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Abstract. The effects of finite ion Larmor radius (FLR) corrections,
Hall current and radiative heat-loss function on the thermal instability
of an infinite homogeneous, viscous plasma incorporating the effects of
finite electrical resistivity, thermal conductivity and permeability for star
formation in interstellar medium have been investigated. A general dis-
persion relation is derived using the normal mode analysis method with
the help of relevant linearized perturbation equations of the problem. The
wave propagation is discussed for longitudinal and transverse directions
to the external magnetic field and the conditions of modified thermal
instabilities and stabilities are discussed in different cases. We find that
the thermal instability criterion gets modified into radiative instability cri-
terion. The finite electrical resistivity removes the effect of magnetic field
and the viscosity of the medium removes the effect of FLR from the
condition of radiative instability. The Hall parameter affects only the lon-
gitudinal mode of propagation and it has no effect on the transverse mode
of propagation. Numerical calculation shows stabilizing effect of viscos-
ity, heat-loss function and FLR corrections, and destabilizing effect of
finite resistivity and permeability on the thermal instability. The outcome
of the problem discussed the formation of star in the interstellar medium.

Key words. Star formation—interstellar medium—thermal instability—
FLR corrections—Hall current.

1. Introduction

Formation of stars in the interstellar medium is one of the most fascinating and
important process in plasma astrophysics. The birth of stars is a vast field of research
in modern astrophysics and cosmology. Thermal instability plays a very crucial role
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in the formation of stars and other astrophysical objects in interstellar medium.
Thermal instability occurs when a positive temperature perturbation is completed in
a thermal unstable medium, the perturbation produces and the emission rate reduces.
This development is considered to be probable in a number of astrophysical cir-
cumstances such as in the solar corona, the gas in clusters of the galaxies and in
the interstellar medium. The thing which is not so clear is the relative consequence
of this development in an assortment of situations. Thermal instability has numer-
ous applications in astrophysical conditions e.g. stellar atmosphere, star formation, a
clumpy interstellar medium, globular clusters and galaxy formation, and many more
situations. The instability may be determined by the radiative cooling of optically
thin gas systems or by exothermic nuclear reactions.

In this connection the thermal and radiative instabilities arising due to various
heat-loss mechanisms may be the cause of astrophysical condensation and the for-
mation of large scale structures as well as small objects. Several authors investigated
the phenomenon of thermal instability arising due to heat-loss mechanism in plasma.
Field (1965) discussed the importance of thermal instability in the formation of
solar prominences, condensation in planetary nebula and condensation of galaxies
from the intergalactic medium. Hunter (1966) discussed the role of thermal instabil-
ity in star formation. Raju (1968) emphasized the role of thermal instability in the
formation of solar prominences. Aggarwal and Talwar (1969) investigated magne-
tothermal instability in a rotating gravitating fluid taking radiative heat-loss function.
Ibanez (1985) studied the sound and thermal waves in a fluid with an arbitrary heat-
loss function. Hoven and Mok (1984) carried out the problem of thermal instability
in a sheared magnetic field. Bodo et al. (1985) investigated magnetohydrodynamic
thermal instability in cool inhomogeneous atmosphere. Bora and Talwar (1993)
discussed the magnetothermal instability with generalized Ohms law taking the
effects of electrical resistivity, Hall current, electron inertia, thermal conductivity
and radiative heat-loss function. Burkert and Lin (2000) pointed out the importance
of thermal instability in the formation of clumpy gas clouds and they showed that
thermal instability can lead to the breakup of large clouds into cold dense clumps.
Shadmehri and Ghanbari (2001) discussed the problem of radiative cooling flows
of self-gravitating filamentary clouds. Nejad-Asghar and Ghanbari (2006) discussed
the formation of small-scale condensation in the molecular clouds via thermal insta-
bility. Fukue and Kamaya (2007) studied the thermal instability of partially ionized
plasma taking radiative cooling function and two-fluid theory into account. Baruah
et al. (2010) studied the thermal (radiative) instability in weakly ionized plasma with
continuous ionization and recombination taking general heat-loss function. Recently,
Prajapati et al. (2010) investigated the self-gravitational instability of the rotating
viscous Hall plasma with arbitrary radiative heat-loss function and electron inertia.
Thus thermal instability is important for star formation in interstellar medium.

In addition to this, the Hall current parameter is important in the dynamics
of interstellar matter, magnetic reconnection processes, instability investigation of
accelerated plasmas and in several other astrophysical situations. Tayler (1963)
discussed a simple hydromagnetic stability problem involving finite conductiv-
ity, electron inertia and Hall effect. Fukue and Kamaya (1964) have investigated
magneto-thermal instability of unbounded plasma with electron inertia and Hall
effect. Sen and Chou (1968) carried out the investigation of thermal instability of
plasma with Hall effect. Sharma and Sharma (1985) carried out the investigation of
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Hall effect on thermal hydromagnetic instability of a partially ionized medium. Ali
and Bhatia (1992) investigated thermal instability of partially ionized plasma in an
oblique magnetic field incorporating the effects of Hall current and finite conduc-
tivity. Chhajlani and Parihar (1993) studied the stability of self-gravitating viscous
magnetized Hall plasma with electrical and thermal conductivity through a porous
medium. Shtemler et al. (2007) discussed the Hall instability of thin weakly ion-
ized stratified Keplerian disk. Shaikh et al. (2008) discussed thermal instability of
thermally conducting plasma taking the effects of magnetic field, viscosity, finite
electrical conductivity and Hall current. Damiano et al. (2009) pointed out the effects
of electron inertia and FLR on Hall magnetohydrodynamic waves. Uberoi (2009)
discussed electron inertia effects on the transverse thermal instability incorporating
the Hall current and rotation parameters. Kumar (2012) investigated the Hall cur-
rent effect on thermal instability of compressible viscoelastic dust fluid in a porous
medium. Recently, Aggarwal and Makhija (2014) studied the Hall effect on thermal
stability of ferromagnetic fluids in a porous medium in the presence of horizontal
magnetic field. More recently, Pant et al. (2016) investigated the problem of com-
bined effect of Hall current and rotation on thermal stability of ferromagnetic fluids
saturating in a porous medium under varying gravity field.

