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Abstract. Tomographicintensity mapping of the HI using the redshifted
21-cm observations opens up a new window towards our understanding of
cosmological background evolution and structure formation. This is a key
science goal of several upcoming radio telescopes including the Square
Kilometer Array (SKA). In this article, we focus on the post-reionization
signal and investigate the cross correlating of the 21-cm signal with other
tracers of the large scale structure. We consider the cross-correlation of
the post-reionization 21-cm signal with the Lyman-α forest, Lyman-break
galaxies and late time anisotropies in the CMBR maps like weak lensing
and the integrated Sachs Wolfe effect. We study the feasibility of detecting
the signal and explore the possibility of obtaining constraints on
cosmologicalmodels using it.

Key words. Cosmology: theory—large-scale structure of Universe—
cosmology: diffuse radiation—cosmology: dark energy.

1. Introduction

The tomographic intensity mapping of the neutral hydrogen (HI) distribution through
redshifted HI 21-cm signal observation is an important probe of cosmological evo-
lution and structure formation in the post-reionization epoch (Bharadwaj & Sethi
2001; Wyithe & Loeb 2009; Loeb & Wyithe 2008; Chang et al. 2008). The astro-
physical processes in the epoch of reionization is now believed to have completed
by redshift z ∼ 6 (Fan et al. 2006). In the post-reionization era most of the neu-
tral HI gas are housed in the Damped Ly-α (DLA) systems. These DLA clouds are
the predominant source of the HI 21-cm signal. Intensity mapping involves a low
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resolution imaging of diffuse HI 21-cm radiation background without resolving the
individual DLAs. Such a tomographic imaging shall naturally provide astrophysical
and cosmological data regarding the large scale matter distribution, structure for-
mation and background cosmic history in the post-reionization epoch (Chang et al.
2008; Wyithe 2008; Bharadwaj et al. 2009; Camera et al. 2013; Bull et al. 2015).
Several functioning and upcoming radio interferometric arrays like Giant Metrewave
Radio Telescope (GMRT)1, the Ooty Wide Field Array (OWFA) (Ali & Bharadwaj
2014), the Canadian Hydrogen Intensity Mapping Experiment (CHIME)2, the Meer-
Karoo Array Telescope (MeerKAT)3, the Square Kilometer Array (SKA)4 are aimed
towards detecting the cosmological 21-cm background radiation. Detecting the 21-
cm signal, is however extremely challenging. This is primarily because of the large
astrophysical foregrounds (Santos et al. 2005; Di Matteo et al. 2002; Ghosh et al.
2010) from galactic and extra-galactic sources which are several orders of magnitude
greater than the signal.

Cross-correlating the 21-cm signal with other probes may be useful towards mit-
igating the severe effect of foreground contaminants and other systematic effects
which plague the signal. The main advantage of cross-correlation is that the cos-
mological origin of the signal can only be ascertained only if it is detected with
high statistical significance in cross-correlation. Cosmological parameter estimation
often involves a joint analysis of two data sets and this would require not only the
auto-correlation but also cross-correlation information. Further, the two different
probes may focus on specific k-modes with high signal-to-noise ratio and in such
cases the cross-correlation signal takes advantage of the different probes simulta-
neously. This has been studied extensively in the case of the BAO (Guha Sarkar
& Bharadwaj 2013). It is to be noted that if the observations of the distinct probes
are perfect, there shall be no new advantage of using the cross correlation. How-
ever, we expect the first generation observations of the redshifted HI 21-cm signal to
have large systematic errors and foreground residuals. For a detection of the 21-cm
signal and subsequent cosmological investigations, these measurements can be
cross-correlated with other large scale structure tracers to yield information from the
21-cm signal which may not be possible to obtain using the low SNR auto correla-
tion signal. In this article, we consider the cross-correlation of the 21-cm signal with
the Ly-α flux distribution. On large scales, both the Ly-α forest absorbed flux and
the redshifted 21-cm signal are believed to be biased tracers of the underlying Dark
Matter (DM) distribution (McDonald 2003; Bagla et al. 2010; Guha Sarkar et al.
2012; Villaescusa-Navarro et al. 2014). The clustering of these signals, is then, di-
rectly related to the underlying dark matter power spectrum. We investigate the pos-
sibility of using the cross-correlation of the 21-cm signal and the Ly-α forest for
cosmological parameter estimation, neutrino mass measurement, studying BAO fea-
tures and primordial bispectrum. We also investigate the possibility of correlating
the post-reionization 21-cm signal with CMBR maps like the weak lensing and ISW
anisotropies.

1http://gmrt.ncra.tifr.res.in/
2http://chime.phas.ubc.ca/
3http://www.ska.ac.za/meerkat/
4https://www.skatelescope.org/
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2. Cross-correlation between cosmological signals (general formalism)

Consider two cosmological fields A(k) and B(k). These could, for example, represent
two tracers of large scale structure. We define the cross correlation estimator Ê as
follows:

Ê = 1

2
[AB∗ + BA∗]. (1)

We note that A and B can be complex fields. We are interested in the variance

σ 2
Ê

= 〈Ê2〉 − 〈Ê〉2
. (2)

Noting that 〈A(k) A(k)〉 = 〈A(k) A∗(−k)〉 = 0, we have

〈Ê2〉 = 1

2
[〈AA∗〉〈BB∗〉 + |〈AB〉|2 + 3 |〈AB∗〉|2]. (3)

Further, the term 〈AB〉 can be dropped since

〈A(k)B(k)〉 = 〈A(k)B∗(−k)〉 = Cδk,−k = 0. (4)

