(ωD = −1) (Car-
roll 2001; Perlmutter et al. 2003; Astier et al. 2006),
quintessence (Wetterich 1988; Ratra & Peebles 1988),
K-essence (Chiba et al. 2000; Armendariz-Picon et al.
2001), phantom (Caldwell et al. 2003; Nojiri et al.
2006), quintom (Feng et al. 2005), tachyon (Padman-
abhan 2002; Bagla et al. 2003; Guo & Zhang 2004;
Copeland et al. 2005), holographic DE (Li 2004; Wang
et al. 2005; Makarenko & Myagky 2018; Santhi et al.
2018), agegraphic DE (Cai 2007; Wei & Cai 2008),
two fluid DE (Chirde & Shekh 2016; Katore & Kapse
2018), anisotropic DE (Akarsu & Kilinc 2010; Katore &

Sancheti 2011; Katore & Hatkar 2015; Pawar & Solanke
2014; Mahanta & Sharma 2017) and many others.

In recent years, attention has been paid to the so-
called ‘scalar-tensor gravity’, as the Einstein theory
of gravity is having some problems in finding gravity
accurately on all scales. One of the problems concern-
ing general relativity was that it could not describe the
accelerated expansion of the universe accurately (Perl-
mutter et al. 1999a, b; Riess et al. 2004). Besides, it
is inconsistent with Mach’s principle. The scalar ten-
sor theory by Brans and Dicke (1961) accommodates
the Mach’s principle and it can pass the experimental
tests from the solar system (Bertotti et al. 2003) and
provide an explanation for the accelerated expansion of
the universe (Mathiazhagan & Johri 1984; La & Stein-
hardt 1989; Das & Banerjee 2008). Recently, Reddy and
Lakshmi (2015), Rao and Prasanthi (2016), Singh and
Dewri (2016) and Naidu et al. (2018) have studied the
cosmological models in the Brans–Dicke (BD) theory
of gravitation.

The Friedmann–Robertson–Walker (FRW) cosmo-
logical models play an important role in cosmology.
These models are established on the basis of isotropy
and homogeneity of the universe. The FRW universe
with two fluid DE has been extensively studied by
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several authors. Zang (2005) investigated an interact-
ing two-fluid scenario for quintom DE. The tachyon
cosmology in interacting and non-interacting cases in
non-flat FRW universe was studied by Setare et al.
(2009). An interacting and non-interacting two-fluid
scenario for DE with constant deceleration parameter
has been studied by Pradhan et al. (2011). An interact-
ing two-fluid scenario for DE has been investigated by
Amirhashchi et al. (2011a). Amirhashchi et al. (2011b)
proposed an interacting and non-interacting two-fluid
scenario for DE models with time-dependent deceler-
ation parameter. Harko and Lobo (2011) investigated
the possibility that dark matter is a mixture of two non-
interacting perfect fluid with different four velocities
and thermodynamics parameter. The two-fluid scenar-
ios for DE models in an FRW universe have been
studied by Saha et al. (2012). Amirhashchi et al. (2013)
studied interacting two-fluid viscous DE models in a
non-flat universe. Reddy and Santhi (2013) studied the
evolution of two-fluid scenario for DE model in scalar-
tensor theory of gravitation formulated by Saez and
Ballester. Motivated by the above discussions, in this
paper, we have considered the spatially homogeneous
and isotropic FRW universe filled with barotropic fluid
and DE in BD theory of gravitation.

This paper is organized as follows. In Section 2, we
have proposed the metric and field equations for FRW
space-time in the BD theory. The solutions of the field
equations are obtained in Section 3. In Section 4, we
have discussed the physical and geometrical properties
of the derived models. Finally, conclusions are made in
Section 5.

2. The metric and Brans–Dicke field equations

The line element for the homogeneous and isotropic
FRW space-time is given by

ds2 = −dt2 + a2(t)

[
dr2

1−kr2 +r2(dθ2+sin2 θd�2)

]
,

(1)

where a (t) is the scale factor and k is the curvature
constant, k = −1, k = 0, k = +1 indicate open, flat
and closed universe respectively.