In the above discussed problems, the effect of finite ion Larmor radius is not con-
sidered. In many astrophysical plasma situations such as in solar corona, interstellar
and interplanetary plasmas the assumption of zero Larmor radius is not valid. Roberts
and Taylor (1962) and Rosenbluth et al. (1962) have shown the stabilizing influ-
ence of finite ion Larmor radius (FLR) effects on plasma instabilities. Hernegger
(1972) investigated the stabilizing effect of FLR on thermal instability and showed
that thermal criterion is changed by FLR for wave propagation perpendicular to the
magnetic field. Sharma (1974) investigated the stabilizing effect of FLR on thermal
instability of rotating plasma. Ariel (1988) discussed the stabilizing effect of FLR
on thermal instability of conducting plasma layer of finite thickness surrounded by
a non-conducting matter. Vaghela and Chhajlani (1989) studied the stabilizing effect
of FLR on magneto-thermal stability of resistive plasma through a porous medium
with thermal conduction. Bhatia and Chhonkar (1985) investigated the stabilizing
effect of FLR on the instability of a rotating layer of self-gravitating plasma incor-
porating the effects of viscosity and Hall current. Vyas and Chhajlani (1990) pointed
out the stabilizing effect of FLR on the thermal instability of magnetized rotating
plasma incorporating the effects of viscosity, finite electrical conductivity, porosity
and thermal conductivity. Marcu and Ballai (2007) showed the stabilizing effect of
FLR on thermosolutal stability of a two-component rotating plasma. Kaothekar and
Chhajlani (2014) investigated the problem of Jeans instability of self-gravitating
rotating radiative plasma with finite Larmor radius corrections. More recently,
Kaothekar et al. (2016) carried out the problem of Jeans instability of partially-
ionized self-gravitating viscous plasma with Hall effect FLR corrections and poros-
ity. Thus FLR effect is an important factor in the discussion of thermal instability
and other hydromagnetic instabilities.

In the light of the above work, we find that in Vyas and Chhajlani (1990),
Chhajlani and Parihar (1993), Bora and Talwar (1993), Prajapati et al. (2010) and
Kaothekar et al. (2016), the joint influence of FLR corrections, Hall current, radiative
heat-loss functions, viscosity, permeability, electrical resistivity, thermal conductiv-
ity and magnetic field on the thermal instability is not investigated. Therefore in the
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present work, thermal instability of viscous magnetized plasma with Hall current,
FLR corrections, radiative heat-loss functions, thermal conductivity, finite electrical
resistivity and permeability for thermal configuration is studied.

The paper is organized as follows. Section 2 contains the basic equations for a
magnetothermal system. In section 3, linearized equations are derived for the first
order approximation. Section 4 contains dispersion relation and the instability cri-
terion for thermal and radiative modes is derived for longitudinal and transverse
propagation. Numerical interpretation of the linear growth rate is done. Finally
section 5 contains the summary and discussion of the results.

2. Equations of the problem

Let us consider an infinite homogeneous, thermally conducting, radiating, viscous
plasma with Hall current, and finite electrical resistivity in the presence of magnetic
field H(0, 0, H ). The equations of the problem with these effects are written as

dv
dt

= − 1

ρ
∇p − ∇ · P

ρ
+ υ

(
∇2v − v

K1

)
+ 1

4πρ
(∇ × H) × H, (1)

dρ

dt
= −ρ∇ · v, (2)

1

γ − 1

dp

dt
− γ

γ − 1

p

ρ

dρ

dt
+ ρL − ∇ · (λ∇T ) = 0, (3)

p = ρRT, (4)

∂H
∂t

= ∇ × (v × H) + η∇2H − c

4πNe
{∇ × [(∇ × H) × H]} , (5)

∇ · H = 0, (6)

where ρ, p, υ, T , v (vx , vy , vz), η, λ, R, γ , c, N and e denote the fluid density,
pressure, kinematic viscosity, temperature, velocity, electrical resistivity, thermal
conductivity, gas constant and ratio of two specific heats, velocity of light, number
density and charge of electron, respectively. Here L(ρ, T ) is the heat-loss function
per gram of the material per second exclusive of thermal conduction and is, in gen-
eral, a function of the local values of density and temperature. The operator (d/dt) is
the substantial derivative given as (d/dt) = (∂t +v ·∇) ·P, which is the pressure ten-
sor taking into account the effect of finite ion gyration radius for the magnetic field
along the z axis as given by Roberts & Taylor (1962),

Pxx = −ρv0

(
∂vy

∂x
+ ∂vx

∂y

)
, Pyy = ρv0

(
∂vy

∂x
+ ∂vx

∂y

)
,

Pzz = 0, Pxy = Pyx = ρv0

(
∂vx

∂x
− ∂vy

∂y

)
,

Pxz = Pzx = −2ρv0

(
∂vy

∂z
+ ∂vz

∂y

)
, Pyz = Pzy = 2ρv0

(
∂vz

∂x
+ ∂vx

∂z

)
.

(7)
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The parameter υ0 has the dimensions of the kinematics viscosity and defined as υ0 =
	LR2

L/4, where RL is the ion-Larmor radius and 	L is the ion gyration frequency.

3. Perturbation equations

The perturbation in fluid density, pressure, temperature, velocity, magnetic field,
heat-loss function are given as δρ, δp, δT , v (vx , vy , vz), h (hx , hy , hz) and L

respectively. The perturbation state is given as

ρ = ρ0 + δρ, p = p0 + δp, T = T0 + δT , v = v0 + v (with v0 = 0),

H = H0 + h and L = L0 + L (with L0 = 0). (8)

Suffix ‘0’ represents the initial equilibrium state, which is independent of space and
time.

Substituting the perturbation state into equations (1) to (6) and linearizing them
by neglecting higher order perturbations, suffix ‘0’ is dropped from the equilibrium
quantities.