This gives

σ 2
Ê

= 〈Ê2〉 − 〈Ê 〉2 = 1

2
[〈AA∗〉〈BB∗〉 + |〈AB〉|2]. (5)

The variance is suppressed by a factor of Nc for that many number of independent
estimates. Thus, finally we have

σ 2
Ê

= 1

2Nc

[〈AA∗〉〈BB∗〉 + |〈AB〉|2]. (6)

3. Cross-correlation of post-reionization 21-cm signal with Lyman- α forest

Neutral gas in the post-reionization epoch produces distinct absorption features in the
spectra of background quasars (Rauch 1998). The Ly-α forest traces the HI density
fluctuations along one-dimensional quasar lines-of-sight. The Ly-α forest observa-
tions finds several cosmological applications (Croft et al. 1999b; Mandelbaum et al.
2003; Lesgourgues et al. 2007; Croft et al. 1999a; McDonald & Eisenstein 2007;
Gallerani et al. 2006). On large cosmological scales, the Ly-α forest and the red-
shifted 21-cm signal are, both expected to be biased tracers of the underlying dark
matter (DM) distribution (McDonald 2003; Bagla et al. 2010; Guha Sarkar et al.
2012; Villaescusa-Navarro et al. 2014). This allows to study their cross clustering
properties in n-point functions. Also the Baryon Oscillation Spectroscopic Survey
(BOSS)5 is aimed towards probing the dark energy through measurements of the
BAO signature in Ly-α forest (Delubac et al. 2014). The availability of Ly-α forest
spectra with high signal-to-noise ratio for a large number of quasars from the BOSS
survey allows 3D statistics to be done with Ly-α forest data (Pâris et al. 2014; Slosar
et al. 2011).

5https://www.sdss3.org/surveys/boss.php
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Detection these signals are observationally challenging. For the HI 21-cm, a detec-
tion of the signal requires careful modeling of the foregrounds (Ghosh et al. 2011;
Alonso et al. 2015). Some of the difficulties faced by Ly-α observations include
proper modelling of the continuum, fluctuations of the ionizing sources, poor mod-
eling of the temperature-density relation (McDonald et al. 2001) and metal lines
contamination in the spectra (Kim et al. 2007). The two signals are tracers of
the underlying dark matter distribution. Thus they are correlated on large scales.
However foregrounds and other systematics are uncorrelated between the two inde-
pendent observations. Hence, the cosmological nature of a detected signal can be
only ascertained in a cross-correlation. The 2D and 3D cross correlation of the red-
shifted HI 21-cm signal with other tracers such as the Ly-α forest, and the Lyman
break galaxies have been proposed as a way to avoid some of the observational issues
(Guha Sarkar et al. 2011; Villaescusa-Navarro et al. 2015). The foregrounds in HI
21-cm observations appear as noise in the cross correlation and hence, a significant
degree foreground cleaning is still required for a detection.

We use δT to denote the redshifted 21-cm brightness temperature fluctuations and
δF as the fluctuation in the transmitted flux through the Ly-α forest. We write δF and
δT in Fourier space as

δa(r) =
∫

d3k
(2π)3

eik.r�a(k) , (7)

where a = F and T refer to the Ly-α forest transmitted flux and 21-cm brightness
temperature respectively. On large scales, we may write

�a(k) = Ca[1 + βaμ
2]�(k), (8)

where �(k) is the dark matter density contrast in Fourier space and μ denotes the
cosine of the angle between the line-of-sight direction n̂ and the wave vector (μ =
k̂ · n̂). βa is similar to the linear redshift distortion parameter. The corresponding
power spectra are

Pa(k, μ) = C2
a [1 + βaμ

2]2P(k), (9)

where P(k) is the dark matter power spectrum.
For the 21-cm brightness temperature fluctuations, we have

CT = 4.0 mK bT x̄HI(1 + z)2
(

�b0h
2

0.02

) (
0.7

h

) (
H0

H(z)

)
. (10)

The neutral hydrogen fraction x̄HI is assumed to be a constant with a value x̄HI =
2.45 × 10−2 (Lanzetta et al. 1995; P’eroux et al. 2003; Noterdaeme et al. 2009). For
the HI 21-cm signal, the parameter βT is the ratio of the growth rate of linear pertur-
bations f (z) and the HI bias bT . The 21-cm bias is assumed to be a constant. This
assumption of linear bias is supported by several independent numerical simulations
(Bagla et al. 2010; Guha Sarkar et al. 2012) which shows that over a wide range of
k modes, a constant bias model adequately describes the 21-cm signal for z < 3.
We have adopted a constant bias bT = 2 from simulations (Bagla et al. 2010; Guha
Sarkar et al. 2012; Villaescusa-Navarro et al. 2014). For the Ly-α forest, βF can not
be interpreted in the usual manner as βT . This is because Ly-α transmitted flux and
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the underlying dark matter distribution (Slosar et al. 2011) do not have a simple
linear relationship. The parameters (CF , βF ) are independent of each other.

We adopt approximately (CF , βF ) ≈ (−0.15, 1.11) from the numerical simula-
tions of Ly-α forest (McDonald 2003). We note that for cross-correlation studies the
Ly-α forest has to be smoothed to the observed frequency resolution of the HI 21-cm
frequency channels.

