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Abstract. The well-known Lane–Emden equation plays an important role in describing some phenomena in
mathematical physics and astrophysics. Recently, a new type of this equation with fractional order derivative in
the Caputo sense has been introduced. In this paper, two computational schemes based on collocation method
with operational matrices of orthonormal Bernstein polynomials are presented to obtain numerical approximate
solutions of singular Lane–Emden equations of fractional order. Four illustrative examples are implemented in
order to verify the efficiency and demonstrate solution accuracy.
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1. Introduction

The Lane–Emden equation has been used to model
many phenomena in mathematical physics, astrophysics
and celestial mechanics such as the thermal behavior of
a spherical cloud of gas under mutual attraction of its
molecules, the theory of stellar structure, and the theory
of thermionic currents (Chandrasekhar 1967). This is a
singular nonlinear ordinary differential equation (ODE)
which was first introduced by U.S. astrophysicist,
Jonathan Homer Lane (Lane 1870) who was interested
in computing both the temperature and the density of
mass on the surface, and 37 years later was studied
in more detail by Emden (1907). In astrophysics, this
ODE is a dimensionless version of Poisson’s equation
for the gravitational potential of a simple stellar model
(Momoniat & Harley 2006). We now briefly explain
mathematical modeling of the thermal behavior of a
spherical cloud which leads to the classic Lane–Emden
equation. See Chandrasekhar (1967) and Parand et al.
(2010) for a comprehensive coverage of the subject.

1.1 Modeling of the thermal behavior of a spherical
cloud of gas

For the sake of simplicity, we consider a spherical gas
cloud as shown in Figure 1. Let P(r) denote the total

hydraulic pressure at a certain radius r . Due to the
contribution of photons emitted from a cloud in radi-
ation, the total pressure due to the usual gas pressure
and photon radiation is formulated as follows:

P = 1

3
ξT 4 + RT

V
,

where the parameters ξ, T, R and V stand for the radia-
tion constant, the absolute temperature, the gas constant
and the specific volume respectively. Let M(r) be the
mass of a sphere of radius r and G, g, φ respectively
denote the constant of gravitation, acceleration of grav-
ity and gravitational potential of gas. By having the
relation

g = GM(r)

r2 = −dφ

dr
,

one can determine P and φ by meeting the following
three conditions:

dP = −gρdr = ρdφ, (1)

∇2φ = −4πGρ, (2)

P = Kργ . (3)

Here, ρ is the density of gas at a distance r from the cen-
tre of the spherical cloud and the constants γ = 1+1/m
and K are experimentally determined. The constant m
is called the polytropic index and is related to the ratio
of specific heats of gas comprising the star. Using the
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Figure 1. A spherical gas cloud.

conditions (1)–(3), with a straightforward calculation,
the following relations are revealed:

dP

dr
= −gρ = −ρ

GM(r)

r2 ,

dφ

dr
= −g = −G

M(r)

r2 ,

d2φ

dr2 = −G

(
1

r2

dM(r)

dr
− 2

M(r)

r3

)
.

By substituting the above expressions into Equation (2),
we obtain

−G

(
1

r2

dM(r)

dr
− 2

M(r)

r3

)
+ 2

r

(
−G

M(r)

r2

)

= −4πGρ,

and consequently,

dM(r)

dr
= 4πρr2.

Therefore, the hydrostatic equilibrium conditions
(HEC) are as follows:⎧⎪⎨
⎪⎩

dP
dr = −ρ

GM(r)
r2 ,

dM(r)
dr = 4πρr2,

Eliminating M from the recent equations yields

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ,

where the pressure P and the density ρ = V−1 vary
with r . If we insert the above expression into the first
equation for HEC, we obtain the following differential
equation:(
K (m + 1)

4πG
λ

1
m −1

) (
1

r2

d

dr

(
r2 dy

dr

))
= −ym, (4)

where λ represents the central density of the gas cloud
and y is a dimensionless quantity that are both related to
ρ via ρ = λym . By imposing additional dimensionless
variable r = ax via the relation

a =
(
K (m + 1)

4πG
λ

1
m −1

) 1
2

,

the differential equation (4) reduces to

y′′ + 2

x
y′ + ym = 0, x > 0. (5)

In physics, this singular differential equation with the
initial conditions

y(0) = 1, y′(0) = 0 (6)

is known as the classic Lane–Emden problem. In quan-
tum mechanics and astrophysics, the values of m are
physically meaningful and interesting and lie in the
interval [0, 5]. In the literature, the exact solutions of
problems (5)–(6) are known only for m = 0, 1, 5
(Parand et al. 2010) and for other values of m, with the
approach of handling singularity in the presence of the
origin, several methods have been efficiently employed
to approximate the solution of this problem. A fairly
complete discussion of these methods are presented
in Parand et al. (2010, 2017); Dehghan & Shakeri
(2008); Abd-Elhameed et al. (2014) and references
therein.