The BD field equations are

Ri j − 1

2
gi j R − ω̄ϕ−2

(
ϕ,iϕ, j − 1

2
gi jϕ

,kϕ,k

)

− ϕ−1(ϕi; j − gi jϕ
,k
;k ) = ϕ−1(Ti j ) (2)

and

φk
;k = T

3 + 2ω̄
, (3)

where R is the Ricci scalar, Ri j is the Ricci tensor, ϕ

is the BD scalar field, ω̄ is the BD parameter and T is
the trace of energy momentum tensor Ti j . For the line
element (1), the field equations (2) and (3) lead to the
following set of equations:

ptot

ϕ
= −

(
2
ä

a
+ ȧ2

a2 + k

a2 + ω̄

2

ϕ̇2

ϕ2 + ϕ̈

ϕ
+ 2

ȧ

a

ϕ̇

ϕ

)
,

(4)

ρtot

ϕ
= 3

ȧ2

a2 + 3
k

a2 − ω̄

2

ϕ̇2

ϕ2 + 3
ȧ

a

ϕ̇

ϕ
(5)

and

ϕ̈ + 3
ȧ

a
ϕ̇ = ρtot − 3ptot

3 + 2ω̄
, (6)

where ptot = pm + pD and ρtot = ρm + ρD. Here
pm and ρm are the pressure and energy densities of the
barotropic fluid respectively, whereas pD and ρD are the
pressure and energy densities of the dark fluid respec-
tively.

The energy conservation equation T i j
; j = 0 leads to

ρ̇tot + 3
ȧ

a
(ρtot + ptot) = 0. (7)

The equation of state (EoS) parameters of the barotropic
fluid and dark energy are given by

ωm = pm
ρm

and ωD = pD
ρD

. (8)

Here the EoS parameter is assumed to be a constant
with values 0, 1

3 and +1 for dust, radiation and stiff
matter dominated universe respectively. In general, it is
a function of time or redshift.

We have assumed that there is no interaction between
DE and barotropic fluid. Therefore, the energy conser-
vation equation (7) leads to

ρ̇m + 3
ȧ

a
(1 + ωm)ρm = 0 (9)

and

ρ̇D + 3
ȧ

a
(1 + ωD)ρD = 0. (10)

Using Equation (9), the energy density for barotropic
fluid is given by

ρm = ρ0a
−3(1+ωm), (11)

where ρ0 is an integrating constant.
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3. Solutions of field equations

There are three linearly independent equations (4)–(6)
having six variables. The system is thus initially unde-
termined and we need additional constraint to solve it. In
order to solve these field equations, we first assume the
power-law relation between scale factor a and scalar
field ϕ (Pimentel 1985; Johri & Desikan 1994) as
ϕ ∝ aε, where ε is any integer, which implies that

ϕ = ϕ0 a
ε, (12)

where ϕ0 > 0 is the constant of proportionality.
Here we have discussed three models.

3.1 Model-I (Constant deceleration parameter)

We apply the special law of variation for the generalized
Hubble’s parameter, which leads to constant value of
deceleration parameter q. We consider that the mean
Hubble parameter H is related to the scale factor a by
the relation (Berman 1983; Agrawal & Pawar 2017;
Chirde & Shekh 2018)

H = Da−m, (13)

where D > 0 and m ≥ 0 are constants.
From Equation (13), we obtain

ȧ = Da−m+1 (14)

and

ä = −D2(m − 1)a−2m+1. (15)

Here we obtain two cases, Case-I form �= 0 and Case-II
for m = 0.

3.1.1 Case-I: For m �= 0 (i.e. power-law volumetric
expansion). Integrating Equation (14), we obtain

a = (mDt + c1)
1
m , (16)

where c1 is the constant of integration.
Using Equations (13), (14) and (15), the deceleration

parameter q is given by

q = − ä

aH2 = m − 1. (17)

The sign ofq indicates whether the model inflates or not.
The positive sign of q corresponds to the decelerating
universe whereas the negative sign indicates the accel-
erating universe. From Equation (17), it is observed that
the deceleration parameter q is negative in power-law
model for 0 < m < 1. This indicates that the uni-
verse is accelerating throughout the evolution of the
universe. For m > 1, the deceleration parameter q is
positive, hence the universe is decelerating. For m = 1,

the deceleration parameter q = 0 which corresponds to
the expansion with constant speed, which is not consis-
tent with the present observations. Therefore, we restrict
the value of m to 0 < m < 1 in order to get an acceler-
ating universe.