We now consider the 3D cross-correlation power spectrum of the HI 21-cm signal
and Ly-α forest flux. We consider an observational survey volume V which on the
sky plane consists of a patch L × L and of line-of-sight thickness l along the radial
direction. We consider the flat sky approximation. The Ly-α flux fluctuations are
now written as a 3-D field

δF (�r) =
[
F(�r) − F̄

F̄

]
. (11)

The observed quantity is δFo(�r) = δFo(�r)×ρ(�r), where the sampling function ρ(�r)
is defined as

ρ(�r) =
∑

a wa δ2
D(�r⊥ − �r⊥a)

l
∑

a wa

(12)

and is normalized to unity (
∫

dVρ(�r) = 1). The summation as before extends up
to N . The weights wa shall, in general, be related to the pixel noise. However, for
measurements of transmitted height SNR flux, the effect of the weight functions can
be ignored. With this simplification we have used wa = 1, so that

∑
a wa = N . In

Fourier space, we have

�F (�k) =
∫ L/2

−L/2

∫ L/2

−L/2

∫ l/2

−l/2
d2 �r⊥dr‖ ei�k·�r δF (�r). (13)

One may relate �k⊥ to �U as �k⊥ = 2π �U
r

. We have, in Fourier space,

�Fo(�k) = ρ̃(�k) ⊗ �F (�k) + �NF (�k), (14)

where ρ̃ is the Fourier transform of ρ and ⊗ denotes a convolution defined as

ρ̃(�k) ⊗ �F (�k) = 1

V

∑
�k′

ρ̃(�k − �k′)�F (�k′). (15)

�NF (�k) denotes a possible noise term. Similarly the 21-cm signal in Fourier space
is written as

�T o(�k) = �T (�k) + �NT (�k), (16)

where �NT is the corresponding noise.
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The cross-correlation 3-D power spectrum Pc(�k) for the two fields is defined as

〈�F (�k)�∗
T (�k′)〉 = V Pc(�k)δ�k,�k′ (17)

Similarly, we define the two auto-correlation multi frequency angular power spectra,
PT (�k) for 21-cm radiation and PF (�k) for Lyman-α forest flux fluctuations as

〈�T (�k)�∗
T (�k′)〉 = V PT (�k)δ�k,�k′, (18)

〈�F (�k)�∗
F (�k′)〉 = V PF (�k)δ�k,�k′ . (19)

We define the cross-correlation estimator Ê as

Ê(�k, �k′) = 1

2
[�Fo(�k)�∗

T o(
�k′) + �∗

Fo(
�k)�T o(�k′)]. (20)

We are interested in the various statistical properties of this estimator. Using the
definitions of �Fo(�k) and �T o(�k), we have the expectation value of Ê as

〈Ê(�k, �k′)〉 = 1

2
〈[ρ̃(�k) ⊗ �F (�k) + �NF (�k)] × [�∗

T (�k′) + �∗
NT (�k′)]〉

+1

2
〈[ρ̃∗(�k) ⊗ �F

∗(�k) + �∗
NF (�k)] × [�T (�k′) + �NT (�k′)]〉. (21)

We assume that the quasars are distributed in a random fashion, are not clustered and
the different noises are uncorrelated. Further, we note that the quasars are assumed
to be at a redshift different from the rest of the quantities and hence ρ is uncorrelated
with both �T and �F . Therefore we have

〈Ê(�k, �k′)〉 = 1

V

∑
�k′′

〈ρ̃(�k − �k′′)〉 × V PFT (�k′′)δ�k′′,�k′ . (22)

Noting that
〈ρ̃(�k)〉 = δ�k⊥,0δ�k‖,0, (23)

we have

〈Ê(�k, �k′)〉 = PFT (�k)δ�k,�k′ . (24)

Thus, the expectation value of the estimator faithfully returns the quantity we are
probing, namely the 3-D cross-correlation power spectrum PFT (�k).

We next consider the variance of the estimator Ê defined as

σ 2
Ê = 〈Ê2〉 − 〈Ê〉2

, (25)

σ 2
Ê = 1

2
〈�Fo(�k)�∗

Fo(
�k)〉〈�T o(�k′)�∗

T o(
�k′)〉 + 1

2
|〈�Fo(�k)�∗

T o(
�k′)〉|2 (26)
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We saw that

〈�Fo(�k)�∗
T o(

�k′)〉 = PFT (�k)δ�k,�k′ (27)

and we note that

〈�T o(�k)�∗
T o(

�k)〉 = V [PT (�k) + NT (�k)], (28)

where NT is the 21-cm noise power spectrum. We also have for the Ly-α forest

〈�Fo(�k)�∗
Fo(

�k)〉 = 〈ρ̃(�k) ⊗ �F (�k) ρ̃∗(�k) ⊗ �F
∗(�k)〉 + NFL2, (29)

where NF is the noise power spectrum corresponding to the Ly-α flux fluctuations.
Using the relation

〈ρ̃(�k)ρ̃∗( �k′)〉 = 1

N
δ �k⊥, �k′⊥

δk‖,0δk′‖,0 +
(

1 − 1

N

)
δ�k,0δ �k′,0, (30)

we have

〈�Fo(�k)�∗
Fo(

�k)〉= 1

V 2

∑
�k1, �k2

〈ρ̃(�k−�k1)ρ̃
∗(�k−�k2)〉〈�F (�k1⊥, k1‖)�∗

F (�k2⊥, k2‖)〉 (31)

or

〈�Fo(�k)�∗
Fo(

�k)〉 = 1

V 2

∑
�k1, �k2

δ
(�k− �k1),0

δ
(�k− �k2),0

+ 1

N
(δ

( �k⊥− �k1⊥),( �k⊥− �k2⊥)
δ(k‖−k1‖),(k‖−k2‖))

×〈�F (�k1⊥, k1‖)�∗
F (�k2⊥, k2‖)〉 (32)