In recent years, considerable attention has been
devoted to develop the applications of fractional calcu-
lus in the fields of science and engineering. By the use
of differential equations of non-integer order, dynamic
behavior of different phenomena in engineering sci-
ences, physics and other branches of science can be
studied more precisely (Saadatmandi & Dehghan 2010,
2011; Saadatmandi 2014; Doha et al. 2012). Hence, this
motivates us to study the efficient low-cost numerical
algorithms for solving the singular Lane–Emden equa-
tions of fractional order as follows (Nasab et al. 2018):

Dα y(x) + L

xα−β
Dβ y(x) + g(x, y(x)) = h(x), (7)

with the initial conditions:

y(0) = A, y′(0) = B, (8)

where 0 < x ≤ 1, 1 < α ≤ 2 and 0 < β ≤ 1. Also,
A and B are constants and Dα denotes the fractional
derivative of order α in the Caputo sense and defined
later in the text. Moreover, g(x, y(x)) is a continuous
real-valued function and h(x) ∈ C[0, 1]. The exis-
tence and uniqueness of the solution of problems (7)–(8)
are discussed in Ibrahim (2013) and Taleb & Dahmani
(2016). To the best of our knowledge, there are only a
few numerical algorithms available in the literature for
the numerical solution of fractional Lane–Emden equa-
tions compared to the classical one. For instance, we
can refer to the reproducing kernel method (Akgül et al.
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2015), collocation method (Mechee & Senu 2012a), the
least square method (Mechee & Senu 2012b), and mod-
ified differential transform method (Marasi et al. 2015).
More recently, Nasab et al. (2018) applied a hybrid
numerical method combining Chebyshev wavelets and
a finite difference approach to obtain solutions of sin-
gular fractional Lane–Emden equations of the form (7).

Unfortunately, most of the differential equations of
fractional order do not have an analytical expression
of solution and the analytical solution, if any, is not
suitable for numerical purposes. Therefore, in recent
years, researchers have focused on the development of
suitable and efficient numerical methods for solving
linear/nonlinear fractional ordinary/partial differential
equations. One of the most powerful and adaptive tools
for obtaining numerical solutions of these equations is
the use of operational matrices that have been widely
extended in the field of fractional calculus over the last
few years (Bhrawy et al. 2015). In fact, by the use of
an operational matrix technique, the problem of solving
a fractional differential equation can readily lead to the
determination of solution of a system of algebraic equa-
tions. This approach reduces the computational error
and the complexity of operations, speeds up comput-
ing, makes programming more easy and suitable, and
does not have difficulties arising from problem-solving
directly.

In the past few years, the abilities of the operational
matrix of fractional derivative/integral, based on some
families of the famous basic functions, in solving frac-
tional differential/integral equations are well-reflected
in the literature. For instance, we can refer to the opera-
tional matrices of fractional derivative or integral which
were composed of Legendre polynomials (Saadatmandi
& Dehghan 2010, 2011), Bernstein polynomials (Saa-
datmandi 2014; Rostamy et al. 2014, 2013), Jacobi
polynomials (Doha et al. 2012), block pulse functions
(Li & Sun 2011), Chebyshev polynomials (Doha et al.
2011), and B-spline functions (Lakestani et al. 2012).
The interested reader is referred to Bhrawy et al. (2015)
for a broad review of spectral techniques based on oper-
ational matrices of fractional derivatives and integrals
for some orthogonal polynomials.

In this paper, we discuss the use of operational
matrices of fractional derivatives and integrals for
orthonormal Bernstein polynomials (OBPs) in solving
the singular Lane–Emden equation of fraction order (7).
In this work, we approximate the solution of (7) as a lin-
ear combination, with unknown coefficients, of a finite
number of OBPs. Then, finding the solution of problems
(7)–(8), leads to the solution of a system of algebraic
equations.

The layout of this paper is as follows. In Section 2,
some basic definitions and introductory concepts of
fractional calculus and some properties of OBPs are
presented. Section 3 is devoted to obtaining opera-
tional matrices of fractional derivatives and integrals
for OBPs. In Section 4, with the aid of operational
matrices of fractional integral and differential and col-
location approach, two numerical techniques are driven
to solve the singular fractional Lane–Emden equation
(7) subject to the initial conditions (8). In Section 5, the
proposed methods are applied to several examples and
the numerical results are compared with those existing
in the literature. Finally, concluding remarks are given
in Section 6. Note that we have implemented our algo-
rithms in Maple software.

