
J. Astrophys. Astr. (2016) 37: 17
DOI: 10.1007/s12036-016-9393-x

Possible Effect of the Earth’s Inertial Induction on the Orbital Decay
of LAGEOS

Ujjal Dey, Samanwita Kar & Amitabha Ghosh∗
Aerospace Engineering and Applied Mechanics Department, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711 103, India.
∗e-mail: amitabha@iitk.ac.in

Received 11 January 2016; accepted 5 May 2016

Abstract. The theory of velocity dependent inertial induction, based
upon extended Mach’s principle, has been able to generate many inter-
esting results related to celestial mechanics and cosmological problems.
Because of the extremely minute magnitude of the effect its presence can
be detected through the motion of accurately observed bodies like Earth
satellites. LAGEOS I and II are medium altitude satellites with nearly cir-
cular orbits. The motions of these satellites are accurately recorded and
the past data of a few decades help to test many theories including the
general theory of relativity. Therefore, it is hoped that the effect of the
Earth’s inertial induction can have any detectable effect on the motion of
these satellites. It is established that the semi-major axis of LAGEOS I is
decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligi-
ble at that altitude, a proper explanation of the secular change has been
wanting, and, therefore, this paper examines the effect of the Earth’s iner-
tial induction effect on LAGEOS I. Past researches have established that
Yarkovsky thermal drag, charged and neutral particle drag might be the
possible mechanisms for this orbital decay. Inertial induction is found
to generate a perturbing force that results in 0.33 mm/d decay of the
semi major axis. Some other changes are also predicted and the phe-
nomenon also helps to explain the observed changes in the orbits of a few
other satellites. The results indicate the feasibility of the theory of iner-
tial induction i.e. the dynamic gravitation phenomenon of the Earth on its
satellites as a possible partial cause for orbital decay.
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1. Introduction

The theory of inertial induction was first proposed by Sciama (1972) as a quantitative
route to Mach’s principle. However, the theory resulted in only partial success. Later,
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when a velocity-dependent component of dynamic gravity was added by Ghosh
(1984, 1986a) to the Newtonian static component and Sciams’s acceleration depen-
dent term, the combined model could explain many astrophysical and cosmological
phenomena. Since then the model of this proposed inertial induction, based upon
extended Mach’s principle, has been applied to a number of problems with suc-
cess. All the results have been published earlier. LAGEOS, the Laser Geodynamics
Satellite, was launched by NASA with the main objective of accurately determin-
ing the position of the satellite with respect to Earth. It is a passive satellite at an
altitude of 5900 km and an inclination of 110◦, in an almost circular orbit around
the Earth. It is at a reasonably high altitude and experiences considerably less atmo-
spheric drag, which makes it the satellite of choice to test many theories, including
the general theory of relativity. However, accounting for all the known forces act-
ing on the satellite, there still remains a residual along-track acceleration which acts
as a drag with a mean value of −3.4 × 10−12 m s−2. It causes a gradual decay
of the semi-major axis at a rate of 1.3 mm/d. Earlier, several mechanisms have
been put forward to explain this decay (Rubincam 1982), but none of the theories
could completely explain the phenomenon. Studies have suggested that the pertur-
bation produced by the Schach effect, Pontyng–Robertson effect (Robertson 1937)
and the terrestrial radiation pressure cannot explain the whole of the secular decay
and, apparently, it was assumed that the charged particle drag might be the possible
mechanism for this average decay. However, later it was found that charged parti-
cle drag has a minor contribution. Rather, the thermal drag due to infrared radiation
from the Earth (Rubincam 1987) is the principal mechanism for the decay of the
LAGEOS’ orbit, which explains about 47% of the observed average drag value. Fur-
ther analysis with a better model (Rubincam 1988) suggests that this thermal drag
can explain up to 70% of the average decay, mostly depending on the spin axis posi-
tion of LAGEOS, while in this model it was considered the spin axis of the LAGEOS
to be fixed in space. Finally, it was summarized that Yarkovsky thermal drag along
with charge and neutral particle drag can explain almost the entire observed drag
(Rubincam 1990; Scharroo et al. 1991; Afonso et al. 1985). But these three effects
entailed certain approximations, which, although feasible, lacked evidence to sup-
port the underlying assumptions. Consequently, these two proposals are more in
the realm of possibilities than proven facts. So later on a considerable amount of
work has been performed to interpret the spin axis orientation and spin axis direc-
tion of Lageos (Bertotti & Iess 1991; Farinella et al. 1996; Andrés et al. 2004),
under the influence of forces and torques due to the Earth’s gravitational and mag-
netic fields. For the measurement of spin parameters with accuracy, LageOS Spin
Axis Model – LOSSAM (Andrés et al. 2004) have been developed. Further, by fre-
quency analysis of the SLR data for a certain span of time, an exponential decrease
of the spin rate and increase of the spin period was indicated (Kucharski et al.
2013). Considering this change of spin axis orientation as per LOSSAM, a numer-
ical analysis of the thermal forces on Lageos was done (Andrés et al. 2006). This
shows a large difference in acceleration obtained while considering its spin axis to
be fixed, as assumed earlier. The mechanism of thermal drag has also been investi-
gated to find out its impact on the Lageos node and inclination (Farinella et al. 1990).
Recent work also showed that there can be a possible effect on frame-dragging test
due to decay of the semi major axis of Lageos (Iorio 2016). This encouraged the
authors to test the model of velocity-dependent inertial induction for the problem of
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the orbital decay of such satellites to explain the residual amount of the observed
decay.