This gives

σ 2
Ê = 1

2

⎡
⎣ 1

N

∑
�k⊥

PF (�k) + PF (�k) + NF

⎤
⎦ × [PT (�k) + NT ] + 1

2
P 2
FT . (33)

Writing the summation as an integral, we get

σ 2
Ê = 1

2

[
1

n̄

(∫
d2 �k⊥ PF (�k)

)
+ PF (�k) + NF

]
× [PT (�k) + NT ] + 1

2
P 2
FT ,

where n̄ is the angular density of quasars and n̄ = N/L2. We assume that the vari-
ance σ 2

FN of the pixel noise contribution to δF is a constant and is same across all
the quasar spectra whereby we have NF = σ 2

FN/n̄ for its noise power spectrum.
An uniform weighing scheme for all quasars is a good approximation when most of
the spectra are measured with a sufficiently high SNR (McQuinn & White 2011).
We have not incorporated quasar clustering which is supposed to be sub-dominant
as compared to Poisson noise. In reality, the clustering would enhance the term
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(P 1D
FF (k‖)P 2D

w +NF ) by a factor (1+n̄CQ(k⊥)), where CQ(k⊥) is the angular power
spectrum of the quasars (Myers et al. 2007).

For a radio-interferometric measurement of the 21-cm signal, we have (McQuinn
et al. 2006; Wyithe et al. 2008)

NT (k, ν) = T 2
sys

Bt0

(
λ2

Ae

)2
r2
ν L

nb(U, ν)
(34)

Here Tsys denotes the system temperature. B is the observation bandwidth, t0 is the
total observation time, rν is the comoving distance to the redshift z, nb(U, ν) is the
density of baseline U , and Ae is the effective collecting area of each antenna.

3.1 The cross correlation signal and constraints with SKA

We investigate the possibility of detecting the signal using the upcoming SKA-mid
phase1 telescope and future Ly-α forest surveys with very high quasar number den-
sities. Two separate telescopes named SKA-low and SKA-mid operating at two
different frequency bands will be constructed in Australia and South Africa respec-
tively in two phases. For this work, we consider the instruments SKA1-mid which
will be built in phase 1. The instrument specifications such as the total number of
antennae, antenna distribution, frequency coverage, total collecting area etc., have
not been fixed yet and might change in future. We use the specifications considered
in the ‘Baseline Design Document’ and ’SKA Level 1 Requirements (revision 6)’
which are available on the SKA website6. We assume that the SKA1-mid will oper-
ate in the frequency range from 350 MHz to 14 GHz. It shall have 250 antennae of
7.5 m radius each. We use the baseline distribution given in figure 6 – blue line of
Villaescusa-Navarro et al. (2015) for the calculation presented here. We note that,
the baseline distribution used here is consistent with the projected antenna that lay-
out distribution with 40, 54, 70, 81 and 100% of the total antennae that are assumed
to be enclosed within 0.4, 1, 2.5, 4 and 100 km radius respectively.

The fiducial redshift of z = 2.5 is justified since the quasar distribution peaks in
the range 2 < z < 3. Only a smaller part of the quasar spectra corresponding to an
approximate band �z ∼ 0.4 is used to avoid contamination from metal lines and
quasar proximity effect. The cross-correlation can however only be computed in the
region of overlap between the 21-cm signal and the Ly-α forest field.

Figure 1(a) shows the dimensionless redshift space 21-cm power spectrum
(�2

T (k⊥, k||) = k3PT (k⊥, k||)/2π2) at z = 2.5. We can see that the power spectrum
is not circularly symmetric in the (k||, k⊥) plane. The asymmetry is related to the red-
shift space distortion parameter. Figure 1(b) shows the 21-cm and Ly-α cross-power
spectrum.

We first consider that a perfect foreground subtraction is achieved. The left panel
of Fig. 2 shows the contours of SNR for the 21-cm auto correlation power spectrum
for a 400 h observation and a total bandwidth of 32 MHz at a frequency 405.7 MHz.
We have taken a bin (�k, �θ) = (k/5, π/10). The SNR reaches the peak (>20)
at intermediate value of (k⊥, k‖) = (0.4, 0.4) Mpc−1. We find that 5σ detection is
possible in the range 0.08 � k⊥ � 0.6 Mpc−1 and 0.1 � k‖ � 1.5 Mpc−1. The range

6https://www.skatelescope.org/key-documents/

https://www.skatelescope.org/key-documents/
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Figure 1. Figure shows the power spectrum in 3D redshift space at z = 2.5. (a) The HI 21-cm
power spectrum �2

T = k3PT T (k)/2π2 and (b) the 3D cross-correlation power spectrum �2
C =

k3PTF (k)/2π2. The redshift space distortion reveals the departure from spherical symmetry
of the power spectrum (Guha Sarkar et al. 2012).

for the 10σ detection is 0.12 � k⊥ � 0.5 Mpc−1 and 0.2 � k‖ � 1.2 Mpc−1. At
lower values of k the noise is expected to be dominated by cosmic variance whereas,
the noise is predominantly of instrumental origin at large k.

The right panel of Fig. 2 shows the SNR contours for the Ly-α 21-cm cross-
correlation power spectrum. For the 21-cm signal, a 400 h observation is considered.
We have taken n̄ = 30 deg−2, and the Ly-α spectra are assumed to be measured
at a 2σ sensitivity level. We use βF to be 1.11 and overall normalization factor
CF = −0.15 consistent with recent measurements (Slosar et al. 2011). Although

Figure 2. The left panel shows SNR contours for the 21-cm auto-correlation power spectrum
in redshift space at z = 2.5. We have considered a 400 h observation at 405 MHz and assumed
that complete foreground cleaning is done. The right panel shows the SNR contours for the
cross-correlation signal (Guha Sarkar et al. 2012).
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the overall SNR for the cross-power spectrum is lower compared to the 21-cm auto
power spectrum, 5σ detection is ideally possible for the 0.1 � k⊥ � 0.4 Mpc−1 and
0.1 � k‖ � 1 Mpc−1. The SNR peaks (>10) at (k⊥, k‖) ∼ (0.2, 0.3) Mpc−1. The
error in the cross-correlation can be reduced either by increasing the QSO number
density or by increasing the observing time for HI 21-cm survey. The QSO number
density is already in the higher side for the BOSS survey that we consider. The only
way to reduce the variance is to consider more observation time for HI 21-cm survey
and enhance the volume of the survey.

