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Abstract. The circular restricted three-body problem, where two primaries are taken as heterogeneous oblate
spheroid with three layers of different densities and infinitesimal body varies its mass according to the Jeans
law, has been studied. The system of equations of motion have been evaluated by using the Jeans law and hence
the Jacobi integral has been determined. With the help of system of equations of motion, we have plotted the
equilibrium points in different planes (in-plane and out-of planes), zero velocity curves, regions of possible
motion, surfaces (zero-velocity surfaces with projections and Poincaré surfaces of section) and the basins of
convergence with the variation of mass parameter. Finally, we have examined the stability of the equilibrium
points with the help of Meshcherskii space–time inverse transformation of the above said model and revealed
that all the equilibrium points are unstable.
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1. Introduction

The restricted problem with many perturbations is an
interesting problem in the celestial mechanics and space
dynamics since many decades. Many researchers have
studied the restricted problem of three-body with dif-
ferent perturbations as different shapes of the primaries,
solar radiation pressure, P–R drag, variable mass, etc.
Szebehely (1967) explained the dynamical behaviour
of the bodies in his book ‘theory of orbits’. Sharma and
Subba Rao (1975) numerically investigated the location
of libration points for 19 systems of astronautical inter-
est by taking the primaries as oblate bodies. Then they
showed that the eccentricity and synodic period of these
orbits are the function of oblateness. They also revealed
that the orbits around libration points performed a dif-
ferent trend. Murray (1994) investigated the location
and stability of the five equilibrium points in the planar
circular restricted three-body problem under the effect
of different drag forces. Khanna and Bhatnagar (1999)
studied the existence and stability of libration points
in the restricted three-body problem when the smaller

primary is a triaxial rigid body and the bigger one an
oblate spheroid when the equatorial plane of both the
bodies are coinciding with the plane of motion. They
have found five equilibrium points in which two are tri-
angular and three are collinear. They also observed that
the collinear equilibrium points are unstable while tri-
angular equilibrium points are stable and have long or
short periodic elliptical orbits. Idrisi and Taqvi (2013)
investigated the existence and stability of five equilib-
rium points which lie on the arc of the unit circle with
centre at bigger primary. They observed that all the equi-
librium points are unstable. Ansari (2017) studied the
effect of albedo on the motion of infinitesimal body
in circular restricted three-body problem when all the
bodies vary their masses. Using Meshcherskii transfor-
mations, he evaluated the equations of motion by which
he has drawn the locations of equilibrium points, peri-
odic orbits, Poincaré surfaces of section and basins of
attraction in four cases. He also examined the stability
of equilibrium points and found that all the equilib-
rium points are unstable. Shalini & Abdullah (2016) and
Shalini et al. (2017) investigated the existence, linear
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stability and non-linear stability of equilibrium points
in the restricted three-body problem when the smaller
primary is a heterogeneous triaxial rigid body with
N -layer. They found that the non-collinear libration
points are stable. Suraj et al. (2014, 2018) studied the
stationary solution of the planar restricted three-body
problem when both the primaries are heterogeneous
oblate spheroid with three layers of different densities
and source of radiation as well. They have found five
equilibrium points in which two are triangular points
and three are collinear ones. They also observed that
collinear points are unstable while triangular points are
stable.

Many researchers have studied these problems with
variable mass (Jeans 1928; Meshcherskii 1952; Shri-
vastava & Ishwar 1983; Lichtenegger 1984; Singh and
Ishwar 1984; Singh & Ishwar 1985; Singh 2003; Singh
& Leke 2010; Lukyanov 2009; Zhang et al. 2012;
Abouelmagd & Mostafa 2015; Ansari & Alam 2016).
Some researchers have investigated the basins of attrac-
tions (Ansari 2017; Suraj et al. 2018; Zotos 2016, 2017;
Zotos & Suraj 2018).

This paper arranged as follows: In section 2, we have
described the model of the problem and then evaluated
the system of equations of motion of the infinitesi-
mal variable mass under the effect of heterogeneous
spheroid primaries and we have also determined the
Jacobi integral. In the sections 3–9, we have plotted the
equilibrium points in different planes (in-plane and out-
of-planes), the zero-velocity curves, regions of motion,
zero-velocity surfaces with projections, Poincaré sur-
faces of section and the basins of convergence through
Mathematica software. After examining the stabil-
ity of the equilibrium points, we have concluded the
problem in section 10.

2. Description of the model and equations
of motion

Let (Oxyz) be the barycentric rotating coordinate
system with angular velocity ω about the z-axis. Here,
we have considered the primaries of masses m1 and m2
as heterogeneous spheroid with three layers of differ-
ent densities and the third infinitesimal body varies its
mass according to Jean’s law. The primaries are moving
in circular orbits around their common center of mass
which is taken as origin O , in the same plane. The axes
of the heterogeneous spheroid coincide with the rotating
coordinate system. The third infinitesimal body m(t) is
moving in the space under the influence of these two het-
erogeneous primaries but not influencing them. Let the

Figure 1. (a) Geometric configuration of the problem. (b)
The shape of heterogeneous spheroid with three layers.

coordinates of m1, m2 and m(t) be (x1, 0, 0), (x2, 0, 0)

and (x, y, z) in the space as described in Fig. 1.
The potential of the heterogeneous spheroidmp at the

point m(t) is
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q , cpq are the densities and semi-axes of
the heterogeneous spheroids respectively, and
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5
(oblateness factor).