The model of inertial induction (Ghosh 1984, 1986a, 2000) suggests that, the total
gravitational force between two interacting bodies depends on their relative veloc-
ity and acceleration along with the static Newtonian gravitational pull. In this paper,
a system comprising the Earth and a polar satellite is considered and the effect on
the satellite due to the velocity-dependent inertial induction from the Earth is esti-
mated. First, a general expression for the radial, normal and tangential components
are deduced and next, using a standard data of the Earth and LAGEOS, changes in
the orbital parameters are evaluated. After allowing for approximations in the incli-
nation and eccentricity of the LAGEOS’ orbit, the result found from the inertial
induction model is quite interesting and explains around 25% of the decrease of the
semi-major axis. Apart from a change in the semi-major axis, changes in the other
orbital elements can also be identified with the Gaussian perturbation equations. In
a further investigation of the Earth’s inertial induction, a similar analysis is also per-
formed on the satellite Stella, with an inclination of 98.6◦ and an altitude of 800 km.
Thus, the expectation that the effect of Earth’s dynamic gravitational effect, i.e. iner-
tial induction, can be detected in the form of excess decay rate of its satellites appears
to be vindicated.

2. Model of velocity-dependent inertial induction

The model of inertial induction was first proposed by Ghosh (1984) which sug-
gests that the total interactive force between the two particles depends not only on
their relative distance but also on their relative velocity and acceleration. Therefore
force F on m1 due to only the velocity-dependent inertial induction from m2 can be
expressed as follows:

F = Gm1m2

c2r3
v2

relr cos α |cos α| , (1)

where G is the universal gravitational constant, c is the speed of light in vacuum,
r is the position vector of m2 with respect to m1 and α is the angle made by vrel
with r as shown in Fig. 1. The inertial induction mechanism has been able to explain
the secular acceleration of Phobos (Ghosh 1986a, 2000) whose value is found to
be 1.5 × 10−3 deg yr−2 and also certain other unexplained phenomena in celestial
mechanics, worth mentioning among those are the secular retardation of the Earth’s
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Figure 1. Force due to velocity dependent inertial induction.
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rotation due to velocity-dependent inertial induction (Ghosh 1986a), transfer of solar
angular momentum (Ghosh 1988), excess red shifts and flat rotation curves of spiral
galaxies (Ghosh 1997; Ghosh et al. 1988).

3. Perturbing force due to inertial induction of the Earth

In order to estimate the effect of inertial induction on the motion of a polar satellite,
it is first necessary to determine the perturbing force due to the velocity-dependent
inertial induction. A satellite of mass mS, which revolves around the Earth in a circu-
lar polar orbit of radius R with angular velocity ωS is considered as shown in Fig. 2.
Now, an elemental mass δmE of the Earth is taken for interaction based on inertial
induction, with the satellite. Therefore, the force on the satellite due to the velocity
dependent inertial induction from δmE can be expressed as

dF = −G(δmE)ms

c2S2
v2

rel cos α · |cos α| Ŝ, (2)

where cos α = Ŝ· v̂rel, Ŝ and v̂rel are the unit vectors along S and vrel respectively, vrel
is the relative velocity of the satellite with respect to the elemental mass of the Earth
δmE, which is equal to ρ(r)(r2 cos θ)dϕdθ dr and ρ(r) is the density of δmE at that
location. So, the relative velocity of the satellite with respect to the elemental mass is

vrel = vS − vE.