The linearized perturbation equations of motion for such medium are

∂tv = − 1

ρ
∇δp − ∇ · P

ρ
+ υ

(
∇2v − v

K1

)
+ 1

4πρ
(∇ × h) × H, (9)

∂tρ = −ρ∇ · v, (10)

1

γ − 1
∂t δp − γ

γ − 1

p

ρ
∂tδρ + ρ(Lρδρ + LT δT ) − λ∇2δT = 0, (11)

δp

p
= δT

T
+ δρ

ρ
, (12)

∂th = ∇ × (v × H) + η∇2h − c

4πNe
{∇ × [(∇ × h) × H]} , (13)

∇ · h = 0, (14)

where LT and Lρ respectively denote partial derivatives (∂L/∂T )ρ and (∂L/∂ρ)T of
the heat-loss function evaluated for the initial (unperturbed) state.

4. Dispersion relation

We seek plain wave solution of the form

exp(ikxx + ikzz + σ t), (15)

where σ is the frequency, kx and kz are the wave numbers of the perturbations along
the x and z axes. The components of equation (13) may be given as

hx = (iH/d)kzvx − (M/d)k2zhy,

hy = (iH/d)kzvy + (M/d)(k2zhx − kxkzhz),

hz = −(iH/d)kxux + (M/d)kxkzhy. (16)
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Using equations (11), (12) and (15), we write

δp = {(γ − 1)[T LT − ρLρ + (λk2T/ρ)] + ωc2}
{(γ − 1)[(Tρ/p)LT + (λk2T/p)] + ω} δρ. (17)

Using equations (10)–(17) in equation (9), we may write the following algebraic
equations for the components of equation (9) as

[
ω + υ

(
k2 + 1

K1

)
+ V 2k2d

(d2 + M2k2k2z )

]
vx +

[
υ0(k

2
x + 2k2z ) − V 2k2Mk2z

(d2 + M2k2k2z )

]
vy

+ ikx

k2
	2

Ts = 0, (18)

−
[
υ0(k

2
x + 2k2z ) − V 2k2Mk2z

(d2 + M2k2k2z )

]
vx +

[
ω + υ

(
k2 + 1

K1

)
+ V 2k2z d

(d2+M2k2k2z )

]
vy

− 2υ0kxkzvz = 0, (19)

2υ0kxkzvy +
[
ω + υ

(
k2 + 1

K1

)]
vz + ikz

k2
	2

Ts = 0. (20)

Taking divergence of equation (9) and using equations (10)–(17), we obtain

[
ikx

V 2k2d

(d2 + M2k2k2z )

]
vx +

[
iυ0kx(k

2
x + 4k2z ) − ikx

V 2k2Mk2z

(d2 + M2k2k2z )

]
vy

−
[
ω2 + ωυ

(
k2 + 1

K1

)
+ 	2

T

]
s = 0. (21)

The set of equations (18)–(21) can be written in the form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N P 0
ikx

k2
	2

T

−P N1 −2υ0kxkz 0

0 2υ0kxkz M1
ikz

k2
	2

T

ikxD Q 0 −R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux

uy

uz

s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (22)

We have made following assumptions:

V 2 = H 2

4πρ
, 	2

T = 	2
I + ω	2

j

B + ω
, 	2

j = c2k2,

	2
I = k2A, iσ = ω, d = (ω + ηk2),
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A = (γ − 1)

(
T LT − ρLρ + λk2T

ρ

)
, B = (γ − 1)

(
TρLT

p
+ λk2T

p

)
,

M = cH

4πNe
, F = υ0(k

2
x + 2k2z ),

Q = iυ0kx(k
2
x + 4k2z ) − ikxE, N1 = M1 + V 2k2z d

(d2 + M2k2k2z )
,

M1 = ω + υ

(
k2 + 1

K1

)
,

R = ω2 + ωυ

(
k2 + 1

K1

)
+ 	2

T, D = V 2k2d

(d2 + M2k2k2z )
,

E = V 2k2Mk2z

(d2 + M2k2k2z )
, (23)

N = M1 + D, P = F − E,

where c = (γp/ρ)1/2 is the adiabatic velocity of sound in the medium and s = δρ/ρ

is the condensation of the medium.
The general dispersion relation can be obtained from the determinant of matrix of

equation (21) as
[
ω2 + ωυ

(
k2 + 1

K1

)
+ 	2

T

]
×

[
ω + υ

(
k2 + 1

K1

)
+ V 2k2d

(d2 + M2k2k2z )

]

×
{[

ω + υ

(
k2 + 1

K1

)] [
ω + υ

(
k2 + 1

K1

)
+ V 2k2z d

(d2 + M2k2k2z )

]
+ 4υ2

0k
2
xk

2
z

}

+2υ0ikxk
2
z

k2
	2

T

[
ω + υ

(
k2 + 1

K1

)
+ V 2k2d

(d2 + M2k2k2z )

]

×
[
iυ0kx(k

2
x + 4k2z ) − ikx

V 2k2Mk2z

(d2 + M2k2k2z )

]
+

[
ω + υ

(
k2 + 1

K1

)]

×
[
ω2 + ωυ

(
k2 + 1

K1

)
+	2

T

] [
υ0(k

2
x + 2k2z ) − V 2k2Mk2z

(d2 + M2k2k2z )

]2

+ 2υ0k2xk
2
zV

2d

(d2 + M2k2k2z )
	2

T

[
υ0(k

2
x + 2k2z )−

V 2k2Mk2z

(d2 + M2k2k2z )

]

+ ikx

k2
	2

T

[
υ0(k

2
x + 2k2z ) − V 2k2Mk2z

(d2 + M2k2k2z )

][
ω + υ

(
k2 + 1

K1

)]

×
[
ikxυ0(k

2
x+4k2z )−ikx

V 2k2Mk2z

(d2+M2k2k2z )

]
− V 2k2xd

(d2+M2k2k2z )
	2

T

[
ω+υ

(
k2 + 1

K1

)]

