
J. Astrophys. Astr. (2016) 37: 6

Einstein–Maxwell Field Equation in Isotropic Coordinates:
An Application to Modeling Superdense Star

Neeraj Pant1,∗, Mohammad Ahmad1 & N. Pradhan2
1Mathematics Department, National Defence Academy, Khadakwasla, Pune 411 023, India.
2Physics Department, National Defence Academy, Khadakwasla, Pune 411 023, India.
∗e-mail: neeraj.pant@yahoo.com

Received 12 July 2015; accepted 2 November 2015
DOI: 10.1007/s12036-016-9375-z

Abstract. We present a charged analogue of Pant et al. (2010, Astro-
phys. Space Sci., 330, 353) solution of the general relativistic field
equations in isotropic coordinates by using simple form of electric inten-
sity E that involve charge parameter K . Our solution is well behaved in
all respects for all values of X lying in the range 0 < X ≤ 0.11, K lying
in the range 4 < K ≤ 6.2 and Schwarzschild compactness parameter u

lying in the range 0 < u ≤ 0.247. Since our solution is well behaved for
wide ranges of the parameters, we can model many different types of
ultra-cold compact stars like quark stars and neutron stars. We have shown
that corresponding to X = 0.077 and K = 6.13 for which u = 0.2051 and
by assuming surface density ρb = 4.6888 × 1014 g cm−3 the mass and
radius are found to be 1.509M�, 10.906 km respectively which match
with the observed values of mass 1.51M� and radius 10.90 km of the
quark star XTE J1739-217. The well behaved class of relativistic stellar
models obtained in this work might have astrophysical significance in the
study of more realistic internal structures of compact stars.

Key words. General relativity—relativistic astrophysics—exact solution—
isotropic coordinates—compact star.

1. Introduction

Ever since the formulation of Einstein–Maxwell field equations, a search of new
exact solution with certain geometrical and physical conditions is the interest of ven-
ture of relativist. Because this facilitates the modeling and distribution of matter in
the interior of stellar objects such as quasar, neutron star, pulsar, quark star, black-
hole or other super-dense objects, Bonnor (1965) pointed out that the presence of
some charge may avert the gravitational collapse by counter balancing the gravi-
tational attraction by electric repulsion in addition to the pressure gradient. Ivanov
(2002) proposed a model for charged perfect fluid and concluded that the inclusion
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of charge inhibits the growth of space time curvature which has a great role to avoid
singularities. Thus it is pleasing to study the implications of Einstein–Maxwell field
equations with reference to the general relativistic prediction of gravitational col-
lapse. For this purpose charged fluid ball models are required and the external field
of such a ball is to be matched with the Reissner–Nordström solution.

Due to the strong nonlinearity of Einstein’s field equations and the lack of a com-
prehensive algorithm to generate all solutions, it becomes difficult to obtain new
exact solutions. A well number of exact solutions of field equations are known to date
but not all of them are physically relevant in the description of relativistic structure
of compact stellar objects. Now there exist a number of comprehensive collections of
static, spherically symmetric solutions (Delgaty & Lake 1998; Stephani et al. 2003)
which provide a useful guide to the literature.

A class of fluid spheres for whose surface density equals to typical nuclear den-
sity where the pressure vanishes may be a good approximation for normal matter
neutron stars (this class includes Tolman VII solution (1939) and Buchdahl solutions
(1967)). Other classes of solutions for which surface density is finite, about 2–3 times
the normal nuclear matter saturation density, at the surface where pressure vanishes
may be taken as an analytical model of self-bound strange quark star. Such models
include Tolman’s IV solution (1939) and the solutions discussed by Wyman (1949),
Buchdahl (1964), Mehra (1966), Leibovitz (1969), Heintzmann (1969), Adler
(1974), Adams & Cohen (1975), Kuchowicz (1975), Vaidya & Tikekar (1982),
Durgapal (1982), Durgapal & Bannerji (1983), Durgapal & Fuloria (1985), Tikekar
(1990), Pant & Pant (1993), Pant (1994), Pant (1996), Gupta & Jasim (2003), Tikekar
& Jotania (2005), Tikekar & Thomas (1998), Sharma et al. (2006), Jotania & Tikekar
(2006), Takisa & Maharaj (2013) and Maurya et al. (2014a, b).