2. Basic definitions and concepts

2.1 A brief review of fractional calculus

In this section, we present some essential basic defi-
nitions and properties of fractional calculus for subse-
quent discussion. The fractional calculus was born more
than 300 years ago and its history goes back to the begin-
ning of the differential and integral calculus. Various
popular definitions for integral and derivative of frac-
tional order are given. Among all these definitions, the
definition of the Riemann–Liouville fractional integral
and the fractional derivative of the Caputo sense are of
particular importance in the field of fractional calculus.
First, we give some concepts related to the definition of
Riemann–Liouville fractional integral (Miller & Ross
1993; Oldham & Spanier 1974).

Definition 1. Let us denote by Cμ, where μ ∈ R, the
space of all real-valued functions on (0, ∞) which can
be represented in the form f (x) = x p f1(x), where
f1(x) ∈ C[0, ∞) and p > μ.

Clearly, if β ≤ μ, then Cβ ⊂ Cμ.

Definition 2. Let n ∈ N
⋃{0}. We say that f (x)

defined on (0, ∞) belongs to the spaceCn
μ, if ( f (x))n ∈

Cμ.

Definition 3. Let α > 0 and f (x) ∈ Cμ, where μ ≥
−1. The Riemann–Liouville integral of fractional order
is defined as follows:

I α f (x) = 1


(α)

∫ x

0

f (t)

(x − t)1−α
dt

= 1


(α)
xα−1 ∗ f (x), x > 0.
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Here, 
(α) is the Gamma function and the notation
xα−1 ∗ f (x) denotes the convolution of xα−1 and f (x).

Definition 4. Let α > 0. The Caputo fractional deriva-
tive of order α of a function f (x) ∈ Cn−1 is defined
by

Dα f (x)

=
{

1

(n−α)

∫ x
0

f (n)(t)
(x−t)α+1−n dt, n − 1 <α < n, n ∈ N,

dn
dxn f (x), α = n ∈ N.

Now we present some important properties of the
fractional derivative/integral of order α in the Caputo
or Riemann–Liouville sense which be useful in the fol-
lowing (Miller & Ross 1993; Oldham & Spanier 1974):

• I 0 f (x) = f (x).
• I αx j = 
( j+1)


( j+α+1)
xα+ j , α > 0, j > −1,

x > 0.

• I αDα f (x) = f (x) − ∑n−1
k=0 f k(0+) x

k

k! , n − 1
< α ≤ n, n ∈ N.

• Dα I α f (x) = f (x).

• Dα f (x) = Im−αDm f (x), m ∈ N.

• DαC = 0, (C is a constant).

• Caputo’s fractional differentiation is a linear opera-
tor, i.e.,

Dα

⎛
⎝ k∑

j=1

c j f j (x)

⎞
⎠ =

k∑
j=1

c j D
α f j (x),

where {c j }kj=1 are constants.
• The Caputo’s derivative of f (x) = xm,m ∈ N is

given as

Dαxm =
{

0, m < 
α�,

(m+1)


(m+1−α)
xm−α, m ≥ 
α�,

where 
α� denotes the smallest integer greater than
or equal to α.

2.2 Orthonormal Bernstein polynomials

The well-known Bernstein polynomials of degreen over
the unit interval [0, 1] are defined by

bi,n(x) =
(
n

i

)
xi (1 − x)n−i , i = 0, 1, . . . , n.

Although these polynomials have very applicable prop-
erties in the approximation theory, they do not admit
the orthogonality. The fact that they are not orthogo-
nal turns out to be less suited for many applications,
such as least-squares approximation and finite element

methods. Currently, there are three approaches to solve
this problem. The first one is to construct a dual basis
(Saadatmandi 2014). The second approach is to use
transformation matrices to transfer these polynomials
to the corresponding orthogonal polynomials such as of
Legendre or Chebyshev ones. As a third suggestion, one
can use the Gram–Schmidt orthogonalization process
to construct OBPs (Heydari et al. 2017; Shihab & Naif
2014). But as in Bellucci (2014), the Gram–Schmidt
process must be repeated every time the degree of the
polynomial basis is increased. Fortunately, recently an
explicit representation of the OBPs has been proposed in
Bellucci (2014). The OBPs of degree n over the inter-
val [0, 1], for i = 0, 1, . . . , n are defined as follows
(Bellucci 2014):

Bi,n(x) =√
2(n − i) + 1(1 − x)n−i

×
i∑

k=0

(−1)k
(

2n + 1 − k

i − k

)(
i

k

)
xi−k .