3.2 Parameter estimation using cross-correlation

We now consider the precision at which we can constrain various model parameters
using the Fisher matrix analysis. Figure 3 shows the 68.3, 95.4 and 99.8% confidence
contours obtained using the Fisher matrix analysis for the parameters A, βT , βF , �.
Table 1 summarizes the 1 − σ error for these parameters. The parameters (�, A)

are constrained much better than βF and βT at 3.5% and 8%. The error projections
presented here are for a single field of view radio observation. The noise scales as
σ/

√
N , where N is the number of pointings.

Figure 3. The 68.3, 95.4 and 99.8% confidence ellipses for the parameters A, βT , βF ,�

(Guha Sarkar et al. 2012).

Table 1. 1 − σ error on various cosmological parameters for a
single field observation.

1σ error 1σ error
Parameters Fiducial value (marginalized) (conditional)

βT 0.48 1.06 0.04
βF 1.11 1.55 0.05
� 0.73 0.025 0.013
A 0.114 0.01 0.002
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We also consider conditional error on each of the parameters assuming that the
other three are known. The projected 1 − σ error in βT and βF are 8.5 and 4.5%
respectively for single pointing. For 10 independent radio observations the condi-
tional errors improve to 2.7, 1.4, 0.4 and 0.6% for βT , βF , � and A respectively.
These constraints on the redshift space distortion parameters β from our cross-
correlation analysis are found to be quite competitive with other cosmological probes
(Font-Ribera et al. 2012; Slosar et al. 2011). Further, we note that higher density of
QSOs and improved SNR for the individual QSO spectra shall also provide stronger
constraints.

3.3 BAO imprint on the cross-correlation signal

The characteristic scale of the BAO is set by the acoustic horizon s at the epoch of
recombination The comoving length-scale s defines an angular scale θs = s[(1 +
z)DA(z)]−1 in the transverse direction and a radial redshift interval �zs = sH(z)/c,
where DA(z) and H(z) are the angular diameter distance and Hubble parameter
respectively. The comoving acousic horizon scale s = 143 Mpc correspond to an
angle θs = 1.38◦ and reshift interval �zs = 0.07 at redshift z = 2.5. Measurement
of θs and �zs separately, allows the determination of DA(z) and H(z) separately and
thereby constrain background cosmological evolution. Here we consider the possi-
bility of measurement of these two parameters from the imprint of BAO features on
the cross-correlation power spectrum.

The Fisher matrix is given by (Guha Sarkar & Bharadwaj 2013)

Fij = V

(2π)3

∫
d3k

[P 2
FT (k) + PFFo(k)PT T o(k)]

∂PFT (k)

∂qi

∂PFT (k)

∂qj

, (35)

where qi refer to the cosmological parameters to be constrained. This BAO sig-
nal is mainly present at small k (large scales) with the first peak at roughly k ∼
0.045 Mpc−1. The subsequent oscillations are highly suppressed by k ∼ 0.3 Mpc−1

which is within the limits of the k⊥ and k‖ integrals. We use Pb = P − Pc to isolate
the purely baryonic features, and we use this in ∂P (k)/∂qi . Here, Pc is the CDM
power spectrum without the baryonic features. This gives

Pb(k) =
√

8π2A
sin x

x
exp

[
−

(
k

ksilk

)1.4
]

exp

[
−

(
k2

2k2
nl

)]
(36)

where ksilk and knl denotes the scale of silk-damping and non-linearity respectively.
We have used knl = (3.07 h−1Mpc)−1 and ksilk = (7.76 h−1Mpc)−1 from Seo &

Eisenstein (2007). The quantity x =
√

k2⊥s2⊥ + k2‖s2‖ , where s⊥ and s‖ corresponds

to θs and �zs in units of distance. A is an overall normalization constant. The value
of s is well constrained from CMBR data. Changes in DA and H(z) manifest as the
corresponding changes in the values of s⊥ and s‖ respectively, and thus the fractional
errors in s⊥ and s‖ correspond to fractional errors in DA and H(z) respectively.
We choose q1 = ln(s−1

⊥ ) and q2 = ln(s‖) as the cosmological parameters to be
constrained, and determine the precision at which it will be possible to measure
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these using the BAO imprint in the cross-correlation power spectrum. We use the
formalism outlined in Seo & Eisenstein (2007), whereby we construct the 2 − D

Fisher matrix

Fij = V A2
∫

dk

∫ 1

−1
dμ

k2 exp[−2(k/ksilk)
1.4 − (k/knl)

2]
[P 2

FT (k) + PFFo(k)PT T o(k)/F 2
FT (μ)]fi(μ)fj (μ),

(37)

FFT (μ) = H(z)

r2c
CFCT (1 + βFμ2)(1 + βT μ2), (38)

where f1 = μ2 − 1 and f2 = μ2. The Cramer–Rao bound δqi =
√

F−1
ii is used to

calculate the maximum theoretical error in the parameter qi . A combined distance
measure DV, also referred to as the ‘dilation factor’ (Eisenstein et al. 2005)

DV(z)3 = (1 + z)2DA(z)
cz

H(z)
(39)

is often used as a single parameter to quantify BAO observations. We use δDV/

DV = 1
3 (4F−1

11 + 4F−1
12 + F−1

22 )0.5 to obtain the relative error in DV. The dilation
factor is known to be particularly useful when the individual measurements of DA
and H(z) have low signal-to-noise ratio.