Using Equations (12) and (16), the Brans–Dicke
scalar field ϕ is given by

ϕ = ϕ0(mDt + c1)
ε
m . (18)

From Equations (11) and (16), the energy density for
barotropic fluid is obtained as

ρm = ρ0(mDt + c1)
− 3

m (1+ωm). (19)

The energy density for DE can be obtained by using
Equations (5) and (16) as

ρD = ϕ0(mDt + c1)
ε
m{

3

(
1 − ω̄

6
ε2 + ε

)
(mDt + c1)

−2

+3k(mDt+c1)
−2
m

}
−ρ0(mDt + c1)

− 3
m (1+ωm).

(20)

The pressure pD of DE using Equation (4) is given by

pD = −ϕ0(mDt + c1)
ε
m{

D2
(

3 − 2m +
(

1 + ω̄

2

)
ε2 − (m − 2)ε

)

×(mDt + c1)
−2 + k(mDt + c1)

−2
m

}

− ωmρ0(mDt + c1)
− 3

m (1+ωm). (21)

Using Equations (20) and (21), we obtain the EoS
parameter ωD of DE as

ωD =−

{
ϕ0(mDt + c1)

ε
m

{
D2

(
3 − 2m + (

1 + ω̄
2

)
ε2 − (m − 2)ε

)
(mDt + c1)

−2 + k(mDt + c1)
−2
m

}
+ωmρ0(mDt + c1)

− 3
m (1+ωm)

}

ϕ0(mDt+c1)
ε
m

{
3

(
1− ω̄

6 ε2+ε
)
(mDt + c1)−2 + 3k(mDt + c1)

−2
m

}
− ρ0(mDt + c1)

− 3
m (1+ωm)

. (22)

The barotropic matter energy density parameter 
m
and dark energy density parameter 
D are respectively
given by
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m = ρm

3H2 = ρ0(mDt + c1)
− 3

m (1+ωm)+2

3D2 (23)

and


D = ρD

3H2 =

{
ϕ0(mDt + c1)

( ε
m +2)

{
3

(
1 − ω̄

6 ε2 + ε
)
(mDt + c1)

−2 + 3k(mDt + c1)
−2
m

}
−ρ0(mDt + c1)

− 3
m (1+ωm)+2

}

3D2 . (24)

Using Equations (23) and (24), the total energy density
parameter is obtained as


 = 
m + 
D =
ϕ0(mDt + c1)

( ε
m +2)

{
3

(
1 − ω̄

6 ε2 + ε
)
(mDt + c1)

−2 + 3k(mDt + c1)
−2
m

}
3D2 . (25)

The distance modulus curve for power-law volumetric
expansion model. The distance modulus curve is stated
as

μ = 5 log dL + 25, (26)

where dL is the luminosity distance, which is calculated
by

dL = r1(1 + z)a0. (27)

Here z is the redshift parameter, r1 is the radial co-
ordinate and a0 is the present scale factor.

We assume that T = mDt + c1. Therefore, Equation
(8) can be written as

a = Tm1, (28)

where m1 = 1
m .

For determination of the radial co-ordinate r1, we
assume that a phantom emitted by a source with co-
ordinate (r, T1) is received at a time T0 by an observer
located at r = 0. Then we determine r1 from following
relation:

r1 =
T0∫

T1

dT

a
. (29)

Solving Equations (26) to (29), we obtain the expres-
sion for distance modulus μ in terms of the redshift
parameter z as

μ = 5 log

(
D

(1−m1)H0
(1+z)m1((1 + z)1−m1 − 1)

)

+25, (30)

where H0 is in unit of km s−1 Mpc−1.