×
[
ω+υ

(
k2+ 1

K1

)
+ V 2k2z d

(d2+M2k2k2z )

]
− 4υ2

0k
4
xk

2
z

V 2d

(d2+M2k2k2z )
	2

T = 0. (24)

The dispersion relation (24) represents the combined influence of viscosity, finite
electrical conductivity, permeability, magnetic field, thermal conductivity, radiative
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heat-loss function, Hall current and FLR corrections on thermal instability of plasma.
In the absence of FLR corrections, dispersion relation (24) is identical to the rela-
tion given by Prajapati et al. (2010) for non-rotational and non-gravitational case. In
the absence of FLR corrections, viscosity and permeability, dispersion relation (24)
is identical to the relation given by Bora and Talwar (1993) for non-gravitational
case. In absence of radiative heat-loss function, thermal conductivity, finite electrical
resistivity, viscosity and Hall current, the general dispersion relation (24) is identical
to the relation given by Sharma (1974) for the non-rotational and non-gravitational
case. In the absence of viscosity, finite electrical resistivity, FLR corrections, per-
meability, thermal conductivity and radiative heat-loss function, dispersion relation
(24) is reduced to that obtained by Damiano et al. (2009). Also in the absence of
FLR corrections, viscosity, finite conductivity, Hall current and thermal conductivity
dispersion, relation (24) is reduced to that obtained by Field (1965). In the absence
of Hall current, dispersion relation (24) is identical to Kaothekar et al. (2016) for
non-gravitational and non porous case.

Now we discuss the general dispersion relation (24) for longitudinal and trans-
verse wave propagation.

5. Discussion

5.1 Longitudinal propagation (kx = 0, kz = k)

In this case the perturbations are taken to be parallel to the direction of the magnetic
field (i.e. kx = 0, kz = k). The dispersion relation (24) reduces to

[
ω + υ

(
k2 + 1

K1

)]
×

{[
ω + υ

(
k2 + 1

K1

)
+ V 2k2d

(d2 + M2k4)

]2

+
[
2υ0k

2 − V 2Mk4

(d2 + M2k4)

]2} [
ω2 + ωυ

(
k2 + 1

K1

)
+ 	2

T

]
= 0. (25)

The first component of the dispersion relation (25) gives

ω + υ

(
k2 + 1

K1

)
= 0. (26)

This represents a damped mode modified by the presence of viscosity and perme-
ability of the medium. Thus viscous force is able to stabilize the growth rate of the
considered system. The above mode is unaffected by the presence of FLR correction,
Hall current, magnetic field strength, finite electrical resistivity, thermal conductivity,
radiative heat-loss function. This dispersion relation is identical to that of Prajapati
et al. (2010).

The second factor of equation (25) on simplification gives

ω4 + 2

[
ηk2 + υ

(
k2 + 1

K1

)]
ω3 +

{[
υ

(
k2 + 1

K1

)
+ ηk2

]2

+2

[
V 2k2 + 2υ2

0k
4 + +ηk2υ

(
k2 + 1

K1

)]
+ M2k4

}
ω2
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+ 2

{[
υ

(
k2 + 1

K1

)
+ ηk2

] [
V 2k2 + ηk2υ

(
k2 + 1

K1

)]

+ M2k4υ

(
k2 + 1

K1

)
+ 4ηk2υ2

0k
4
}

ω +
{[

V 2k2 + ηk2υ

(
k2 + 1

K1

)]2

+ 4υ2
0k

4(η2k4+M2k4) + M2k4υ2
(

k2 + 1

K1

)2

− 4Mυ0V
2k6

}
= 0.

(27)

The above equation shows the dispersion relation for finitely conducting, viscous
plasma including the effects of Hall current, FLR corrections, magnetic field and per-
meability. It is independent of radiative heat-loss functions and thermal conductivity.
Hence the above dispersion relation represents the wave propagation. Equation (27)
is a modified form of Vaghela and Chhajlani (1989) by the inclusion of Hall current
in our case. Also equation (27) is a modified form of Chhajlani and Parihar (1993)
by the inclusion of FLR corrections in our case.

In absence of viscosity, finite resistivity, FLR corrections and Hall current (υ =
η = υ0 = M = 0), equation (27) becomes

ω4 + 2V 2k2ω2 + V 4k4 = 0. (28)

The roots of the above equation are

ω2
1,2 = −V 2k2. (29)

Equation (29) shows the Alfven mode in this mode there is no instability.
In the absence of viscosity, finite resistivity and Hall current (υ = η = M = 0)

equation (27) becomes

ω4 + (2V 2k2 + 4υ2
0k

4)ω2 + V 4k4 = 0. (30)

The roots of the above equation are

ω2
1,2 = −(V 2k2 + 2υ2

0k
4) ± 2υ0k

2(αV 2k2 + υ2
0k

4)1/2. (31)

The above relation shows the modified form of Alfven mode by inclusion of FLR
corrections. Thus FLR corrections modifies the mode by changing the growth rate.

In absence of viscosity, finite resistivity and FLR corrections (υ = η = υ0 = 0),
equation (27) becomes

ω4 + (2V 2k2 + M2k4)ω2 + V 4k4 = 0. (32)

The roots of the above equation are

ω2
1,2 = −(2V 2k2 + M2k4) ± Mk2(4V 2k2 + M2k4)1/2

2
. (33)

The above relation shows the modified form of Alfven mode by inclusion of
Hall current. Thus Hall current modifies the mode by changing the growth rate.
Equation (34) is modified form of Chhajlani and Parihar (1993) by the inclusion of



23 Page 10 of 23 J. Astrophys. Astr. (2016) 37: 23

FLR corrections and modified form of Vaghela and Chhajlani (1989) by inclusion of
Hall current in our case.