(9)

Using binomial expansion of (1 − x)n−i , Equation (9)
can be rewritten as (Javadi et al. 2016; Bencheikh et al.
2016)

Bi,n(x) = √
2(n − i) + 1

n∑
j=0

×
⎛
⎝ min{i, j}∑

k=max{0, j−n+i}
αi, j−k βi,k

⎞
⎠ x j , (10)

where

αi,r = (−1)r
(
n − i

r

)
, r = 0, 1, . . . , n − i,

βi, j = ( − 1
)i− j

(
2n + 1 − i + j

j

)(
i

i − j

)
,

j = 0, 1, . . . , i.

The Bernstein polynomials Bi,n(x), i = 0, 1, . . . , n
satisfy the following orthogonal relationship over the
interval [0, 1]:∫ 1

0
Bi,n(x)Bj,n(x) dx = δi j , i, j = 0, 1, . . . , n,

where δi j denotes the Kronecker delta function. These
polynomials form a complete orthonormal basis over
[0, 1]. Hence, a square integrable function in [0, 1],
say y(x), can be represented as a linear combination
of OBPs. In practice, for a suitable value of n ∈ N, we
can obtain an approximation for y(x) as (Javadi et al.
2016; Bencheikh et al. 2016)

y(x) �
n∑

i=0

ci Bi,n(x) = CT Q(x), (11)
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where the orthonormal Bernstein vector Q(x) and
orthonormal Bernstein coefficient vector C are given
by

Q(x) = [B0,n(x), B1,n(x), . . . , Bn,n(x)]T ,

C = [c0, c1, . . . , cn]T .
(12)

The elements of C are also given by

ci =
∫ 1

0
y(x)Bi,n(x) dx, i = 0, 1, . . . , n.

Each of the basis functions Bi,n(x) is a polynomial of
degree n. Thus, using the Taylor expansion of Bi,n(x),
we get

Q(x) = Z T (x), (13)

where T (x) = [1, x, x2, . . . , xn]T and the entries of
matrix Z = (zi j )ni, j=0 are obtained by (Bhrawy et al.
2015; Miller & Ross 1993)

zi j = √
2(n − i) + 1

min{i, j}∑
k=max{0, j−n+i}

αi, j−k βi,k . (14)

3. The construction of orthonormal Bernstein
operational matrices for fractional calculus

In this section, we derive the orthonormal Bernstein
operational matrices of the fractional integration and
differentiation. We define the first integral and the first
derivative of the column vector Q(x) of OBPs as fol-
lows:∫ x

0
Q(t) dt � PQ(x), 0 ≤ x ≤ 1. (15)

dQ(x)

dx
= DQ(x), 0 ≤ x ≤ 1, (16)

where P(n+1)×(n+1) and D(n+1)×(n+1) are called the
operational matrices of integration and differentiation
corresponding to the vector of OBPs. These matrices are
fully generated by Javadi et al. (2016) and Bencheikh
et al. (2016). Now we intend to extend these matrices
of classical integer-order version to the fractional order.

3.1 Operational matrix of integration of fractional
order

Theorem 5. Let Q(x) be the orthonormal Bernstein
vector defined in (12) and also suppose α > 0. Then

I αQ(x) � F(α)Q(x),

where F(α) denotes the (n + 1) × (n + 1) opera-
tional matrix of fractional integration of order α in

the Riemann–Liouville sense and can be obtained as
F(α) = ZGE. Here, Z is defined in (14), G is a diago-
nal matrix of the form

G = diag

[
0!


(α + 1)
,

1!

(α + 2)

, . . . ,
n!


(α + n + 1)

]
,

and E = (Ei, j ) is an (n + 1) × (n + 1) matrix whose
elements are

Ei, j = √
2(n − j) + 1

n∑
s=0

×
⎛
⎝ min{ j,s}∑

k=max{0,s−n+ j}
α j,s−kβ j,k

⎞
⎠ 1

i + α + s + 1
,

where i, j = 0, 1, . . . , n.

Proof. By applying the operator I α on Q(x), we obtain

I αQ(x) = 1


(α)
xα−1 ∗ Q(x), 0 ≤ x ≤ 1. (17)

Inserting Equation (13) into Equation (17), we get

1


(α)
xα−1 ∗ (ZT (x)) = 1


(α)
Z(xα−1 ∗ T (x)).

Also, we have

xα−1 ∗ T (x) = [xα−1 ∗ 1, xα−1 ∗ x, . . . , xα−1 ∗ xn]T
= 
(α)[I α1, I αx, . . . , I αxn]T

= 
(α)

[
0!


(α + 1)
xα,

1!

(α + 2)

xα+1, . . . ,

n!