3.1.2 Case-II: For m = 0 (i.e. exponential volumetric
expansion). Integrating Equation (14), we obtain

a = c2eDt , (31)

where c2 > 0 is the constant of integration.
Using Equations (13), (14) and (15), the deceleration

parameter q is given by

q = −1. (32)

The Brans–Dicke scalar field ϕ is given by

ϕ = ϕ0(c2eDt )ε. (33)

Using Equation (32), the energy density of the barotropic
matter, energy density of DE and the pressure of DE are
respectively given by

ρm = ρ0(c2eDt )−3(1+ωm), (34)

ρD = ϕ0(c2eDt )ε
{

3D2
(

1 − ω̄

6
ε2 + ε

)

+ 3k(c2eDt )−2
}

− ρ0(c2eDt )−3(1+ωm), (35)

pD = −ϕ0(c2eDt )ε
{
D2

(
3 + ω̄

2
ε2 + ε (ε + 2)

)

+ k(c2eDt )−2
}

− ωmρ0(c2eDt )−3(1+ωm). (36)

Using Equations (35) and (36), we obtain the EoS
parameter ωD of DE as
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ωD = −ϕ0(c2eDt )ε
{
D2

(
3 + ω̄

2 ε2 + ε(ε + 2)
) + k(c2eDt )−2

} + ωmρ0(c2eDt )−3(1+ωm)

ϕ0(c2eDt )ε
{
3D2

(
1 − ω̄

6 ε2 + ε
) + 3k(c2eDt )−2

} − ρ0(c2eDt )−3(1+ωm)
. (37)

The barotropic matter energy density parameter and the
dark energy density parameter are respectively given by


m = ρ0(c2eDt )−3(1+ωm)

3D2 (38)

and


D = ϕ0(c2eDt )ε
{
3D2

(
1 − ω̄

6 ε2 + ε
) + 3k(c2eDt )−2

} − ρ0(c2eDt )−3(1+ωm)

3D2 . (39)

Using Equations (38) and (39), the total energy density
parameter takes the form


 = ϕ0(c2eDt )ε
{
3D2

(
1− ω̄

6 ε2 + ε
)+3k(c2eDt )−2

}
3D2 .

(40)

The distance modulus curve for exponential expansion
model. We have

a = c2eDt . (41)

For determination of r1, we assume that a phantom emit-
ted by a source with co-ordinate (r, t1) is received at a
time t0 by an observer located at r = 0. Then we deter-
mine r1 from the following relation:

r1 =
t0∫

t1

dt

a
. (42)

Solving Equations (27), (28), (41) and (42), we obtain
the expression for distance modulus μ in terms of the
redshift parameter z as

μ = 5 log

(
1

H0
(1 + z)z

)
+ 25. (43)

3.2 Model-II (Hybrid law)

We use the hybrid expansion law (Akarsu et al. 2014)
for the scale factor a as

a (t) = ntαeβt , (44)

where n, α and β are positive constants. Equation (44)
gives the exponential law when α = 0 and the power-
law when β = 0.

The deceleration parameter q is given by

q = −1 + α

(α + βt)2 . (45)

The Brans–Dicke scalar field ϕ is given by

ϕ = ϕ0(nt
αeβt )ε. (46)

Using Equation (44), the energy density of the
barotropic matter, energy density of DE and pressure
of DE are respectively given by

ρm = ρ0(nt
αeβt )−3(1+ωm), (47)

ρD = ϕ0(nt
αeβt )ε

{
3

(
1 − ω̄

6
ε2 + ε

) (
α + βt

t

)2

+ 3k

(ntαeβt )2

}
− ρ0(nt

αeβt )−3(1+ωm), (48)

pD = −ϕ0(nt
αeβt )ε

{ (
3 +

(
1 + ω̄

2

)
ε2 + 2ε

)

×
(

α + βt

t

)2

− α (ε + 2)

t2 + k

(ntαeβt )2

}

−ωmρ0(nt
αeβt )−3(1+ωm). (49)

Using Equations (48) and (49), we obtain the EoS
parameter ωD of DE as
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ωD = −
ϕ0(ntαeβt )ε

{(
3 + (

1 + ω̄
2

)
ε2 + 2ε

) (
α+βt

t

)2 − α(ε+2)

t2
+ k

(ntαeβt )2

}
+ ωmρ0(ntαeβt )−3(1+ωm)

ϕ0(ntαeβt )ε
{

3
(
1 − ω̄

6 ε2 + ε
) (

α+βt
t

)2 + 3k
(ntαeβt )2

}
− ρ0(ntαeβt )−3(1+ωm)

. (50)

The expression for barotropic matter energy den-
sity parameter and dark energy density parameter are
respectively given by


m = ρ0(ntαeβt )−3(1+ωm)