ρ
p
4 = 0 (p = 1, 2) is the fourth layer’s densities (Suraj

et al. 2018).
Following the procedure of Abouelmagd & Mostafa

(2015), we can write the equations of motion of
infinitesimal variable-mass m(t) in the rotating co-
ordinates when it has zero-momentum, and the variation
of mass is non-isotropic and originates from one point
as
⎧
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Here dot represents differentiation with respect to time
t . Vx , Vy and Vz are partial differentiations of V with
respect to x , y and z respectively. n is the modulus of
the angular velocity ω.

For dimensionless variables, we choose the unit of
mass and length such that (m1 + m2 = 1), the sum
of their masses and the distance between the primaries
(R = 1) are unity. Also t is so chosen that G = 1. Let
0 < μ = m2

m1+m2
≤ 1

2 , the mass ratio andm1 = (1−μ).

The co-ordinates of m1 and m2 will be (μ, 0, 0) and
(μ − 1, 0, 0) respectively. Hence equations (1) and (2)
reduce to
⎧
⎪⎪⎨

⎪⎪⎩
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The system (3) is the equations of motion of the
restricted three-body problem when the primaries are
heterogeneous spheroid and the infinitesimal mass
varies its mass with respect to time t . Hence, we will
use Jean’s law as

dm(t)

dt
= −λ1m(t). (5)

where λ1 is the variation parameter which is a constant.
And the space–time transformations are

α = ε
1
2 x, β = ε

1
2 y, γ = ε

1
2 z, dτ = dt,

li = ε
1
2 ri , (i = 1, 2),

where ε = m(t)
m0

, which will be less than unity when
the mass decreases and more than unity when the mass
increases.m0 is the initial mass of the infinitesimal body.

Therefore,
⎧
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⎪⎪⎪⎪⎪⎩
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where dot (·) and prime (′) represent the differentiation
with respect to t and τ respectively. Also d

dt = d
dτ

.

Finally, the equations of motion of the infinitesimal
variable mass become
⎧
⎨

⎩
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β̈ + 2nα̇ = Uβ,

γ̈ = Uγ ,

(7)

where
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l21 = (α − με1/2)2 + β2 + γ 2,

l22 = (α − (μ − 1)ε1/2)2 + β2 + γ 2.

(8)

The corresponding Jacobian integral of the system (7)
can be written as

α̇2 + β̇2 + γ̇ 2 = 2U − C − 2
∫ t

t0

∂U

∂t
dt, (9)

where α̇, β̇ and γ̇ are the velocity components and C
is the Jacobian constant which is conserved and related
to the total energy of the system. The curve for given
values of the energy integral is restricted in its motion
to regions in which 2U (α, β, γ ) ≥ C, and all other
regions are prohibited to the third infinitesimal body,
i.e. it has zero velocities in these regions.

3. Equilibrium points

The location of equilibrium points can be obtained by
solving the right hand sides of system (7) when all the
derivatives (with respect to t) of the left-hand sides are
to be zero, i.e., α̇ = α̈ = β̇ = β̈ = γ̇ = γ̈ = 0. Hence
we get
⎧
⎪⎨

⎪⎩

Uα = 0, (10a)

Uβ = 0, (10b)

Uγ = 0, (10c)
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Figure 2. Locations of equilibrium points in the α − β plane: For (a) ε = 1.3 (black), (b) ε = 1 (red), (c) ε = 0.6 (blue),
(d) ε = 0.3 (green), (e) Combined figures of (a), (b), (c) and (d).
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Figure 3. Locations of equilibrium points in the α − γ plane: (a) for ε = 1.3 (black), ε = 0.6 (blue), ε = 0.3 (green). (b)
The zoomed part of figure (a), (c) ε = 1 (red). The red points which are bigger indicate the positions of the primaries in all
the figures.

Figure 4. Locations of equilibrium points in the β − γ plane: (a) for ε = 1.3 (black), ε = 0.6 (blue), ε = 0.3 (green), (b)
for ε = 1 (red).
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Figure 5. Zero-velocity curves (a) in the α − β-plane, (b) in the α − γ -plane, (c) in the β − γ -plane, all at ε = 1.3
corresponding to the Jacobian constants.
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Figure 6. Regions of motion in the α − β plane corresponding to (a) CL4,5 (black regions), (b) CL3 (red regions), (c) CL1

(blue regions), CL2 (green regions).
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Figure 7. Regions of motion in the α − γ plane corresponding to (a) CL4,5 (black regions), (b) CL3 (red regions), (c) CL1

(blue regions), (d) CL2 (green regions).
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The second order derivatives of U , i.e., Uαα, Uαβ,

Uβα,Uββ, will be used in the basins of the convergence
section. All the calculations are made for fixed value
of μ = 0.3, λ1 = 0.2, f1 = 9.83933 × 10−18, f2 =
1.58302 × 10−7, f3 = 3.13153 × 10−8.