vS is the velocity of the satellite and vE is the velocity of the elemental mass δmE.
Therefore vS = ωS ×R and vE = �E × r, where �E is the spin angular velocity of
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î

Sm

Tê
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Figure 2. Schematic diagram of the Earth satellite system.
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the Earth, ωS is the angular velocity of the satellite and R, r are the position vectors
of the satellite and elemental mass, respectively, where

r = î r cos θ cos ϕ + ĵ r cos θ sin ϕ + k̂ r sin θ,

R = ĵ R cos ψ + k̂ R sin ψ,

where ψ is the argument of latitude of the satellite. Using the above relations, vrel
becomes

vrel = î (�Er cos θ sin ϕ) − ĵ (RωS sin ψ + �Er cos θ cos ϕ)

+ k̂ (RωS cos ψ) .

Now, the relative distance between A and B can be expressed as

S = R − r = −î (r cos θ cos ϕ) − ĵ (r cos θ sin ϕ − R cos ψ)

− k̂ (r sin θ − R sin ψ) .

Therefore,

cos α = S · vrel
S · vrel

= Rr cos θ cos ψ (ωS tan ψ sin ϕ − �E cos ϕ − ωS tan θ)

S vrel
. (3)

Using the expression of cos α = S·vrel/S·vrel in equation (2), the force on
the satellite by the elemental mass due to velocity dependent inertial induction is
expressed as follows:

dF = −GmS

c2
[{ρ (r) r2 cos θ (S · vrel) · |S · vrel|/S4} dϕdθ dr] Ŝ. (4)

This force acts along the line joining the A and B as in Fig. 2, which is resolved into
its X, Y and Z components in the Earth-centered inertial frame of reference as

FX = GmS

c2

∫ RE

0

∫ π/2

−π/2

∫ 2π

0
[{ρ (r) r3 cos2 θ cos ϕ (S · vrel)

· | S · vrel|/S5}] dϕ dθ dr, (5a)

FY = GmS

c2

∫ RE

0

∫ π/2

−π/2

∫ 2π

0
[{ρ (r)r2cos θ (S·vrel)

· |S·vrel|(r cos θ sin ϕ−R cos ψ) /S5}] dϕdθ dr, (5b)

FZ = GmS

c2

∫ RE

0

∫ π/2

−π/2

∫ 2π

0
[{ρ(r)r2 cos θ(S·vrel)

·|S·vrel| (r sin θ −R sin ψ) /S5}] dϕdθ dr (5c)

With the help of the following transformation matrix, the radial, tangential and
normal components of the force are obtained as shown below:⎡

⎣ FR
FT
FN

⎤
⎦ =

⎡
⎣ cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

⎤
⎦ ×

⎡
⎣ FY

FZ

FX

⎤
⎦ ,
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FR = FY cos ψ + FZ sin ψ, (6a)
FT = −FY sin ψ + FZ cos ψ, (6b)

FN = FX. (6c)

4. Effect on LAGEOS

LAGEOS’ motion is affected by simultaneous gravitational and non gravitational
perturbations along with some general relativity effects like Lense–Thirring effect
(Lucchesi 2007) and Schwarzschild effect. So, in order to find out the effect of
Earth’s velocity dependent inertial induction as mentioned in the above section,
LAGEOS is considered as a polar satellite, neglecting the deviation of the inclina-
tion angle of the orbital plane which does not introduce any significant error in the
order of magnitude of the force components. Using the expression of force compo-
nents, as per Gauss perturbation equations, rate of change of semi major axis can be
expressed as follows:

da

dt
= 2

n
√

1 − e2
[(e sin ψ) fR + (1 + e cos ψ) fT], (7)

where fR and fT are the radial and tangential force per unit mass, e is the eccen-
tricity of the orbit of the LAGEOS, which is assumed to be zero for simplification.
Therefore,

da

dt
= 2

n
fT.
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Figure 3. Orbit of Lageos.
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The average rate of change of the semi-major axis can be obtained by integrating the
expression of ȧ over the whole orbit from 0 to 2π for the true anomaly.

(
da

dt

)
avg

= 1

π n

∫ 2π

0
fTdψ. (8)

Similarly, other changes in orbital elements like the inclination angle I , longitude
of ascending node �, eccentricity e, as shown in Fig. 3, due to this phenomenon, can
also be estimated by using the general perturbation equations. The numerical values
of these changes are tabulated section 5.

5. Results and discussion

The values of all the parameters which have been applied in the problem are listed
in Table 1.