3
(

α+βt
t

)2 , (51)

and


D =
ϕ0(ntαeβt )ε

{
3

(
1 − ω̄

6 ε2 + ε
) (

α+βt
t

)2 + 3k
(ntαeβt )2

}
− ρ0(ntαeβt )−3(1+ωm)

3
(

α+βt
t

)2 . (52)

Using Equations (51) and (52), the total energy density
parameter takes the form


=
ϕ0(ntαeβt )ε

{
3

(
1− ω̄

6 ε2+ε
) (

α+βt
t

)2+ 3k
(ntαeβt )2

}

3
(

α+βt
t

)2 .

(53)

3.3 Model-III (special form of deceleration parameter)

Here we consider the deceleration parameter form pro-
posed by Singha and Debnath (2009) as

q = − äa

ȧ
= −1 + γ

1 + aγ
, (54)

where γ > 0 is a constant.
Solving Equation (54), we obtain

a = (exp (γ c3t) − 1)
1
γ , (55)

where c3 > 0 is the constant of integration.

The Brans–Dicke scalar field ϕ is given by

ϕ = ϕ0 (exp (γ c3t) − 1)
ε
γ . (56)

Using Equation (55), the energy density of the barotropic
matter, energy density of DE and pressure of DE are
respectively given by

ρm = ρ0(exp(γ c3t) − 1)
− 3

γ
(1+ωm)

, (57)

ρD = ϕ0(exp(γ c3t) − 1)
ε
γ

{
3c2

3

(
1 − ω̄

6 ε2 + ε
)

exp(2γ c3t)

(exp(γ c3t) − 1)2 + 3k(exp(γ c3t) − 1)
−2
γ

}

−ρ0(exp(γ c3t) − 1)
− 3

γ
(1+ωm)

, (58)

pD = −ϕ0(exp(γ c3t) − 1)
ε
γ

{
c2

3

(
3 − 2γ + ω̄

2 ε2 + (2 − γ ) ε
)

exp(2γ c3t)

(exp(γ c3t) − 1)2

+ 2c2
3γ exp(γ c3t)

(exp(γ c3t) − 1)
+ k(exp(γ c3t) − 1)

−2
γ

}

− ωmρ0(exp(γ c3t) − 1)
− 3

γ
(1+ωm)

. (59)

Using Equations (58) and (59), we obtain the EoS
parameter ωD of DE as
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ωD =−

⎧⎪⎨
⎪⎩

ϕ0(exp(γ c3t) − 1)
ε
γ

{
c2

3

(
3−2γ+ ω̄

2 ε2+(2−γ )ε
)

exp(2γ c3t)

(exp(γ c3t)−1)2 + 2c2
3γ exp(γ c3t)

(exp(γ c3t)−1)
+ k(exp(γ c3t) − 1)

−2
γ

}

+ωmρ0(exp(γ c3t) − 1)
− 3

γ
(1+ωm)

⎫⎪⎬
⎪⎭

{
ϕ0(exp(γ c3t)−1)

ε
γ

{
3c2

3

(
1− ω̄

6 ε2+ε
)

exp(2γ c3t)

(exp(γ c3t)−1)2 +3k(exp(γ c3t)−1)
−2
γ

}
− ρ0(exp(γ c3t)−1)

− 3
γ
(1+ωm)

} .

(60)

The expression for matter energy density parameter and
dark energy density parameter are given by


m = ρ0 (exp (γ c3t) − 1)
2− 3

γ (1+ωm)

3c2
3 exp (2γ c3t)

(61)

and


D = 1

3c2
3 exp (2γ c3t)

⎧⎪⎪⎨
⎪⎪⎩

ϕ0 (exp (γ c3t) − 1)
2+ ε

γ

{
3c2

3

(
1− ω̄

6 ε2+ε
)

exp(2γ c3t)

(exp(γ c3t)−1)2 + 3k (exp (γ c3t) − 1)
−2
γ

}

−ρ0 (exp (γ c3t) − 1)
2− 3

γ (1+ωm)

⎫⎪⎪⎬
⎪⎪⎭

. (62)

Using Equations (61) and (62), the total energy density
parameter takes the form


 = ϕ0 (exp (γ c3t) − 1)
2+ ε

γ

3c2
3 exp (2γ c3t)