3.1 In-plane equilibrium points (α − β plane)

The solutions of equations 10(a) and 10(b) will be
the location of equilibrium points in the α − β

plane. We have located the locations of equilibrium
points at the different four values of mass param-
eters (ε = 1.3, 1 (λ1 = 0), 0.6, 0.3) by the
graphs in Figures 2(a)–(d). In all the four cases,
there are five equilibrium points in which three (L1,
L2, L3) are collinear and the other two (L4, L5)
are non-collinear equilibrium points. From Fig. 2(e),
we observed that as we decrease the values of the
variation of mass parameter (ε), all the five equilib-
rium points are moving towards the origin. The red
points that are bigger indicate the location of the
primaries.



J. Astrophys. Astr. (2018) 39:57 Page 9 of 20 57

Figure 8. Regions of motion in the β − γ plane corresponding to (a) CL4,5 (black regions), (b) CL1,3 (red regions), (c) CL2

(green regions).

3.2 Out-of-plane equilibrium points

In this section, we have drawn the equilibrium points
in two cases: (i) α �= 0, β = 0, γ �= 0 and (ii) α =
0, β �= 0, γ �= 0.

In the first case, there exist at most five equilibrium
points (L1, L2, L3, L4, L5) (Fig. 3) at four different
values of variation of mass parameters. For the values
of ε = 1.3, 0.6, 0.3, there are five equilibrium points
and for ε = 1, there are three collinear equilibrium
points only. It is observed from Figures 3(a), (b) and
(c) that as the value of ε decreases, all the equilibrium
points move toward the origin.

In the second case (Figures 4(a) and (b)), we get the
same phenomenon of equilibrium points as in the first
case.

4. Zero-velocity curves (ZVCs)

Equation (9) can be rewritten as

V 2 = 2U − C − 2
∫ t

t0

∂U

∂t
dt, (17)

where V is the velocity of the infinitesimal body. For
the possible motion, V 2 ≥ 0, therefore

2U − C − 2
∫ t

t0

∂U

∂t
dt ≥ 0. (18)

Using the methodology of Abouelmagd & Mostafa
(2015), equation (18) can be written as

2U ≥ C. (19)

Using the equation (19), we have plotted the
zero-velocity curves for fixed value of ε = 1.3 in all
three planes, where C is the Jacobian constant which is
conserved.

In all the three planes, we have found five equilibrium
points at ε = 1.3, and then we have evaluated the values
of various Jacobian constants corresponding to these
equilibrium points, i.e., CL1, CL2, CL3, CL4,5 .

In the α − β-plane, we have found four different
zero-velocity curves corresponding to each Jacobian
constants (Fig. 5(a)). At the value of CL1, there are
two parts of zero-velocity curves in which one is dumb-
bell shaped and other one is cardioid shaped. Both the
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Figure 9. Zero-velocity surfaces with projections in the α − β plane at ε = 1.3.

curves (blue color) intersect at L1. At the value of CL2,

there are two parts of zero-velocity curves in which one
is lemniscate with intersection point at L2 and both the
ovals of lemniscate are around the primaries and the
other one is a circle with green color curves; it is also
observed that all the equilibrium points are within the
circle. At the value of CL3, there are two parts of zero-
velocity curves (red colors) where both the curves are
intersecting at L3. At the value of CL4,5, there are two
parts of zero-velocity curves (black colors) which have
oval shapes with centers at L4 and L5.

In the α − γ -plane, we have found four different
zero-velocity curves corresponding to each Jacobian
constants (Fig. 5(b)). At the value of CL1, there are
two parts of zero-velocity curves (blue color) in which
one is dumb-bell shaped and other one is α-hyperbola
shaped. These two curves intersect at L1. At the value
of CL2, there are two parts of zero-velocity curves in
which one is lemniscate shaped with intersection point
at L2 and another one is α-hyperbola shaped with green

color curves. At the value of CL3, we got red color
zero-velocity curves with intersection point at L3. At
the value of CL4,5, we got γ -hyperbola with each part
of the curve (black colors) around L4 and L5.

In the β − γ -plane, we have found four different
zero-velocity curves corresponding to each Jacobian
constants (Fig. 5(c)). At the value of CL1,3, there are
two part of zero-velocity curves in red color with inter-
section points at L1 and L3. At the value of CL2, we
got β-hyperbola with the origin at L2. At the value of
CL4,5, we got γ -hyperbola with each wing (black color)
around L4 and L5 respectively. In all the figures, blue
points and red points represent the locations of the equi-
librium points and primaries, respectively.