(α + n + 1)

xα+n
]T

= 
(α)GT̄ (x),

where T̄ (x) = [xα, xα+1, . . . , xα+n]T . Now, with
the aid of Equation (11), we can approximate xα+i by
OBPs as

xα+i � ET
i Q(x),
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where Ei is a column vector whose components are
denoted by Ēi, j and is given by

Ēi, j =
∫ 1

0
xα+i B j,n(x) dx = √

2(n − j) + 1

×
n∑

s=0

⎛
⎝ min{ j,s}∑

k=max{0,s−n+ j}
α j,s−kβ j,k

⎞
⎠

×
∫ 1

0
xα+i+sdx = √

2(n − j) + 1

×
n∑

s=0

⎛
⎝ min{ j,s}∑

k=max{0,s−n+ j}
α j,s−kβ j,k

⎞
⎠

× 1

i + α + s + 1
, i, j = 0, 1, . . . , n.

Finally, by defining E as a matrix of size n + 1 whose
i-th row is ET

i , i = 0, 1, . . . , n, we observe that

I αQ(x) � ZGEQ(x) = F(α)Q(x).

�

Remark 6. It is worth indicating that, if α = 1, then
Theorem 5 gives the same result as Equation (15), i.e.,
F(1) = P.

3.2 Operational matrix of differentiation of fractional
order

Theorem 7. Under the assumptions made in Theo-
rem 5, we have

DαQ(x) � D(α)Q(x).

Here, D(α) denotes the (n + 1) × (n + 1) operational
matrix of the Caputo fractional derivative of order α

and is defined as follows:

D(α) = √
2(n − i) + 1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=
α�

w0, j,0

n∑
j=
α�

w0, j,1 . . .

n∑
j=
α�

w0, j,n

...
... · · · ...

n∑
j=
α�

wi, j,0

n∑
j=
α�

wi, j,1 . . .

n∑
j=
α�

wi, j,n

...
... · · · ...

n∑
j=
α�

wn, j,0

n∑
j=
α�

wn, j,1 · · ·
n∑

j=
α�
wn, j,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here

wi, j,l =
( min{i, j}∑

k=max{0, j−n+i}
αi, j−k βi,k

)

× 
( j + 1)


( j + 1 − α)
ul, j ,

where

ul, j = √
2(n − l) + 1

×
n∑

s=0

⎛
⎝ min{l,s}∑

k=max{0,s−n+l}
αl,s−kβl,k

⎞
⎠

× 1

j − α + s + 1
.

Proof Using the linear property of operator Dα and
with the aid of Equation (10) for i = 0, 1, 2, . . . , n,

we obtain

DαBi,n(x) = √
2(n − i) + 1

×
n∑
j=0

⎛
⎝ min{i, j}∑

k=max{0, j−n+i}
αi, j−kβi,k

⎞
⎠ Dαx j

= √
2(n − i) + 1

×
n∑

j=
α�

⎛
⎝ min{i, j}∑

k=max{0, j−n+i}
αi, j−kβi,k

⎞
⎠

× 
( j + 1)x j−α


( j + 1 − α)
.

(18)

Now, by taking a linear combination of OBPs, we can
approximate x j−α as follows:

x j−α �
n∑

l=0

ul, j Bl,n(x), (19)

where

ul, j =
∫ 1

0
x j−αBl,n(x)dx = √

2(n − l) + 1

×
n∑

s=0

⎛
⎝ min{l,s}∑

k=max{0,s−n+l}
αl,s−kβl,k

⎞
⎠

×
∫ 1

0
x j−α+sdx =

√
2
(
n − l

) + 1

×
n∑

s=0

⎛
⎝ min{l,s}∑

k=max{0,s−n+l}
αl,s−kβl,k

⎞
⎠

× 1

j − α + s + 1
.
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By applying Equations (18) and (19), we get

DαBi,n(x) � √
2(n − i) + 1

×
n∑

j=
α�

n∑
l=0

⎛
⎝ min{i, j}∑

k=max{0, j−n+i}
αi, j−kβi,k

⎞
⎠

× 
( j + 1)


( j + 1 − α)
ul, j Bl,n(x).

In other words, we have

DαBi,n(x) � √
2(n − i) + 1

n∑
l=0

×
⎛
⎝ n∑

j=
α�
wi, j,l

⎞
⎠ Bl,n(x). (20)

Rewriting Equation (20) as a vector form, we obtain

DαBi,n(x) � √
2(n − i) + 1

×
⎡
⎣ n∑
j=
α�

wi, j,0,

n∑
j=
α�

wi, j,1, . . . ,

n∑
j=
α�

wi, j,n

⎤
⎦Q(x).

(21)

Now, by using Equation (21), the final step is taken to
reach the end of the proof. �
Remark 8. For α = 1, Theorem 7 gives the same result
as Equation (16), i.e. D(1) = D.