{
3c2

3

(
1 − ω̄

6 ε2 + ε
)

exp (2γ c3t)

(exp (γ c3t) − 1)2 + 3k (exp (γ c3t) − 1)
−2
γ

}
. (63)

4. Results and discussion

The physical and geometrical behaviours of the above
models are as follows:

(i) The deceleration parameter (q). The evolution of
the deceleration parameter for power-law model (m =
1/2), exponential model (m = 0), hybrid law model
(α = 1, β = 1) and special form of deceleration param-
eter model (γ = 3/2) is shown in Figure 1. It is found
that the universe has been accelerating throughout the
evolution of the universe in the power-law model for 0 <

m < 1 and in the exponential model form = 0, whereas
the universe accelerates after an epoch of deceleration
in the hybrid law model and special form of decelera-
tion parameter model. For γ = 3/2, the deceleration
parameter q is in the range −1 ≤ q ≤ 0.5 (shaded
region in Figure 1) which matches with the observa-
tions (Perlmutter et al. 1998, 1999a, 2003; Riess et al.
1998, 2004; Tonry et al. 2003; Clocchiatti 2006).

(ii)Energy density of the barotropic fluid (ρm). The evo-
lution of the energy density ρm of the barotropic fluid
for all models is shown in Figure 2. It has been observed
that when t → 0, in the power-law model, ρm →
ρ0c

−3/m(1+ωm)
1 , a → c1/m

1 , pm → ρ0ωmc
−3/m(1+ωm)
1

and in the exponential model, ρm → ρ0c
−3/m(1+ωm)
2 ,

a → c2, pm → ρ0ωmc
−3/m(1+ωm)
2 which signify that

there is no Big-Bang type of singularity. When t → 0, in

both hybrid law and special form of deceleration
parameter models, ρm → ∞, a → 0, pm → ∞ which
signify that there is a Big-Bang type of singularity. For
all the models, ρm → 0, a → ∞, pm → 0 when
t → ∞ which implies that the models reduce to vac-
uum after very late time t .

(iii) Equation of state parameter of DE (ωD). Figure 3
shows the evolution of EoS parameter of DE for power-
law expansion, exponential expansion, hybrid law and
special form of deceleration parameter. For all these
models, at some finite time, the EoS parameter attains a
constant value. In power-law expansion model (form =
0.5), ωD starts from the phantom region (ωD < −1)

after some finite t attains the value ωD = −1 (cosmo-
logical constant) and then it enters in the quintessence
region (−1 < ωD < −1/3). In case of exponential
expansion model, hybrid expansion law model and spe-
cial form of deceleration parameter model ωD starts
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Figure 1. Evolution of the deceleration parameter q.

Figure 2. Evolution of energy density ρm for m = 0.5, D = c1 = c2 = c3 = n = α = β = γ = 1, ρ0 = 10 and ωm = 0.

Figure 3. Evolution of DE EoS parameter ωD for m = 0.5, ε = 0.132124, φ0 = ω̄ = D = c1 = c2 = c3 = n = α = β =
γ = 1, ρ0 = 10, k = ωm = 0.

from the phantom region (ωD < −1) after some finite
t attains the value ωD ≈ −1 and remains the same
for later time. Combining Planck data (Ade 2016) with
other astrophysical data including Type Ia supernovae,
the equation of state of dark energy is constrained to

ωD = −1.006 ± 0.045. Hence in our models, the EoS
parameter is consistent with these observations.

(iv) Statefinder parameters (r, s) . A different DE model
has emerged to explain the accelerating expansion
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Figure 4. Evolution of statefinder parameters s vs. r .

Table 1. Comparison between the results of observed data
and present models.