5. Regions of possible motion

In this section, we have illustrated the regions of motion
of infinitesimal body under the effect of heterogeneous
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Figure 10. Zero-velocity surfaces with projections in the α − γ plane at ε = 1.3.

spheroid and the variations of mass parameter of the
infinitesimal body in three planes: α −β (Figures 6(a)–
(d)), α − γ (Figures 7(a)–(d)) and β − γ (Figures 8(a)–
(c)). In all the figures, the color regions are the forbidden
regions which increase as the value of the corresponding
Jacobian constants increase; the infinitesimal body can
move freely in the white regions.

6. Zero-velocity surfaces with projections (ZVSs)

The projections of the zero-velocity surfaces onto the
configuration plane are known as Hill’s region because
the boundaries of the Hill’s region are the zero-velocity
curves which are the locus in the configuration plane
where the kinetic energy is zero. We have drawn the
zero-velocity surfaces with projections at the variation
of mass parameter ε = 1.3 corresponding to the Jaco-
bian constant C . The motion is possible only inside the
shaded regions of the surfaces and we observed that
the variation of mass parameter has great impact on the

characteristics of the zero-velocity surfaces. It is also
observed that as the values of the Jacobian constant
increase, the region of surfaces increases (Figures 9, 10
and 11).

7. Poincaré surfaces of sections

We have drawn the Poincaré surfaces of section of
motion of infinitesimal variable body under the effect of
heterogeneous oblate spheroid with three layers of dif-
ferent densities at four different values of variation of
mass parameters (ε = 1.3 (black), 1 (red), 0.6 (blue)
and 0.3 (green)). From Figures 12(a) and (b), it is
observed that as the value of variation of mass param-
eters decreases, the surfaces of sections shrink and is
shifted to the left side in α − α′ whereas these curves
expand and shift down in β − β ′ when γ = 0. From
Figures 13(a) and (b), it is observed that these curves
shrink in both α − α′ and γ − γ ′ when β = 0. On
the other hand, from Figures 14(a) and (b), it is also
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Figure 11. Zero-velocity surfaces with projections in the β − γ plane at ε = 1.3.

observed that these curves shrink in both β − β ′ and
γ − γ ′ when α = 0. From these figures, it is clear that
the variation of mass parameters has great impact on the
Poincaré surfaces of section.

8. Basins of convergence

Here, we have discussed the basins of attraction for the
circular restricted three-body problem in which we have
taken the primaries as heterogeneous oblate spheroid
and infinitesimal body varies its mass with time by using
the Newton–Raphson basins of attraction which is a fast,
accurate and simple tool to solve the multivariate func-
tions. The basin of convergence or converging region
is composed of all the initial conditions that lead to
specific equilibrium points. It is an issue of great impor-
tance to get the basins of convergence which reflect
some important qualitative properties of the dynamical
systems. Using this iterative method, we have drawn

the basins of convergence for the variation of mass
parameters ε = 1.3 in three planes: α − β plane
(Fig. 15(a)), α − γ plane (Fig. 15(b)) and β − γ plane
(Fig. 15(d)). The algorithm of our problem in the α −β

plane when γ = 0, is given by
⎧
⎨

⎩
αn+1 = αn −

(
UαUββ−UβUαβ

UααUββ−UαβUβα

)

(αn,βn)
,

βn+1 = βn −
(

UβUαα−UαUβα

UααUββ−UαβUβα

)

(αn,βn)
,

(20)

where αn and βn are the values of α and β co-ordinates
of the n-th step of the Newton–Raphson iterative pro-
cess. If the initial point converges rapidly to one of the
equilibrium points, then this point (α, β) will be a mem-
ber of the basin of convergence of the root. This process
stops when the successive approximation converges to
an attractor. We used color code for the classification of
the equilibrium points on the planes.

In the α − β-plane (Fig. 15(a)), we observed that
the equilibrium points L1, L2, L3 represent light blue
color regions while L4 and L5 represent magenta
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Figure 12. Poincaré surfaces of sections in (a) α − α′ and (b) β − β ′ for ε = 1.3 (black), ε = 1 (red), ε = 0.6 (blue),
ε = 0.3 (green).

Figure 13. Poincaré surfaces of sections in (a) α − α′ and (b) γ − γ ′ for ε = 1.3 (black), ε = 1 (red), ε = 0.6 (blue),
ε = 0.3 (green).

Figure 14. Poincaré surfaces of sections in (a) β − β ′ and (b) γ − γ ′ for ε = 1.3 (black), ε = 1 (red), ε = 0.6 (blue),
ε = 0.3 (green).

and yellow color regions respectively. The basins of
convergence corresponding to these five equilibrium
points extend to infinity. In the α−γ -plane (Fig. 15(b)),
we got the lemniscate shape and the equilibrium points
L1, L2, L3 represent cyan color regions while L4 and
L5 represent red color regions. The basins of conver-
gence corresponding to these five equilibrium points
extend to infinity. We can see a more clear view in
Fig. 15(c) which is the zoomed part of the Fig. 15(b).
In the β − γ -plane (Fig. 15(d)), we got the dumbbell
shape and the equilibrium points L1, L2, L3 represent
cyan color regions while L4 and L5 represent red color
regions. The basins of convergence corresponding to
these five equilibrium points extend to infinity. We can
see a more clear view in Fig. 15(e) which is the zoomed
part of Fig. 15(d). In all the figures, the red points rep-
resent the locations of the primaries.