4. Solution of singular fractional Lane–Emden
equation

In this section, using the operational matrices of frac-
tional derivative or integral that were made in the
previous section, and using the collocation spectral
strategies, we present two numerical techniques for
solving problems (7)–(8).

4.1 The first method

In this subsection, the performance of operational
matrix of fractional integration for OBPs will be
reflected well in the process of solution of the prob-
lems (7)–(8). First, for simplicity, using the following
change of variable,

y(x) = y∗(x) + z(x), (22)

the initial conditions (8) turns into the homogenous
ones. Here, z(x) is an unknown function of x , which

satisfies trivially the condition z(0) = z′(0) = 0. After
inserting (22) into (7) and (8), we arrive at the following:

Dαz(x) + L

xα−β
Dβz(x) + g(x, z(x)) = h(x), (23)

z(0) = 0, z′(0) = 0. (24)

In order to approximate the solution of problems
(23)–(24), by the aid of Equation (11), we apply an
orthonormal Bernstein expansion of Dαz(x) as follows:

Dαz(x) � CT Q(x). (25)

Thanks to Theorem 5 and Equation (25) and in the
presence of some properties of fractional integra-
tion/differentiation, we have

Dβz(x) = I α−β(Dαz(x)) � I α−β(CT Q(x))

= CT I α−βQ(x) � CT F(α−β)Q(x)
(26)

and

z(x) = I αDαz(x) � CT I αQ(x) � CT F(α)Q(x).

(27)

Substituting Equations (25)–(27) into Equation (23)
gives

CT Q(x) + L

xα−β
(CT F(α−β)Q(x))

+g(x,CT F(α)Q(x)) = h(x). (28)

Now, Equation (28) can be collocated at n+1 points as
follows:

CT Q(xi ) + L

xα−β
i

(CT F(α−β)Q(xi ))

+ g(xi ,C
T F(α)Q(xi ))

= h(xi ), i = 1, . . . , n + 1.

(29)

Here, we use uniform collocation points xi = i
n+1 ,

i = 1, . . . , n + 1. By solving this system of algebraic
equations for C , and by the use of Equations (27) and
(22), we obtain an approximate solution for the original
problem.

4.2 The second method

Consider again Equation (7). In the second method, we
approximate the unknown function y(x) in the form
analogous to Equation (11). Thanks to the approxima-
tion formulae for fractional derivatives in Theorem 7,
we have

Dα y(x) � CT DQ(x) � CT D(α)Q(x), (30)

Dβ y(x) � CT DQ(x) � CT D(β)Q(x). (31)
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Table 1. Comparison of y(x) for Example 1.

x Method 1 Method 2 Method 3 Method 4 Method 5 Our first and second methods

0.1 0.9981138095 0.9980428414 0.9980428414 0.9980428414 0.9980430038 0.9980428414
0.2 0.9922758837 0.9921894348 0.9921894348 0.9921894347 0.9921896287 0.9921894348
0.5 0.9520376245 0.9519611092 0.9519611019 0.9519610925 0.9519612468 0.9519610927
1.0 0.8183047481 0.8182429285 0.8182516669 0.8182429282 0.8182430031 0.8182429284

Substituting Equations (11), (30) and (31) in Equation
(7), we obtain

CT D(α)Q(x) + L

xα−β
(CT D(β)Q(x))

+g(x,CT Q(x)) = h(x). (32)

Collocating Equation (32) at n − 1 collocation points
leads to

CT D(α)Q(xi ) + L

xα−β
i

(CT D(β)Q(xi ))

+ g(xi ,C
T Q(xi ))

= h(xi ), i = 1, . . . , n − 1.

(33)

A set of suitable collocation points is defined as follows:

xi =
(

1

2

)(
cos

(
iπ

n

)
+ 1

)
, i = 1, . . . , n − 1.

(34)

In addition, the initial conditions (8) provide two alge-
braic equations as

CT Q(0) = A, CT D(1)Q(0) = B. (35)

Finally, we can compute the values for the components
of C by solving the system of equations (33) and (35).
Hence, the approximate solution for y(x) can be com-
puted by using Equation (11).

5. Illustrative examples

In this section, the ability of the proposed methods to
make desirable outcome solutions of singular Lane–
Emden equations of fractional order will be examined.
For numerical evaluation of the two methods, we will
use either graphical or tabular displays of exact solu-
tions versus numerical solutions.

Example 1. We consider the classic nonlinear Lane–
Emden equation

y′′(x) + 2

x
y′(x) + sinh (y(x)) = 0, x ≥ 0, (36)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (37)

Wazwaz (2001) used the Adomian decomposition
method and provided the following solution corre-
sponding to (36)–(37):

y(x) � 1 − (e2 − 1)

12e
x2 + 1

480

(e4 − 1)

e2 x4

− 1

30240

(2e6 + 3e2 − 3e4 − 2)

e3 x6

+ 1

26127360

(61e8 − 104e6 + 104e2 − 61)

e4 x8.