The density variation of the Earth can be expressed as follows:

ρ(r) = (18 − 10ζ ) × 103, for 0 ≤ ζ ≤ 0.2,

ρ(r) = (13.143 − 5.714ζ ) × 103, for 0.2 ≤ ζ ≤ 0.55,

ρ(r) = (9.667 − 6.667ζ ) × 103, for 0.55 ≤ ζ ≤ 1,

where ζ = r/RE.

Using the above functions and the data from Table 1, after numerical computation,
change in the semi major axis of LAGEOS is found to be

(
da

dt

)
avg

= − 0.33 mm/d.

It is a well-known fact that if a perturbing force acts on the satellite, apart from the
change in semi-major axis, there will be changes in other orbital elements as well,
although the order of magnitude of such a change will be very small. Using the
expression of fR, fT and fN which are respectively the radial, tangential and normal
perturbation force per unit mass on the satellite, the changes thus found are tabulated
along with the change in the semi major axis (Table 2).

Table 1. Values of various parameters used in the paper.

Symbol Numerical value

Universal gravitational constant, G 6.67 × 10−11 m3 kg−1 s−2

Speed of light, c 3×108 m s−1

Spin rate of the Earth, �E 7.27 × 10−5 rad s−1

Radius of the Earth, RE 6.378×106 m
Semi major axis of LAGEOS, a 1.227×107m
Eccentricity of LAGEOS’ orbit, e 0.004
Inclination of LAGEOS’ orbit, I 110◦
Mean motion of LAGEOS, n (ωS) 4.65 × 10−4 rad s−1

Mass of LAGEOS, mS 411 kg
Altitude of LAGEOS, R 12278 km
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Table 2. Secular changes in orbital parameters
due to inertian induction.

Change due to velocity-
Parameters dependent inertial induction

ȧ −0.33 mm/d
�̇ 0.6 mas/yr
İ 1.6 mas/yr
ė −2.5 × 10−17 s−1

As mentioned earlier, the observed change in the semi-major axis of LAGEOS
is 1.3 mm/d while our model gives us a result of 0.33 mm/d. A brief analysis over
the past works reveal that although Yarkovsky thermal drag can explain most of the
observed drag, but it entirely depends on the spin axis position and there will be
no drag when the spin axis of the LAGEOS is normal to the orbital plane. Further
the fluctuations in the observed along-track acceleration residuals are not clearly
explained by this mechanism, during the period when LAGEOS orbit intersects the
Earth’s shadow, which indicates that there may be other forces acting on the satellite.
There is also some uncertainty in the potential of the satellite and value taken for the
drag coefficient in calculating neutral particle drag, since the direct measurement of
the density at LAGEOS altitude is not possible. Apart from the change in semi major
axis, there is also an extra drift of the orbital plane, as predicted by Lense–Thirring
effect, at a rate of 31 mas/yr (mas = milliarc seconds). Similarly, this mechanism
also predicts change in orbital inclination and eccentricity of LAGEOS. In order to
have a better realization, similar analysis is done for another satellite, STELLA. It
shows that there is a secular decrease of 8.8 m/yr in the altitude of STELLA, while
the observed data (Krzysztof et al. 2013) available for the same is 30 m/yr.

6. Conclusion

With reference to the previous works, this paper once again shows that inertial
induction is a model worth considering while dealing with problems of celestial
mechanics. It has been also noted that the rotation of the Earth will have compara-
tively less effect in this phenomena due to the fact that the velocity of the satellite
is relatively much higher than the velocity at any point on the Earth, although it has
been observed that there will be a drift of the orbital frame mainly due to rotation
of the Earth as explained by the Lense–Thirring effect. Better accuracy could have
been achieved if the exact inclination of the orbit of LAGEOS and the eccentricity
of the orbit were considered. However, the added complexity in the equations due to
such considerations would probably not be worthwhile, because of the small value
of the eccentricity as well as the small deviation of the inclination of the orbit, which
has been used in the model. With more data available, it would have been possible
to match the changes in the other orbital parameters as well. A similar investiga-
tion with the satellite STELLA produces convincing results and explains a part of
its decay in the semi-major axis too. Similarly effect on other orbital parameters of
STELLA can also be calculated from the same process as described in this paper.
Some other interesting results due to the inertial induction are given in Ghosh (1993,
1986b, 1995) and the partial explanation of the orbital decay of LAGEOS provides
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further support in favour of the model of inertial induction. The application of the
model to other problems relating to the planets and satellites can, hopefully, explain
some of the unexplained observed phenomena.
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