9. Stability of equilibrium points

In this section, we have examined the linear stability
of the equilibrium points by giving the displacements
((α1, β1, γ1) << 1) to (α0, β0, γ0) as
⎧
⎨

⎩

α = α1 + α0,

β = β1 + β0,

γ = γ1 + γ0,

(21)

where (α0, β0, γ0) is the equilibrium point for a fixed
value of time t0. We can get the variational equations
from the equations (7) and (21) as
⎧
⎨

⎩

α̈1 − 2nβ̇1 = (Uαα)0α1 + (Uαβ)0β1 + (Uαγ )0γ1,

β̈1 + 2nα̇1 = (Uβα)0α1 + (Uββ)0β1 + (Uβγ )0γ1,

γ̈1 = (Uγα)0α1 + (Uγβ)0β1 + (Uγ γ )0γ1,

(22)



57 Page 14 of 20 J. Astrophys. Astr. (2018) 39:57

Figure 15. Basins of convergence in the (a) α − β plane, (b) α − γ plane, (d) β − γ plane and (c), (e) are the zoomed part
of figures (b) and (d) respectively.

where the subscript ‘0’ in the system (22) represents the
values at the equilibrium point (α0, β0, γ0).

In the phase space, system (22) may be written as

⎧
⎪⎪⎨

⎪⎪⎩

α̇1 = α2, β̇1 = β2, γ̇1 = γ2,

α̇2 − 2nβ2 = (Uαα)0α1 + (Uαβ)0β1 + (Uαγ )0γ1,

β̇2 + 2nα2 = (Uβα)0α1 + (Uββ)0β1 + (Uβγ )0γ1,

γ̇2 = (Uγα)0α1 + (Uγβ)0β1 + (Uγ γ )0γ1.

(23)

At λ1 = 0, system (22) reduces to a system with
constant mass. For λ1 > 0, we can not determine the
linear stability from ordinary method because the dis-
tances of the primaries to the equilibrium point (α0, β0,
γ0) varies with time. Therefore, we use the Meshcher-
skii space–time inverse transformations.

Using the Meshcherskii inverse transformations and
putting

x ′ =ε−1/2α1, y
′=ε−1/2β1,z

′=ε−1/2γ1, α′
1=ε−1/2α2,
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Table 1. Co-ordinates of in-plane equilibrium points and the corresponding characteristic roots (α−β-plane) when both the
primaries are heterogeneous oblate spheroid with three layers of different densities, and infinitesimal body varies its mass.

ε Equilibrium points Corresponding six characteristic roots

1.30 (–1.42996429, 0) (–1.36012840, 0.09999999 – 1.39258801 I, 0.09999999 +
1.39258801 I, 0.10000000 – 1.47059698 I, 0.10000000 +
1.47059698 I, 1.56012840)

(–0.32603894, 0) (–3.60579551, 0.09999999 – 2.77414250 I, 0.09999999 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)

(1.27712640, 0) (–0.78373963, 0.09999999 – 1.14402536 I, 0.09999999 +
1.14402536 I, 0.10000000 – 1.20091704 I, 0.10000000 +
1.20091704 I, 0.98373963)

(–0.22803478, 0.98305911) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.09999999 – 0.99999978 I, 0.09999999 + 0.99999978
I,0.70006267 – 0.91927960 I, 0.70006267 + 0.91927960 I)

(–0.22803478, -0.98305911) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.100000000 – 0.99999978 I, 0.10000000 + 0.99999978
I, 0.70006267 – 0.919279609 I, 0.70006267 + 0.91927960 I)

1.00 (–1.25673519, 0) (–1.34204181, 0.09999999 – 1.46130841 I, 0.09999999 +
1.46130841 I, 0.10000000 – 1.38349002 I, 0.10000000 +
1.38349002 I, 1.54204181)

(–0.28612928, 0) (–3.60640029, 0.09999999 – 2.77454581 I, 0.09999999 +
2.77454581 I, 0.10000000 – 2.83005663 I, 0.10000000 +
2.83005663 I, 3.80640029)

(1.12320558, 0) (–0.76487296, 0.10000000 – 1.13767174 I, 0.10000000 +
1.13767174 I, 0.10000000 – 1.19319248 I, 0.10000000 +
1.19319248 I, 0.96487296)

(–0.19999973, 0.86602553) (–0.49714445 – 0.92009851 I, –0.49714445 + 0.92009851
I, 0.10000000 – 0.99498722 I, 0.10000000 + 0.99498722 I,
0.69714445 – 0.92009851 I, 0.69714445 + 0.92009851 I),