Table 1 compares the approximation of y(x) obtained
by the present methods with n = 18 and those pro-
vided in Parand et al. (2010) (denoted by Method 1),
Nasab et al. (2018) (denoted by Method 2), Wazwaz
(2001) (denoted by Method 3), Parand & Delkhosh
(2017) (denoted by Method 4) and Parand & Hemami
(2017) (denoted by Method 5). Also, in Table 2, we
summarize the absolute error of our proposed methods
for n = 10 corresponding to four sample points and pro-
vide a comparison between them and those obtained by
Chebyshev wavelet method (Nasab et al. 2018) and col-
location method based on Hermite polynomials (Parand
et al. 2010). It is worth mentioning that the proposed
method in Nasab et al. (2018) needs to solve a non-
linear system with 2k−1(M + 1) algebraic equations,
while our methods need to solve a nonlinear system in
only n + 1 equations. Indeed, in comparison with the
methods presented in Parand et al. (2010), Nasab et al.
(2018); Wazwaz (2001); Parand & Delkhosh (2017) and
Parand & Hemami (2017), Tables 1 and 2 indicate that
our numerical schemes significantly lead to more accu-
rate approximations. Moreover, Figure 2 illustrates the
absolute error functions corresponding to our methods
with n = 4.
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Table 2. Comparison of absolute error for Example 1.

x Chebyshev wavelet method Hermite collocation method Present methods (n = 10)

(Nasab et al. 2018) (Parand et al. 2010) The first The second
(M = 10, k = 5) (n = 10) method method

0.1 4.48 × 10−11 7.10 × 10−05 8.34 × 10−13 1.94 × 10−12

0.2 1.22 × 10−11 8.64 × 10−05 3.89 × 10−12 5.07 × 10−13

0.5 7.37 × 10−08 7.65 × 10−05 9.15 × 10−09 9.15 × 10−09

1.0 8.74 × 10−06 5.31 × 10−05 8.73 × 10−06 8.73 × 10−06

Figure 2. Plot of the absolute error with n = 4, using the first method (left) and the second method (right) for Example 1.

Example 2. We consider the nonlinear spherical Lane–
Emden equation of fractional order

Dα y(x) + 2

xα−β
Dβ y(x) = e−y(x), 0 < x ≤ 1.

with the initial conditions

y(0) = 0, y′(0) = 0.

The exact/numerical solution of this problem with α =
3/2 and β = 3/4 has been computed by the technique
of Abdel-Salam and Nouh (2016) as follows:

y(x) � 0.2368456765x
3
2 − 0.02568610429x3

+ 0.005004915254x
9
2 − 0.001292847099x6

+ 0.0004026307151x
15
2 − · · · .

We apply the proposed methods in Section 4, for solving
this problem with n = 10, 15. In Table 3, we present
a comparison of the absolute error of our methods on
uniform grid points.

Example 3. In this example, we consider the fractional
nonlinear Lane–Emden equation

Dα y(x) + 6

xα−β
Dβ y(x)

+ 14y(x) + 4y(x) ln(y(x)) = 0,

subject to nonhomogeneous initial conditions

y(0) = 1, y′(0) = 0.

The exact solution for the problem for α = 2 and β = 1
is y(x) = exp(−x2) (Aminikhah & Moradian 2013).
In Table 4, the absolute errors of the presented methods
with n = 7, 14 and α = 2, β = 1 are compared with
those obtained by Laguerre wavelet (Zhou & Xu 2016)
and Legendre wavelet (Aminikhah & Moradian 2013)
methods. As mentioned in Example 1, the above meth-
ods can be reduced to a nonlinear system of algebraic
equations while the nonlinear systems corresponding
to the present methods are significantly smaller in size.
The graphs of absolute error functions of our proposed
methods for α = 2 and β = 1 are shown in Figure
3. Also the graphs of computed solution arising from
the use of operational matrix of fractional integration
or differentiation, for different values of α and β and
for n = 25 are illustrated in Figures 4 and 5. These fig-
ures tell us that when α and β are approaching 2 and 1,
respectively, the corresponding approximate solutions



27 Page 10 of 12 J. Astrophys. Astr. (2019) 40:27

Table 3. Comparison of absolute error for n = 10, 15 for Example 2.