The Fisher matrix formalism is used to determine the accuracy with which it will
be possible to measure cosmological distances using this cross-correlation signal.

The limits n̄Q → ∞ and NT → 0, which correspond to PFFo → PFF and
PT T o → PT T , sets the cosmic variance–cosmic variance limit. In this limit, where
the SNR depends only on the survey volume corresponding to the total field-of-view
we have δDV/DV = 0.15%, δH/H = 0.25% and DA/DA = 0.15% which are
independent of any of the other observational details. The fractional errors decrease
slowly beyond n̄Q > 50 deg−2 or NT < 10−6 mK2. We find that parameter values
n̄Q ∼ 6 deg−2 and NT ∼ 4.7 × 10−5 mK2, attainable with BOSS and SKA1-mid
are adequate for a 1% accuracy, whereas n̄Q ∼ 2 deg−2 and NT ∼ 3 × 10−3 mK2

are adequate for ∼10 % accuracy in measurement of DV. With a BOSS-like
survey, it is possible to achieve the fiducial value δDV/DV = 2.0% from the cross-
correlation at NT = 2.9 × 10−4 mK2. The error varies slower than

√
NT in the range

NT = 10−4 mK2 to NT = 10−5 mK2. We have (δDV/DV, δDA/DA, δH/H) =
(1.3, 1.5, 1.3) % and (0.67, 0.78, 0.74) % at NT = 10−4 mK2 and at NT =
10−5 mK2, respectively. The errors do not significantly go down much further for
NT < 10−5 mK2, and we have (0.55, 0.63, 0.63) % at NT = 10−6 mK2.

3.4 Constraints on neutrino mass

Free streaming of neutrinos causes a power suppression on large scales. This sup-
pression of dark matter power spectrum shall imprint itself on the cross-correlation
of Ly-α forest and 21-cm signal (Pal & Guha Sarkar 2016). We have suggested
this as a possible way to constrain neutrino mass. We have considered a BOSS
like Ly-α survey with a quasar density of 30 deg−2 with an average 3σ sensitivity
for the measured spectra. We have also assumed a 21-cm intensity mapping exper-
iment at a fiducial redshift z = 2.5 corresponding to a frequency 406 MHz
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Figure 4. 68.3, 95.4 and 99.8 ellipse for 10000 h. Observations for 25 pointings with each
pointing of 400 h. observations. The marginalized one-dimensional probability distribution
function for �m and �ν are also shown (Pal & Guha Sarkar 2016).

using a SKA1-mid like instrument with 250 dishes each of diameter 15 m. We
have assumed (�, �m, �r, h,

∑
i mi) = (0.6825, 0.3175, 0.00005, 0.6711, 0.1 eV)

(Planck Collaboration et al. 2014) for this analysis. The Fisher matrix analysis using
a two parameter (�m · �ν) shows that for a 10.000 h radio observation distributed
over 25 pointings of 400 h each, the parameters �m and �ν are measurable at 0.321%
and 3.671%, respectively (see Fig. 4). We find it significant that instead of a deep
long duration observation in one small field-of-view, it is much better if one divides
the total observation time over several pointings and thereby increasing survey vol-
ume. For 100 pointings each of 100 h one can get a 2.36% measurement of �ν . This
is close to the cosmic variance limit at the fiducial redshift and the given observa-
tions. In the ideal limit, one may measure �ν at a 2.45% level which corresponds to
a measurement of

∑
mν at the precision of (0.1 ± 0.012) eV.

4. Cross-correlation with Lyman break galaxies

The cross-correlation between the HI 21-cm signal and the Lyman break galaxies
is another important tool to probe the large scale structure of the Universe at post-
reionization epoch. This has been studied recently (Villaescusa-Navarro et al. 2015)
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using a high resolution N-body simulation. Prospects for detecting such a signal
using the SKA1-mid and SKA1-low telescopes together with a Lyman break galaxy
spectroscopic survey with the same volume have also been investigated. It is seen
that the cross power spectrum can be detected with SNR up to ∼10 times higher
than the HI 21-cm auto power spectrum. Like in all other cross power spectrum,
the Lyman break galaxy and the HI 21-cm cross power spectrum are expected to
be extracted more reliably from the much stronger spectrally smoothed foreground
contamination compared to the HI 21-cm auto power spectrum.

5. Cross-correlation of HI 21-cm signal with CMBR

5.1 Weak lensing

Gravitational lensing has the effect of deflecting the CMBR photons. This forms a
secondary anisotropy in the CMBR temperature anisotropy maps (Lewis & Challinor
2006). The weak lensing of CMBR is a powerful probe of the universe at distances
(z ∼ 1100) far greater than any galaxy surveys. Measurement of the secondary
CMBR anisotropies often uses the cross correlation of some relevant observable
(related to the CMB fluctuations) with some tracer of the large scale structure (Hirata
et al. 2004a, b; Smith et al. 2007). For weak lensing statistics, the ‘convergence’
and the ‘shear’ fields quantify the distortion of the maps due to gravitational lens-
ing. Convergence (κ) measures the lensing effect through its direct dependence on
the gravitational potential along the line-of-sight and is thereby a direct probe of
cosmology. The difficulty in precise measurement of lensing is the need for very
high resolutions in the CMBR maps, since typical deflections over cosmological
scales are only a few arcminutes. The non-Gaussianity imprinted by lensing on
smaller scales allows a statistical detection for surveys with low angular resolu-
tion. Cross-correlation with traces, limits the effect of systematics thereby increasing
the signal-to-noise. The weak lensing observables like convergence are constructed
using various estimators involving the CMBR maps (T, E, B) (Seljak & Zaldarriaga
1999; Hu 2001; Hu & Okamoto 2002). The reconstructed convergence field can then
be used for cross correlation.