In absence of viscosity and finite resistivity (υ = η = 0), equation (28) becomes

ω4 + (2V 2k2 + M2k4 + 4υ2
0k

4)ω2 + 4υ2
0k

4M2k4 + V 4k4 = 0. (34)

The roots of the above equation are

ω2
1,2= −(2V 2k2+M2k4+4υ2

0k
4)±[(M2k4−4υ2

0k
4)2+4V 2k2(M2k4+4υ2

0k
4)]1/2

2
.

(35)

The above relation shows the modified form of Alfven mode by inclusion of Hall
current and FLR corrections. Thus the Hall current and FLR corrections modify the
mode by changing the growth rate.

The third component of the dispersion relation (26) on simplifying gives

ω3 +
[
υ

(
k2 + 1

K1

)
+ (γ − 1)

(
TρLT

p
+ λk2T

p

)]
ω2

+
[
(γ − 1)

(
TρLT

p
+ λk2T

p

)
υ

(
k2 + 1

K1

)
+ c2k2

]
ω

+
[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
= 0. (36)

The above equation represents the combined influence of thermal conductivity,
radiative heat-loss function, viscosity and permeability on the thermal instability
of plasma, but there is no effect of Hall current, finite electrical conductivity, FLR
corrections and magnetic field strength on the thermal instability of the considered
system.

When the constant term of the cubic equation (36) is less than zero this allows at
least one positive real root which corresponds to the instability of the system. The
condition of instability obtained from the constant term of equation (36) is given as

[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
< 0. (37)

The above condition of instability is independent of FLR corrections, Hall current,
finite electrical conductivity, magnetic field strength, viscosity and permeability. The
above inequality (37) is reduced form of Bora and Talwar (1993). In the present case,
we have considered the effects of FLR correction, viscosity and permeability but
Bora and Talwar (1993) did not consider these effects. Thus the dispersion relation
in the present analysis is modified due to the presence of FLR correction, viscos-
ity and permeability, but the condition of instability is unaffected by the presence of
FLR correction, viscosity and permeability. Thus we conclude that the FLR correc-
tion, viscosity and permeability of the medium have no effect on the condition of
instability. Also it is clear that the growth rate of dispersion relation given by Bora
and Talwar (1993) is getting modified due to the presence of FLR corrections, vis-
cosity and permeability in our present case. Thus we conclude that FLR corrections,
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viscosity and permeability modify the growth rate of instability in the present case.
Hence these are the new findings in our case.

Thus to argue the consequence of each limitation on the growth rate of insta-
bility we solve equation (36) numerically by initiating the following dimensionless
amount:

ω∗ = ω

kρc
, ν∗ = νkρ

c
, k∗ = k

kρ

, k∗
λ = kρ

kλ

, k∗
T = kT

kρ

, (38)

ω∗3+
[
υ∗

(
k∗2+ 1

K∗
1

)
+ k∗

T + k∗2
λ k∗2

]
ω∗2+

[(
k∗
T+k∗2

λ k∗2)υ∗
(
k∗2+ 1

K∗
1

)
+ k∗2

]
ω∗

+
[
k2

γ

(
k∗
T + k∗2

λ k∗2 − 1
)] = 0. (39)

Figure 1 shows the effect of k∗
λ on the growth rate of thermal instability for fixed

values of other parameters. From the figure, it is clear that as the value of k∗
λ increases

both the peak value and the growth rate of thermal instability decreases. Thus the
parameter k∗

λ moves the present system towards stabilization. In Fig. 2, we have plot-
ted the growth rate of thermal instability against wave number for different values
of parameter k∗

T. From the figure, we conclude that as the value of k∗
T increases, the

peak value of curves decreases and the area of growth rate also decreases. Hence, the
presence of k∗

T also stabilizes the system. In Fig. 3, we have shown the effect of vis-
cosity on the growth rate of thermal instability. Figure 3 displays that on increasing
the value of viscosity, the growth rate of thermal instability also decreases. Hence,
the presence of viscosity also stabilizes the system. In Fig. 4, we have shown the
effect of permeability on the growth rate of thermal instability. Figure 4 displays that
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Figure 1. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of k∗

λ having k∗
T = 0.5 and K∗

1 = v∗ = v∗
0 = 1.
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Figure 2. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of k∗

T having k∗
λ = 0.1 and K∗

1 = v∗ = v∗
0 = 1.
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Figure 3. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of v∗ having k∗

T = 0.5 and k∗
λ = 0.1,K∗

1 = v∗
0 = 1.

on increasing the value of permeability, the growth rate of thermal instability also
increases. Hence, the presence of permeability also destabilizes the system. There-
fore, the parameters k∗

λ, k
∗
T and viscosity stabilize the system, whereas the parameter

permeability destabilizes the system.
If the constant term of the cubic equation (36) is greater than zero, then all the

coefficients of equation (36) must be positive. Equation (36) is a third degree in
the power of ω having its coefficients positive, which is a necessary condition for
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Figure 4. Growth rate (positive values of ω∗) against wave number k∗ for different values of
parameter K∗

1 keeping the other parameters fixed having k∗
T = 0.5 k∗

λ = 0.1, and v∗ = 1,
ν∗
0 = 1.

the stability of the system. To achieve the sufficient condition, the principal diagonal
minors of Hurwitz matrix must be positive. The principal diagonal minors are

�1 =
[
υ

(
k2 + 1

K1

)
+ (γ − 1)

(
TρLT

p
+ λk2T

p

)]
> 0,

�2 = υ

(
k2+ 1

K1

)[
�1(γ −1)

(
TρLT

p
+ λk2T

p

)
+ c2k2

]
+ (γ − 1)k2ρLρ > 0,

�3 = �2

[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
> 0. (40)

Since 	2
j > 0, 	2

I > 0 and γ > 1, it is clear that all the �’s are positive, hence the
system represented by equation (36) is a stable system.