x The first method The second method

n = 10 n = 15 n = 10 n = 15

0.1 7.9 × 10−05 5.8 × 10−05 1.1 × 10−04 5.4 × 10−05

0.2 6.3 × 10−05 5.4 × 10−05 1.6 × 10−04 1.6 × 10−05

0.3 6.9 × 10−05 5.6 × 10−05 1.7 × 10−05 3.4 × 10−05

0.4 7.6 × 10−05 6.7 × 10−05 7.3 × 10−05 6.9 × 10−05

0.5 1.0 × 10−04 9.8 × 10−05 1.7 × 10−04 8.7 × 10−06

0.6 1.6 × 10−04 1.5 × 10−04 1.8 × 10−04 9.6 × 10−05

0.7 2.7 × 10−04 2.6 × 10−04 1.4 × 10−04 2.5 × 10−04

0.8 4.3 × 10−04 4.2 × 10−04 4.6 × 10−04 3.8 × 10−04

0.9 6.8 × 10−04 6.8 × 10−04 6.4 × 10−04 6.5 × 10−04

Table 4. Comparison of absolute error for n = 7, 14 for Example 3.

x The first method The second method Legendre wavelet method Laguerre wavelet method

n = 7 n = 14 n = 7 n = 14 M = 7, k = 3 M = 7, k = 1

0.1 5.4 × 10−07 1.2 × 10−13 1.6 × 10−8 4.4 × 10−14 2.7 × 10−9 4.8 × 10−6

0.2 6.2 × 10−07 7.0 × 10−14 2.5 × 10−7 1.0 × 10−13 2.5 × 10−9 6.8 × 10−6

0.3 9.1 × 10−08 7.8 × 10−14 6.8 × 10−8 1.1 × 10−13 9.8 × 10−10 8.0 × 10−7

0.4 3.4 × 10−07 7.9 × 10−14 7.8 × 10−7 1.0 × 10−13 1.0 × 10−10 8.3 × 10−6

0.5 7.4 × 10−07 5.7 × 10−14 4.6 × 10−7 4.8 × 10−14 8.9 × 10−11 1.2 × 10−5

0.6 2.8 × 10−07 6.3 × 10−14 1.0 × 10−6 3.2 × 10−15 4.0 × 10−11 5.3 × 10−5

0.7 1.7 × 10−07 3.6 × 10−14 1.4 × 10−6 3.6 × 10−14 1.5 × 10−11 2.0 × 10−4

0.8 4.5 × 10−07 5.8 × 10−14 6.8 × 10−7 2.4 × 10−14 3.8 × 10−11 5.9 × 10−4

0.9 2.2 × 10−07 2.5 × 10−15 1.5 × 10−6 2.0 × 10−14 6.6 × 10−11 1.4 × 10−3

Figure 3. Plot of the absolute error with n = 16, using the first method (left) and the second method (right) for Example 3.
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Figure 4. The graph of y(x) using the first method for different values of α and β with n = 25 for Example 3.

Figure 5. The graph of y(x) using the second method for different values of α and β with n = 25 for Example 3.

Figure 6. Plot of the absolute error with n = 15, using the first method (left) and the second method (right) for Example 4.

tend to the solution of the classic Lane–Emden prob-
lem with α = 2 and β = 1.

Example 4. Consider the following fractional Lane–
Emden equation:

Dα y(x) + 2

xα−β
Dβ y(x) + sin(y(x)) = h(x),

subject to homogeneous initial conditions:

y(0) = 0, y′(0) = 0,

where

h(x) = sin(x3 − x2) + 72

5

√
x3

π
− 28

3

√
x

π
.

The exact solution of this problem for α = 3/2 and
β = 1/2 is y(x) = x3 − x2. The graph of absolute error
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functions of our numerical approaches with n = 15 are
plotted in Figure 6.

6. Conclusion

In this research, we derive the operational matrices of
fractional integration and differentiation for orthonor-
mal Bernstein polynomials. The operational matrices
are used for numerical solution of the singular fractional
Lane–Emden equations. Our methods are based on the
approximation of functions and collocation approach.
The implementation of the present methods is very easy.
Moreover, in comparison with existing methods, the
high accuracy is clearly documented for both the present
methods.

It is worthy to mention here that, the nature of polyno-
mials and the easy and low cost utilization of operational
matrices of differentiation and integration over OBP’s
puts the present methods as computer-oriented numer-
ical methods. In our methods, by the aid of operational
matrices, the complicated fractional derivatives and
their calculations reduce to a small system of linear or
nonlinear algebraic equations. We also notice that in
the first method, we expand Dαz(x) as Equation (11)
and find Dβz(x) and z(x) by integrating from Dαz(x).
Thus, in this method, z(x) will be found from the expan-
sion of Dαz(x). However, in the second method, we
expand the function y(x) by OBP’s, and we find Dαz(x)
and Dβz(x) by differentiation of the expansion of y(x).
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