We have probed the possibility of using the post-reionization HI as a tracer of
large scale structure to detect the weak lensing (Guha Sarkar 2010) effects. We
have studied the cross correlation between the fluctuations in the 21-cm brightness
temperature maps and the weak lensing convergence field. We can probe the one
dimensional integral effect of lensing at any intermediate redshift by tuning the
observational frequency band for 21-cm observation. The cross-correlation power
spectrum can hence independently quantify the cosmic evolution and structure for-
mation at redshifts z ≤ 6. The cross-correlation power spectrum may also be used to
independently compare the various de-lensing estimators.

The distortions caused by the deflection is the quantity of study in weak lensing.
At the lowest order, magnification of the signal is contained in the convergence. The
convergence field is a line-of-sight integral of the matter over density δ given by (Van
Waerbeke & Mellier 2003)

κ(n̂) = 3

2
�m0

(
H0

c

)2 ∫ ηLSS

η0

dηF(η)δ(D(η)n̂, η) (40)
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and F(η) is given by

F(η) = D(ηLSS − η)D(η)D+(η)

D(ηLSS)a(η)
. (41)

Here, D+ denotes the growing mode of density contrast δ, and ηLSS denotes the con-
formal time to the epoch of recombination. The comoving angular diameter distances
D(χ) = χ for flat Universe, D(χ) = sin(Kχ)/K for K = |1−�m−�|1/2H0/c <

0 and D(χ) = sinh(Kχ)/K for K > 0 Universe. The convergence power spectrum
is defined as 〈aκ

�maκ∗
�′m′ 〉 = Cκ

� δ��′δmm′ , where aκ
�m are the expansion coefficients

in spherical harmonic basis. The convergence auto-correlation power spectrum for
large � can be approximated as

Cκ
� ≈ 9

4
�2

m0

(
H0

c

)4 ∫
dη

F 2(η)

D2(η)
P

(
�

D(η)

)
. (42)

The cross correlation angular power spectrum between the post-reionization HI 21-
cm brightness temperature signal and the convergence field is given by

CHI−κ
� = A(zHI)

∫
dk

[
k2P(k)I�(krHI)

∫
dηF(η)j�(kr)

]
, (43)

where P(k) is the dark matter power spectrum at z = 0 , and

A(z) = 3

π
�m0

(
H0

c

)2

T̄ (z)x̄HID+(z). (44)

We note that the convergence field κ(n̂), is not directly measurable in CMBR
experiments. It is reconstructed from the CMBR maps through the use of various
statistical estimators (Hanson et al. 2009; Kesden et al. 2003; Cooray & Kesden
2003). The cross-correlation angular power spectrum, CHI−κ

� , does not de-lens the
CMB maps directly. It uses the reconstructed cosmic shear fields, and is thereby
very sensitive to the underlying tools of de-lensing, and the cosmological model.
The cross-correlation angular power spectrum may provide a way to independently
compare various de-lensing estimators.

The cross-correlation power spectrum follows the same shape as the matter power
spectrum. The signal peaks at a particular � which scales as � ∝ rHI when the redshift
is changed. The angular distribution of power clearly follows the underlying cluster-
ing properties of matter. The amplitude depends on several factors which are related
to cosmological model and the HI distribution at zHI. The angular diameter distances
also depends directly on the cosmological parameters. The cross-correlation signal
may hence be used independently for joint estimation of cosmological parameters.

We shall now discuss the prospect of detecting the cross-correlation signal assum-
ing a perfect foreground removal. The error in the cross-correlation signal is due to
instrumental noise and sample variance. Sample variance however puts a limiting
bound on the detectability. The cosmic variance for CHI−κ

� is given by

σ 2
SV = Cκ

� CHI
�

(2� + 1)Ncfs��
, (45)
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where fs is fraction of overlap portion of sky common to both observations and Nc

denotes the number of independent estimates of the signal.
In the ideal hypothetical possibility of a full sky 21-cm survey, we have fs = 1,

and �� = 1. The predicted S/N is found to be ∼2 and is not significantly high for
detection which requires S/N ≥ 3. Choosing �� = 10 for � ≤ 100 and �� = 100
for � > 100, we shall produce S/N > 3. This establishes that, with full sky cover-
age and negligible instrumental noise, the binned cross-correlation power spectrum
is not cosmic variance limited and it is detectable. The S/N estimate is based on HI
observation at only one frequency. The 21-cm observations allow us to probe a con-
tinuous range of redshifts. This allows us to further increase the S/N by collapsing
the signal from various redshifts. In principle, a broad band 21-cm experiment may
further increase the S/N .

The S/N may be improved by collapsing the signal from different scales � and
thereby testing the feasibility of a statistically significant detection. The cumulated
SNR up to a multipole � is given by

(
S

N

)2

=
�∑
0

(2�′ + 1)Ncfs(CHI−κ
�′ )

2

(CHI
�′ + NHI

�′ )(Cκ
�′ + Nκ

�′)
. (46)

Nκ
� and NHI

� denotes the noise power spectrum for κ and HI observations respec-
tively. Ignoring the instrument noises, we note that there is a significant increase in
the S/N by cumulating over multipoles �. This implies that a statistically significant
detection of CHI−κ

� is possible and the signal is not a limited cosmic variance. It is
important to push instrumental noise to the limit set by cosmic variance for a detec-
tion of the signal. At the relevant redshifts of interest, it is possible to reach such low
noise levels with SKA. It is however important to scan large parts of the sky thereby
increasing the survey volume.