In the absence of thermal conductivity (λ = 0), dispersion relation (36) gives

ω3 +
[
υ

(
k2 + 1

K1

)
+ γLT

cp

]
ω2 +

[
υ

(
k2 + 1

K1

)
γLT

cp

+ c2k2
]

ω

+γLT

cp

[
k2

(
c′2 − pLρ

T LT

)]
= 0. (41)

The condition of instability obtained from the constant term of the above equation is
given as [

k2
(

c′2 − pLρ

T LT

)]
< 0. (42)

Thus for longitudinal mode of propagation as given in equation (25), the system
is unstable only for thermal condition, else it is stable. Also for longitudinal wave
propagation, the thermal criterion of instability is unaffected by FLR corrections,
viscosity, magnetic field, finite electrical resistivity and permeability but thermal
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conductivity and radiative heat-loss function modify the thermal expression and the
fundamental thermal instability criterion becomes a radiative instability criterion.

5.2 Transverse propagation (kx = k, kz = 0)

In this case the perturbations are taken to be perpendicular to the direction of the
magnetic field (i.e. kx = k, kz = 0). The dispersion relation (24) reduces to

[
ω + υ

(
k2 + 1

K1

)]2 {[
ω + υ

(
k2 + 1

K1

)]
×

[
ω2 + ωυ

(
k2 + 1

K1

)

+	2
T + ωV2k2

d

]
+ωυ2

0k
4
}

= 0. (43)

The first component of the dispersion relation (43) gives

ω + υ

(
k2 + 1

K1

)
= 0. (44)

This represents a stable viscous mode modified by the presence of permeability of
the medium and discussed in equation (25).

The second component of the dispersion relation (43) on simplifying gives

ω5 +
{[

2υ

(
k2 + 1

K1

)
+ (γ − 1)

(
TρLT

p
+ λk2T

p

)]
+ ηk2

}
ω4

+
{[

2υ

(
k2+ 1

K1

)
(γ −1)

(
TρLT

p
+λk2T

p

)
+υ2

(
k2+ 1

K1

)2

+υ2
0k

4+c2k2

]

+ ηk2
[
(γ − 1)

(
TρLT

p
+ λk2T

p

)
+ 2υ

(
k2 + 1

K1

)]
+ V 2k2

}
ω3

+
{[

(γ − 1)

(
TρLT

p
+ λk2T

p

)
υ2

(
k2 + 1

K1

)2

+(γ − 1)

(
TρLT

p
+ λk2T

p

)

× υ2
0k

4υ

(
k2 + 1

K1

)
(c2k2) + k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]

+ υ

(
k2+ 1

K1

)[
2ηk2(γ −1)

(
TρLT

p
+ λk2T

p

)
+ ηk2υ

(
k2 + 1

K1

)
+ V 2k2

]

+ ηk2[υ2
0k

4 + c2k2] + (γ − 1)

(
TρLT

p
+ λk2T

p

)
+ V 2k2

}
ω2

+
{
υ

(
k2+ 1

K1

)[
ηk2υ

(
k2+ 1

K1

)
(γ −1)

(
TρLT

p
+ λk2T

p

)

+V 2k2(γ − 1)

(
TρLT

p
+ λk2T

p

)
+ ηk2(c2k2)
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+
[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]]
+ ηk2υ2

0k
4(γ −1)

(
TρLT

p
+λk2T

p

)

+ ηk2
[
k2(γ −1)

(
TLT−ρLρ+λk2T

ρ

)]}
ω + ηk2υ

(
k2 + 1

K1

)

×
[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
= 0. (45)

The above equation represents the combined influence of radiative heat-loss func-
tion, FLR corrections, finite electrical conductivity, thermal conductivity, viscosity,
permeability and magnetic field on thermal instability of plasma. If we neglect the
effect of FLR corrections equation (45) is identical to that given by Prajapati et al.
(2010) for non rotational case. In the present case, we have considered the effects
of FLR corrections, but Prajapati et al. (2010) have not considered this effect. Thus
the dispersion relation in the present analysis is modified due to the presence of FLR
corrections, but the condition of instability is unaffected by the presence of FLR
corrections. Thus we conclude that FLR corrections have no effect on the condi-
tion of radiative instability, but the growth rate of the dispersion relation given by
Prajapati et al. (2010) gets modified due to the presence of FLR corrections in our
present case. Thus we conclude that FLR corrections modify the growth rate of
radiative instability in the present case. Hence this is a new finding in our case.

When constant term of equation (45) is less than zero this allows at least one
positive real root which corresponds to the instability of the system. The condition
of instability obtained from constant term of equation (45) is given as

[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
< 0. (46)

The above inequality (45) is the reduced form of Bora and Talwar (1993). We solve
equation (45) numerically by introducing the following dimensionless quantities:

ω∗ = ω

kρc
, ν∗ = νkρ

c
, k∗ = k

kρ

, k∗
λ = kρ

kλ

, k∗
T = kT

kρ

, η∗ = ηkρ

c
, υ∗

0 = υ0kρ

c
.

(47)
Using equation (47), we write equation (45) in non-dimensional form as

ω∗5 +
{[

2υ∗
(

k∗2 + 1

K∗
1

)
+ k∗

T + k∗
λk∗2

]
+ η∗k∗2

}
ω4

+
{[

2υ∗
(

k∗2 + 1

K∗
1

)
(k∗

T + k∗
λk∗2) + υ∗2

(
k∗2 + 1

K∗
1

)2

+ υ∗2
0 k∗4 + k∗2

]
+ η∗k∗2

[
k∗
T + k∗

λk∗2 + 2υ∗
(

k∗2 + 1

K∗
1

)]

+ V ∗2k∗2
}

ω∗33 +
⎧⎨
⎩

⎡
⎣(k∗

T + k∗
λk∗2)υ∗

(
k∗2 + 1

K∗
1

)2
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+ (k∗
T + k∗

λk∗2)υ∗2
0 k∗6υ∗

(
k∗2 + 1

K∗
1

)
+ k∗2

γ
(k∗

T + k∗
λk∗2 − 1)

⎤
⎦

+ υ∗
(

k∗2 + 1

K∗
1

) [
2η∗k∗2(k∗

T + k∗
λk∗2) + η∗k∗2 × υ∗

(
k∗2 + 1

K∗
1

)