(–0.19999973, -0.86602553) (–0.49714445 – 0.92009851 I, –0.49714445 + 0.92009851
I, 0.10000000 – 0.99498722 I, 0.10000000 + 0.99498722 I,
0.69714445 – 0.92009851 I, 0.69714445 + 0.92009851 I)

0.60 (–0.97146944, 0) (–1.36012840, 0.09999999 – 1.47059698 I, 0.09999999 +
1.47059698 I,0.10000000 – 1.39258801 I, 0.10000000 +
1.39258801 I, 1.56012840)

(–0.22149984, 0) (–3.60579551, 0.09999999 – 2.77414250 I, 0.09999999 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)

(0.86763654, 0) (–0.78373963, 0.09999999 – 1.20091704 I, 0.09999999 +
1.20091704 I, 0.10000000 – 1.14402536 I, 0.10000000 +
1.14402536 I, 0.98373963)

(–0.15491912, 0.66785715) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.09999999 – 0.99999978 I, 0.09999999 + 0.99999978 I,
0.70006267 – 0.91927960 I, 0.70006267 + 0.91927960 I)

(–0.15491912, –0.66785715) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.09999999 – 0.99999978 I, 0.09999999 + 0.99999978 I,
0.70006267 – 0.91927960 I, 0.70006267 + 0.91927960 I)

0.30 (–0.68693262, 0) (–1.36012840, 0.10000000 – 1.39258801 I, 0.10000000 +
1.39258801 I, 0.10000000 – 1.47059698 I, 0.10000000 +
1.47059698 I, 1.56012840)
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Table 1. Continued.

ε Equilibrium points Corresponding six characteristic roots

(–0.15662404, 0) (–3.60579551, 0.10000000 – 2.77414250 I, 0.10000000 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)

(0.61351168, 0) (–0.78373963, 0.09999999 – 1.14402536 I, 0.09999999 +
1.14402536 I, 0.10000000 – 1.20091704 I, 0.10000000 +
1.20091704 I, 0.98373963)

(–0.10954436, 0.47224632) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.09999999 – 0.99999978 I, 0.09999999 + 0.99999978 I,
0.70006267 – 0.91927960 I, 0.70006267 + 0.91927960 I)

(–0.10954436, -0.47224632) (–0.50006267 – 0.91927960 I, –0.50006267 + 0.91927960
I, 0.09999999 – 0.99999978 I, 0.09999999 + 0.99999978 I,
0.70006267 – 0.91927960 I, 0.70006267 + 0.91927960 I)

Table 2. Co-ordinates of out-of-plane equilibrium points and the corresponding characteristic roots (α − γ -plane) when
both the primaries are heterogeneous oblate spheroid with three layers of different densities, and infinitesimal body varies its
mass.

ε Equilibrium points Corresponding six characteristic roots

1.30 (–1.42996429, 0) (–1.36012840, 0.09999999 – 1.39258801 I, 0.09999999 +
1.39258801 I, 0.10000000 – 1.47059698 I, 0.10000000 +
1.47059698 I, 1.56012840)

(–0.32603894, 0) (–3.60579551, 0.09999999 – 2.77414250 I, 0.09999999 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)

(1.27712640, 0) (–0.78373963, 0.09999999 – 1.14402536 I, 0.09999999 +
1.14402536 I, 0.10000000 – 1.20091704 I, 0.10000000 +
1.20091704 I, 0.98373963)

(–0.00006604, 5.26660825) (–0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432)

(–0.00006604, –5.26660825) (–0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432)

1.00 (–1.25673519, 0) (–2.73452118, 0.09999999 – 2.26948828 I, 0.09999999 +
2.26948828 I, 0.10000000 – 2.20314393 I, 0.10000000 +
2.20314393 I, 2.93452118)

(–0.28612928, 0) (–3.60640029, 0.09999999 – 2.77454581 I, 0.09999999 +
2.77454581 I, 0.10000000 – 2.83005663 I, 0.10000000 +
2.83005663 I, 3.80640029)

(1.12320558, 0) (–0.76487296, 0.09999999 – 1.13767174 I, 0.09999999 +
1.13767174 I, 0.10000000 – 1.19319248 I, 0.10000000 +
1.19319248 I, 0.96487296)

0.60 (–0.97146944, 0) (–1.36012840, 0.10000000 – 1.47059698 I, 0.10000000 +
1.47059698 I, 0.10000000 – 1.39258801 I, 0.10000000 +
1.39258801 I, 1.56012840)

(–0.22149984, 0) (–3.60579551, 0.10000000 – 2.77414250 I, 0.10000000 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)
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Table 2. Continued.