Redshift (z) Supernovae
Ia (μ)

Power-law
model (μ)

Exponential
model (μ)

0.014 33.73 34.24 33.60
0.026 35.62 35.59 34.97
0.036 36.39 36.29 35.70
0.040 36.38 36.55 35.95
0.050 37.08 37.02 36.44
0.063 37.67 37.52 36.97
0.079 37.94 38.04 37.50
0.088 38.07 38.26 37.75
0.101 38.73 38.53 38.07
0.160 39.08 39.59 39.19
0.240 40.68 40.52 40.21
0.380 42.02 41.57 41.44
0.430 42.33 41.85 41.79
0.480 42.37 42.10 42.10
0.620 43.11 42.70 42.85
0.740 43.35 43.12 43.39
0.778 43.81 43.24 43.55
0.828 43.59 43.37 43.74
0.886 43.91 43.55 43.96
0.910 44.44 43.61 44.04
0.930 44.61 43.66 44.11
0.949 43.99 43.71 44.18
0.970 44.13 43.76 44.25
0.983 44.13 43.80 44.29
1.056 44.25 43.97 44.53
1.190 44.19 44.26 44.92
1.305 44.51 44.48 45.23
1.340 44.92 44.54 45.32
1.551 45.07 44.99 45.82

of the universe until now. We need a thorough
investigation to differentiate these DE models. Sahni
et al. (2003) introduced the parameter pair {r, s}, i.e.,

the so-called ‘statefinder’. The statefinder pair {r, s} is
defined as follows:

r =
...
a

aH3 and s = r − 1

3(q − 1/2)

The statefinder is a ‘geometrical’ diagnostic in the sense
that it depends upon the expansion factor and hence
upon the metric describing space-time. Trajectories in
the r − s plane corresponding to different cosmological
models exhibit qualitatively different behaviours.

The statefinder parameters r and s for power-law
model (i.e., model for m �= 0) are given by

r = (m − 1)(2m − 1) and

s = 2 ((1 − m)(1 − 2m) − 1)

3(2m − 3)
.

The statefinder parameters r and s for exponential
model (i.e., model for m = 0) are given by

r = 1 and s = 0.

The statefinder parameters r and s for hybrid law model
are given by

r = 1 + 2α

(α + βt)3 − 3α

(α + βt)2 and

s = 2 (2α − 3α (α + βt))(
2α − 3 (α + βt)2) (α + βt)

.

The statefinder parameters r and s for special form of
deceleration parameter model are given by

r = 1 + γ 2 − 3γ

1 + aγ
+ γ 2

(1 + aγ )2 and

s = 2
(
γ 2 + (

γ 2 − 3γ
)
(1 + aγ )

)
3 (1 + aγ ) (2γ − 3 (1 + aγ ))

.

Figure 4 shows the evolving trajectory of this scenario
in the r − s plane which is quite different from those of
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Figure 5. The plot of distance modulus μ vs. redshift z.

the other DE models. We hope that precise observations
in future can determine these statefinder parameters and
consequently explore the nature of DE.

(v) The distance modulus curve for Model-I. In the
present analysis, we analysed 29 data sets out of the
recently released 38 data sets of supernova Ia in the
range 0.014 < z < 1.551. The comparison between
observed distance modulus μ and calculated distance
modulus μ are shown in Table 1 and Figure 5. It is
found that the distance modulus curve of the derived
Model-I (power-law and exponential models) fit well
with the observational data (see Table 1 and Figure 5)
and which are physically realistic.

5. Conclusion

In this article, we have investigated the spatially homo-
geneous and isotropic Friedmann–Robertson–Walker
(FRW) universe filled with barotropic fluid and dark
energy in the framework of the Brans–Dicke theory of
gravitation. The field equations have been solved by
using the following assumptions: (i) law of variation
for Hubble’s parameter, (ii) hybrid expansion law, and
(iii) special form of the deceleration parameter. Some
physical and geometrical behaviour of the models are
also discussed. It is found that there is no Big-Bang
type of singularity for constant deceleration parameter
models whereas there is a Big-Bang type of singular-
ity in both hybrid law and special form of deceleration
parameter models. It is observed that the EoS param-
eter ωD is consistent with the observations made by
the Planck data (Ade 2016) with Type Ia supernovae
which restricts that it should be ωD = −1.006±0.045.
If ϕ → 1, the power-law model reduced to results of
Pradhan (2011) and the hybrid expansion law model

reduced to the results of Amirhashchi et al. (2011a) (for
particular values of constants). Statefinder diagnostic is
applied to each model in order to distinguish our DE
model with other existing DE models. Among all the
derived models, the best suitable standard cosmological
model according to recent cosmological observations is
the model with special form of deceleration parameter.
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