+ V ∗2k∗2
]

+ η∗k∗2[υ∗2
0 k∗4 + k∗2] + (k∗

T + k∗
λk∗2) + V ∗2k∗2

⎫⎬
⎭

× ω∗2
{

υ∗
(

k∗2 + 1

K∗
1

)
+

[
η∗k∗2υ∗

(
k∗2 + 1

K∗
1

)
(k∗

T + k∗
λk∗2)

+ V ∗2k∗2(k∗
T + k∗

λk∗2) + η∗k∗4 +
[
k∗2

γ
(k∗

T + k∗
λk∗2 − 1)

]]

+ η∗k∗2υ∗2
0 k∗4(k∗

T + k∗
λk∗2) + η∗k∗2

[
k2

γ
(k∗

T + k∗
λk∗2 − 1)

] }
ω∗

+ η∗k∗2υ∗
(

k∗2 + 1

K∗
1

)
×

[
k2

γ
(k∗

T + k∗
λk∗2 − 1)

]
= 0. (48)

In Figures 5–9, the dimensionless growth rate (ω∗) has been plotted against the
dimensionless wave number (k∗) to see the effect of various physical parameters such
as viscosity, radiative heat-loss function, resistivity and FLR corrections. From Fig. 5
we see that as the value of k∗

λ increases the growth rate decreases. Thus the effect
of parameter k∗

λ is stabilizing. It is clear from Fig. 6 that the growth rate decreases
with increasing parameter k∗

T. Thus the presence of k∗
T stabilizes the growth rate of
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Figure 5. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of k∗

λ having k∗
T = 0.5 and v∗ = v∗

0 = η∗ = 1.
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Figure 6. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of k∗

T having k∗
λ = 0.5 and v∗ = v∗

0 = η∗ = 1.
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Figure 7. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of v∗ having k∗

T = 0.5 and k∗
λ = 0.1, η∗ = v∗

0 = 1.

the system. From Fig. 7, we conclude that the growth rate decreases with increasing
value of viscosity. Thus the effect of viscosity is stabilizing.

Figure 8 shows the influence of FLR corrections on the growth rate of thermal
instability. From the figure, it is clear that the FLR corrections have a stabiliz-
ing effect on the growth rate of thermal instability. Figure 9 shows the influence
of resistivity on the growth rate of thermal instability. From the figure, it is clear
that the resistivity has a destabilizing effect on the growth rate of thermal insta-
bility. Therefore, the radiative heat-loss functions, viscosity and FLR corrections
have a stabilizing influence on the system while the finite electrical resistivity has a
destabilizing influence on the growth rate of the system.
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Figure 8. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of ν∗

0 having k∗
λ = 0.1, k∗

T = 0.5 and v∗ = η∗ = 1.
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Figure 9. The normalized growth rate (ω∗) as a function of normalized wave number (k∗) for
different values of η∗ having k∗

λ = 0.1, k∗
T = 0.5 and v∗ = v∗

0 = 1.

Now we wish to examine the effect of FLR corrections and radiative heat-loss
functions on the considered system with some simplifications and at the same time
we wish to investigate the physics involved in such simplifications in the present
problem.

In absence of thermal conductivity (λ = 0), equation (45) reduces to

ω5 +
{[

2υ

(
k2 + 1

K1

)
+ γLT

cp

]
+ ηk2

}
ω4

+
{[

2υ

(
k2 + 1

K1

)
γLT

cp

+ υ2
(

k2 + 1

K1

)2

+ υ2
0k

4 + c2k2

]
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+ ηk2
[
2υ

(
k2 + 1

K1

)
+ γLT

cp

]
+ V 2k2

}
ω3

+
{[

+γLT

cp

(
υ2

(
k2 + 1

K1

)2

+ υ2
0k

4

)
+ υ

(
k2 + 1

K1

)

× (c2k2) + γLT

cp

[
k2

(
c′2 − pLρ

T LT

)]]
+ υ

(
k2 + 1

K1

)

×
[
2ηk2

γLT

cp

+ ηk2υ

(
k2 + 1

K1

)
+ V 2k2

]
+ ηk2[υ2

0k
4 + c2k2]

+
(

γLT

cp

)
V 2k2

}
ω2 +

{
υ

(
k2 + 1

K1

) [
ηk2υ

(
k2 + 1

K1

)
γLT

cp

+ ηk2

+ V 2k2
γLT

cp

(c2k2) + γLT

cp

[
k2

(
c′2 − pLρ

T LT

)]]

+ηk2
(

γLT

cp

) [
υ2
0k

4 + c′2k2 −pLρk2

T LT

]}
ω + ηk2υ

(
k2 + 1

K1

)
γLT

cp

×
[
k2

(
c′2 − pLρ

T LT

)]
= 0. (49)

The condition of instability obtained from constant term of equation (49) is given as[
k2

(
c′2 − pLρ

T LT

)]
< 0, (50)

and it is already discussed in equation (42). On comparing equations (45) and (49)
we see that no new mode comes due to the inclusion of thermal conductivity, but
the condition of instability and growth rate of instability get modified by the inclu-
sion of thermal conductivity. Also on comparing equation (49) with equation (29) of
Aggarwal and Talwar (1969), we conclude that the growth rate of radiative instabil-
ity is modified by the inclusion of, FLR corrections and permeability in our case, but
condition of instability is independent of and FLR corrections.