ε Equilibrium points Corresponding six characteristic roots

(0.86763654, 0) (–0.78373963, 0.09999999 – 1.20091704 I, 0.09999999 +
1.20091704 I, 0.09999999 – 1.14402536 I, 0.09999999 +
1.14402536 I, 0.98373963)

(–0.00004486, 3.57795574) (–0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432)

(–0.00004486, –3.57795574) (–0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432)

0.30 (–0.68693262, 0) (–1.36012840, 0.10000000 – 1.39258801 I, 0.10000000 +
1.39258801 I, 0.10000000 – 1.47059698 I, 0.10000000 +
1.47059698 I, 1.56012840)

(–0.15662404, 0) (-3.60579551, 0.09999999 – 2.77414250 I, 0.09999999 +
2.77414250 I, 0.10000000 – 2.82966000 I, 0.10000000 +
2.82966000 I, 3.80579551)

(0.61351168, 0) (–0.78373963, 0.09999999 – 1.20091704 I, 0.09999999 +
1.20091704 I, 0.10000000 – 1.14402536 I, 0.10000000 +
1.14402536 I, 0.98373963)

(–0.00003172, 2.52999677) (–0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432)

(–0.00003172, 2.52999677) (-0.07237432, 0.08801926 – 1.00000001 I, 0.08801926 +
1.00000001 I, 0.11198073 – 1.00000001 I, 0.11198073 +
1.00000001 I, 0.27237432).

β ′
1 = ε−1/2β2, γ ′

1 = ε−1/2γ2,

the system (23) can be written in matrix form as
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx ′
dt
dy′
dt
dz′
dt

dα′
1

dt
dβ ′

1
dt

dγ ′
1

dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A ×

⎛

⎜⎜⎜⎜⎜⎜⎝

x ′
y′
z′
α′

1
β ′

1
γ ′

1

⎞

⎟⎟⎟⎟⎟⎟⎠
, (24)

where

A=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ1
2 0 0 1 0 0
0 λ1

2 0 0 1 0
0 0 λ1

2 0 0 1
(Uαα)0 (Uαβ)0 (Uαγ )0

λ1
2 2n 0

(Uβα)0 (Uββ)0 (Uβγ )0 −2n λ1
2 0

(Uγα)0 (Uγβ)0 (Uγ γ )0 0 0 λ1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

In this problem, the locations of both primaries are
invariant and their distances to the equilibrium points
are invariable. Therefore stability of (24) and (7) will

be consistent with each other. Thus, stability of this
solution depends on the existence of stable region of the
equilibrium point, which in turn depends on the bound-
edness of the solution of linear and homogenous system
of equation (24).

And hence, the characteristic equation of the
coefficient matrix A is

64λ6−192λ5λ1+λ4(256n2−64Uαα−64Uββ −64Uγ γ

+240λ2
1) + λ3(128nUαβ − 128nUβα − 512n2λ1

+128Uααλ1 + 128Uββλ1 + 128Uγ γ λ1 − 160λ3
1)

+λ2(−64UαβUβα + 64UααUββ

−64UαγUγα − 64UγβUβγ

−256n2Uγ γ + 64UααUγ γ + 64UββUγ γ

−192nUαβλ1 + 192nUβαλ1 + 384n2λ2
1

−96Uααλ2
1 − 96Uββλ2

1 − 96Uγ γ λ2
1 + 60λ4

1)

+λ(−128nUβγUγα + 128nUαγUγβ

−128nUαβUγ γ + 128nUβαUγ γ + 64UαβUβαλ1
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Table 3. Co-ordinates of out-of-plane equilibrium points and the corresponding characteristic roots (β − γ -plane) when
both the primaries are heterogeneous oblate spheroid with three layers of different densities, and infinitesimal body varies its
mass.

ε Equilibrium points Corresponding six characteristic roots

1.30 (0, 5.26660839) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433)

(0, –5.26660839) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433)

(1.03104501, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.10000000 – 0.99999990 I, 0.10000000 + 0.99999990 I,
0.60907807 – 0.86264731 I, 0.60907807 + 0.86264731 I)

(–1.03104501, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.09999999 – 0.99999990 I, 0.09999999 + 0.99999990 I,
0.60907807 – 0.86264731 I, 0.60907807 + 0.86264731 I)

(0, 0) (–7.10682554, 0.09999999 – 5.17595982 I, 0.09999999 +
5.17595982 I, 0.10000000 – 5.20747240 I, 0.10000000 +
5.20747240 I, 7.30682554)

1.00 (–0.90783638, 0) (–0.40860312 – 0.86526125 I, –0.40860312 + 0.86526125
I, 0.09999999 – 0.99498734 I, 0.09999999 + 0.99498734 I,
0.60860312 – 0.86526125 I, 0.60860312 + 0.86526125 I)

(0, 0) (–7.10682554, 0.09999999 – 5.20747240 I, 0.09999999 +
5.20747240 I, 0.10000000 – 5.17595982 I, 0.10000000 +
5.17595982 I, 7.30682554)

(0.90783638, 0) (–0.40860312 – 0.86526125 I, –0.40860312 + 0.86526125
I, 0.10000000 – 0.99498734 I, 0.10000000 + 0.99498734 I,
0.60860312 – 0.86526125 I, 0.60860312 + 0.86526125 I)