Instrumental noise plays an important role at large multipoles (small scale). For
a typical CMB experiment, the noise power spectrum (Marian & Bernstein 2007;
Smith et al. 2006) is given by N� = σ 2

pix�pixW�
−2, where different pixels have

uncorrelated noise with variance σ 2
pix = s2/tpix. Here s2 and tpix are the pixel sen-

sitivity and ‘time spent on the pixel’ respectively. �pix is the solid angle subtended
per pixel and we use a Gaussian beam W� = exp[−�2θ2

FWHM/16 ln 2].
For HI observations, the quantity of interest is the complex visibility which is

used to estimate the power spectrum (Ali et al. 2008). For a radio telescope with
N antennae, system temperature Tsys, operating frequency ν and band width B, the
noise correlation is given by

NHI
� ∝ 1

N(N − 1)

[
Tsys

K

]2 1

T
√

�νB
,

where T denotes the total observation time, and K is related to the effective col-
lecting area of the antenna dish. Binning in � also reduces the noise. The bin
�� = 1/2π2θ0 is chosen assuming a Gaussian beam of width θ0. With a SKA-like
instrument (Ali et al. 2008), one can attain a noise level much lesser than the signal
by increasing the observation time (in fact a 5000 h observation with the present SKA
configuration is good enough) and also by increasing the radial distance probed by
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increasing the band width of the telescope. Being inversely related to the total num-
ber of antennae in the radio array, future designs may actually allow further reduction
of the the system noise and achieve NHI

� << CHI
� . This establishes the detectability

of the cross-correlation signal. We would like to conclude by noting that correla-
tion between weak lensing fields and 21-cm maps, quantified through CHI−κ

� may
allow independent means to estimate cosmological parameters and also test various
estimators for CMBR delensing.

5.2 ISW effect

In an Universe, dominated by the cosmological constant,  , the expansion factor of
the Universe, a, grows at a faster rate than the linear growth of density perturbations.
This consequently implies that, the gravitational potential � ∝ −δ/a will decay. The
ISW effect is caused by the change in energy of CMB photons as they traverse these
time dependent potentials.

If the horizon size at the epoch of dark energy dominance (decay of the potential)
is denoted by η, then the ISW effect is suppressed on scales k ≥ 2π/η. This
corresponds to an angular scale � = 2πd/η, where d is the angular diameter
distance to the epoch of decay.

The ISW term is given by

�T (n̂)ISW = 2T

∫ η0

ηLSS

dηη �̇(rn̂, η). (47)

The cross correlation angular power spectrum between HI 21-cm signal and ISW is
given by Guha Sarkar et al. (2009)

CHI–ISW
� = K(zHI)

∫
dk(P (k)I�(krHI)

∫ η0

ηLSS

dηF(η)j�(kr)) (48)

where P(k) is the present day dark matter power spectrum,

K(z) = −T̄ (z)x̄HID+(z)
6H 3

0 �m0

πc3
, (49)

I�(x) = bj�(x) − f
d2j�

dx2
(50)

and

F(η) = D+(f − 1)H(z)

H0
(51)

For large �, we can use the Limber approximation (Limber 1954; Afshordi et al.
2004) which allows us to replace the spherical Bessel functions by Dirac deltas as

j�(kr) ≈
√

π

2� + 1
δD

(
� + 1

2
− kr

)
,

whereby the angular cross-correlation power spectrum takes the simple scaling of
the form

CHI–ISW
� ∼ πKF

2�2
P

(
�

r

)
, (52)
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where P(k) is the present day dark matter power spectrum and all the other terms
on the right hand side. are evaluated at zHI. The dimensionless quantity f quantifies
the growth of the dark matter perturbations, and the ISW effect is proportional to
f − 1. The term f − 1 is a sensitive probe of dark energy. Here we estimate the
viability of detecting the HI-ISW cross-correlation signal. Cosmic variance sets a
limit in deciding whether the signals can be detected or not. Even in the cosmic
variance limit at z ∼ 1.0 with a 32-MHz observation, we find that S/N < 0.45 for all
zHI and � and a statistically significant detection is not possible in such cases. It is
possible to increase S/N collapsing of the signal at different multipoles �. To test if
a statistically significant detection is thus feasible, we have collapsed all multipoles
less than � to evaluate the cumulative S/N defined as (Cooray 2002; Adshead &
Furlanetto 2008). We find that the contribution in the cumulated S/N comes from
� < 50 at all redshifts 0.4 < z < 2. The cross-correlation signal is largest at z ∼ 0.4
and is negligible for z > 3. We further find that although there is an increase in S/N
on collapsing the multipoles, it is still less than unity. This implies that a statistically
significant detection is still not possible. Thus, probing a thin shell of HI does not
allow us to detect a cross correlation, the signal being limited by the cosmic variance.
A cumulated S/N of ∼ 1.6 is attained for redshift up to z = 2 and there is hardly any
increase in S/N on cumulating beyond this redshift. This is reasonable because the
contribution from the ISW effect becomes smaller beyond the redshift z > 2. This
S/N is the theoretically calculated value for an ideal situation and is unattainable
for most practical purposes. Incomplete sky coverage and foreground removal issues
would actually reduce the S/N, and attaining a statistically significant level is not
feasible.
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