For infinitely conducting medium (η = 0), equation (45) becomes

ω4 +
{[

2υ

(
k2 + 1

K1

)
+ (γ − 1)

(
TρLT

p
+ λk2T

p

)]}
ω3

+
{[

2υ

(
k2 + 1

K1

)
(γ − 1)

(
TρLT

p
+ λk2T

p

)

+υ2
(

k2 + 1

K1

)2

+ υ2
0k

4 + c2k2

]
+ V 2k2

}
ω2

+
{[

(γ − 1)

(
TρLT

p
+ λk2T

p

)
υ2

(
k2 + 1

K1

)2
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+ (γ − 1)

(
TρLT

p
+ λk2T

p

)
υ2
0k

4υ

(
k2 + 1

K1

)
(c2k2)

+ k2(γ − 1)

(
T L − ρL + λkT

ρ

)]

+ υ

(
k2 + 1

K1

)
[V 2k2] × (γ − 1)

(
TρLT

p
+ λk2T

p

)
+ V 2k2

}
ω

+
{
υ

(
k2 + 1

K1

) [
V 2k2(γ − 1)

(
TρLT

p
+ λk2T

p

)

+
[
k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]]}
= 0. (51)

The condition of instability obtained from constant term of equation (51) is given as

{(
TρLT

p
+ λk2T

p

)
V 2k2 +

[
k2

(
T LT − ρLρ + λk2T

ρ

)}
< 0. (52)

This relation is the reduced form of Bora and Talwar (1993). From equation (52), we
see that the magnetic field tries to stabilize the system. On comparing equations (45)
and (51), we see that the one mode is increased due to the inclusion of finite resis-
tivity. Also on comparing equations (46) and (52), we conclude that the inclusion
of finite resistivity removes the effect of magnetic field from condition of instability
and tries to destabilize the system. Also on comparing equation (52) with equation
(29) of Aggarwal and Talwar (1969), we conclude that the condition of instability is
modified by inclusion of FLR corrections and the growth rate of radiative instability
is modified by the inclusion of FLR corrections and permeability in our case. Hence
these are new results in our case.

In absence of viscosity (υ = 0), equation (45) becomes

ω4 +
[
ηk2 + (γ − 1)

(
TρLT

p
+ λk2T

p

)]
ω3 +

[
(υ2

0k
4 + c2k2)

+ ηk2(γ − 1)

(
TρLT

p
+ λk2T

p

)

+ ηk2[υ2
0k

4 + c2k2] + (γ − 1)

(
TρLT

p
+ λk2T

p

)
V 2k2

]
ω + ηk2

[
(γ − 1)

×
(

TρLT

p
+ λk2T

p

)
υ2
0k

4 +k2(γ − 1)

(
T LT − ρLρ + λk2T

ρ

)]
= 0. (53)

The condition of instability obtained from the constant term of equation (53) is given
as [(

TρLT

p
+ λk2T

p

)
υ2
0k

4 + k2
(

T LT − ρLρ + λk2T

ρ

)]
< 0. (54)

From equation (54), we see that FLR corrections try to stabilize the radiative
instability.
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For inviscid perfectly conducting medium (υ = η = 0), equation (45) becomes

ω3 +
[
(γ − 1)

(
TρLT

p
+ λk2T

p

)]
ω2 + [(υ2

0k
4 + c2k2) + V 2k2]ω

+
{[

υ2
0k

4(γ − 1)

(
TρLT

p
+λk2T

p

)
+ k2(γ − 1)

×
(
T LT − ρLρ + λk2T

ρ

)]
+V 2k2(γ −1)

(
TρLT

p
+ λk2T

p

)}
=0. (55)

The above equation is the reduced form of Bora and Talwar (1993) in the absence
of FLR corrections. The condition of instability obtained from the constant term of
equation (55) is given as

{[
υ2
0k

4
(

TρLT

p
+ λk2T

p

)
+ k2

(
T LT − ρLρ + λk2T

ρ

)]

+V 2k2
(

TρLT

p
+ λk2T

p

)}
< 0. (56)

From equation (56) we see that FLR corrections and magnetic field tries to stabilize
the radiative instability.

In the absence of viscosity, finite resistivity, thermal conductivity and radiative
heat-loss function (υ = η = λ = LT,ρ = 0), equation (45) becomes

ω2 + [υ2
0k

4 + c2k2 + V 2k2] = 0. (57)

The above equation (57) is the modified form of Uberoi (2009) by inclusion of FLR
corrections in our problem. The condition of instability obtained from equation (57)
is given as

[υ2
0k

4 + c2k2 + V 2k2] < 0. (58)

From equation (58) we see that magnetic field and FLR corrections stabilize the sys-
tem. On comparing equations (45) and (57), we see that dispersion relation given
by Uberoi (2009) is modified by inclusion FLR corrections, radiative heat-loss func-
tion, thermal conductivity, viscosity, finite electrical resistivity and permeability in
our case. Hence we have an improved result of Uberoi (2009).

Thus we conclude that for transverse wave propagation the thermal criterion is
affected by FLR corrections, radiative heat-loss functions, viscosity, magnetic field
strength, thermal conductivity and finite electrical resistivity. But there is no effect of
Hall parameter in transverse mode. From curves, we find that FLR corrections, vis-
cosity and heat-loss function have stabilizing influence on the growth rate of thermal
instability, whereas permeability and finite electrical resistivity have a destabilizing
influence on the thermal instability of plasma.

6. Conclusions

The thermal instability of an infinite homogeneous viscous thermally and electri-
cally conducting, radiating fluid including FLR corrections and Hall current have
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been investigated for star formation in interstellar medium. We have considered lon-
gitudinal and transverse wave propagation to the direction of external magnetic field.
We find that thermal criterion remains valid and gets modified because of radia-
tive heat-loss function and thermal conductivity. We also find that for longitudinal
wave propagation, Hall current, FLR correction, permeability, viscosity, magnetic
field strength and finite resistivity have no effect on thermal criterion. But thermal
and radiative effects independently as well as jointly modify the thermal criterion.
Also FLR corrections and Hall current modify the growth rate of Alfven mode. For
transverse wave propagation, FLR corrections, magnetic field strength, viscosity and
finite resistivity affect the condition of radiative instability. FLR corrections stabilize
the system in case of non-viscous medium. Also, magnetic field stabilizes the sys-
tem but finite conductivity removes the effect of magnetic field thereby destabilizing
the system. The Hall parameter has no effect on the transverse mode of propa-
gation. Numerical calculation shows the stabilizing effect of heat-loss function,
FLR corrections and viscosity and destabilizing effect of permeability of considered
system.
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