0.60 (0, 3.57795584) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433),

(0, –3.57795584) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433)

(–0.70045715, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.09999999 – 0.99999990 I, 0.09999999 + 0.99999990 I,
0.60907807 – 0.86264731 I, 0.60907807 + 0.86264731 I),

(0.70045715, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.09999999 – 0.99999990 I, 0.09999999 + 0.99999990 I,
0.60907807 – 0.86264731 I, 0.60907807 + 0.86264731 I)

(0, 0) (–7.10682554, 0.09999999 – 5.17595982 I, 0.09999999 +
5.17595982 I, 0.10000000 – 5.20747240 I, 0.10000000 +
5.20747240 I, 7.30682554)

0.30 (0.49529800, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.09999999 – 0.99999990 I, 0.09999999 + 0.99999990 I,
0.6090780730 – 0.86264731 I, 0.60907807 + 0.86264731 I)

(–0.49529800, 0) (–0.40907807 – 0.86264731 I, –0.40907807 + 0.86264731
I, 0.09999999 – 0.99999990 I, 0.09999999 + 0.99999990 I,
0.60907807 – 0.86264731 I, 0.60907807 + 0.86264731 I)

(0, 0) (–7.10682554, 0.10000000 – 5.20747240 I, 0.10000000 +
5.20747240 I, 0.10000000 – 5.17595982 I, 0.10000000 +
5.17595982 I, 7.30682554)
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Table 3. Continued.

ε Equilibrium points Corresponding six characteristic roots

(0, 2.52999683) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433)

(0, –2.52999683) (–0.07237433, 0.08801932 – 1.00000001 I, 0.08801932 +
1.00000001 I, 0.11198067 – 1.00000001 I, 0.11198067 +
1.00000001 I, 0.27237433).

−64UααUββλ1 + 64UαγUγαλ1 + 64UβγUγβλ1

+256n2Uγ γ λ1 − 64UααUγ γ λ1 − 64UββUγ γ λ1

+96nUαβλ2
1 − 96nUαβλ2

1 − 128n2λ3
1 + 32Uααλ3

1

+32Uββλ3
1 + 32Uγ γ λ3

1 − 12λ5
1) + (64UαγUββUγα

−64UαβUβγUγα−64UαγUβαUγβ + 64UααUβγUγβ

+64UαβUβαUγ γ −64UααUββUγ γ + 64nUβγUγαλ1

−64nUαγUγβλ1 + 64nUαβUγ γ λ1 − 64nUγ γUβαλ1

−16UαβUβαλ2
1 + 16UααUββλ2

1 − 16UαγUγαλ2
1

−16UβγUγβλ2
1 − 64n2Uγ γ λ2

1 + 16UααUγ γ λ2
1

+16UββUγ γ λ2
1−16nUαβλ3

1+16nUβαλ3
1 + 16n2λ4

1

−4Uααλ4
1 − 4Uββλ4

1 − 4Uγ γ λ4
1 + λ6

1) = 0. (25)

The stability of the system depends upon the nature of
the roots of the characteristic equation (25). And when
some or all of the characteristic roots have positive real
parts, the equilibrium point is unstable. The character-
istic roots have been calculated at various values of the
mass parameter ε in three planes and given in the Tables
1–3. We observed from the tables that there are at least
one positive real root (marked in bold in the tables) or
having positive real part corresponding to each equilib-
rium points. Therefore, all the equilibrium points either
in-plane or out-of-planes are unstable.

10. Conclusion

We have investigated the effect of variation of mass of
infinitesimal body in the circular restricted three-body
problem with heterogeneous primaries having three lay-
ers with different densities. After deriving the equations
of motion, we have evaluated the Jacobi-integral and
then we have illustrated equilibrium points in differ-
ent planes (in-plane and out-of-planes), zero-velocity
curves, regions of motion, zero-velocity surfaces with

projections, Poincaré surfaces of section and basins of
convergence for the variation of mass parameters. We
found at most five equilibrium points in all the planes
except for ε = 1 which is the case when the mass
is constant (Suraj et al. 2018). We have plotted the
zero-velocity curves, regions of motion, zero-velocity
surfaces with projections corresponding to each equi-
librium point by finding the Jacobian constant and got
different figures for each Jacobian constant. We also
have drawn the Poincaré surfaces of the section in three
planes and observed that as the values of mass parameter
decrease, the curves corresponding to each value shrink.
Then we studied the basins of convergence in all three
planes (α − β, α − γ and β − γ ) and we observed that
all the basins formed by the attractors extend to infinity.
Finally, we have examined the stability of the equi-
librium points using Meshcherskii space–time inverse
transformation and found that all the equilibrium points
are unstable.

We also observed that the variation of mass
parameters have great impact on the motion of the
infinitesimal variable body in the circular restricted
three-body problem when the primaries are heteroge-
neous oblate spheroid with three layers of different
densities.

Furthermore, we can extend this work to four- and
five-body problems.
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