All the solutions mentioned above are in curvature coordinates. Out of 127 static
spherically symmetric solutions very few solutions in isotropic coordinates such as
Nariai (1950) and Goldman (1978) are known to pass the elementary tests of physi-
cal relevance and hence relevant in modeling compact stellar objects in astrophysics
(Delgaty & Lake 1998). Kuchowicz presented some practical methods to solve Ein-
stein’s equations in isotropic coordinates. The method outlined in his series of papers
(Kuchowicz 1971a, b, 1972a, b, 1973) was able to yield all possible exact solutions
for spheres of perfect fluid in isotropic coordinates. Such exact solutions provide
simplified models of static relativistic objects. The generation technique used by
Hajj-Boutros (1986) leads directly to several new solutions in isotropic coordinates.
Rahman & Visser (2002) and Lake (2003) also discussed a simplified algorithm for
constructing all possible spherically symmetric perfect fluid solutions of Einstein’s
equations in isotropic coordinates. By means of a matrix transformation, Mak &
Harko (2005) have reduced Einstein’s equations to two independent Riccati differ-
ential equations for which three classes of solutions are obtained. John & Maharaj
(2006) reduced the condition for pressure isotropy to a recurrence equation with vari-
able, rational coefficients of order three. They found an exact solution to the field
equations corresponding to a static spherically symmetric gravitational potential in
terms of elementary functions. The metric functions, the energy density and the pres-
sure are found continuous and well behaved which implies that this solution could
be used to model the interior of a relativistic star. The discussion of compact astro-
physical objects within the frame work of classical general relativity is relatively
simple. Our principal motivation of this work is to present a simple particular class of
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exact relativistic compact stellar astrophysical objects by solving Einstein–Maxwell
gravitational field equations in isotropic coordinates. In recent past, one successful
attempt in isotropic coordinates has been made by Pant et al. (2010, 2014). These
solutions are not only well behaved but also simple in terms of expressions of field
and physical variables. We present here a new class of solutions of Einstein–Maxwell
field equations with well behaved neutral counterpart in isotropic coordinates with
the motivation by Das et al. (2011), Ivanov (2012) and Murad & Pant (2014). Such
solutions are expected to provide simplified but easy to mathematically analyzed
compact stellar model of bare strange quark star.

2. Field equations in isotropic coordinates

The interior metric of a static spherically symmetric matter distribution in isotropic
coordinates may be taken as

ds2 = −eω[dr2 + r2(dθ2 + sin2 θdϕ2)] + c2eνdt2, (1)

where α and β are functions of r only.
Einstein–Maxwell field equations of gravitation for a non empty space-time are

Ri
j − 1

2
Rδi

j = −8πG

c4
T i

j

= 8πG
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[
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(
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4
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)]
, (2)

where Rij is a Ricci tensor, Tij is the energy-momentum tensor, R is the scalar
curvature, Fij is the electromagnetic field tensor, p denotes the pressure distribution,
ρ the density distribution and νi the velocity vector, satisfying the relation

gij ν
iνj = 1. (3)

Since the field is static, therefore

νi = νi = νi = 0 and ν4 = 1√
g44

. (4)

For the metric equation (1) the Einstein–Maxwell field equations (2) of gravitation
for a nonempty space-time reduce to the following set of relevant equations (Pradhan
& Pant 2014)
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where prime (′) denotes the differentiation with respect to r . Eliminating the pressure
p from equations (5) and (6), we obtain following differential equation known as the
‘pressure isotropy’ equation,

e−ω

(
ω′′ + ν′′ + ν′2

2
− ω′2

2
− ω′ν′ − ω′

r
− ν

r

)
− 4q2

r4
= 0. (8)

Our task is to explore the solutions of equation (8) and to obtain a physically mean-
ingful matter distribution described by the fluid parameters p and ρ from equations
(5) and (7). To solve the above equation, we consider a seed solution (Pant et al.
2010), and the electric intensity E of the following form:

E2

b
= q2

br4
= Kbr2

cosec2(a + br2)
(9)

where Kis a positive constant. The electric intensity is so assumed that the model is
physically significant and well behaved, i.e. E remains regular and positive through-
out the sphere. In addition, E vanishes at the center of the star and increases towards
the boundary.

3. Conditions for a well behaved solution

For well behaved nature of the solution in isotropic coordinates, the following
conditions should be satisfied:

(i) The solution should be free from physical and geometrical singularities i.e.
finite and positive values of central pressure, central density and non zero
positive values of eω and eν .

(ii) The solution should have positive and monotonically decreasing expressions
for pressure and density (p and ρ) with the increase of r . The solution should
have positive value of ratio of pressure–density and less than 1 (weak energy
condition) and less than 1/3 (strong energy condition) throughout within the
star, monotonically decreasing as well.

(iii) The causality condition should be obeyed i.e. velocity of sound should be less
than that of light throughout the model. In addition to the above, the velocity
of sound should be decreasing towards the surface i.e. (d/dr)(dp/dρ) > 0 for
0 ≤ r ≤ rb, i.e. the velocity of sound increases with the increase in density.
In this context, it is worth mentioning that the equation of state at ultra-high
distribution has the property that the speed of sound decreases outwards (Canuto
& Lodenquai 1975).

(iv) p/ρ ≤ dp/dρ everywhere within the ball. γ = d lnp/d ln ρ = (ρ/p)dp/dρ ⇒
dp/dρ = γp/ρ for realistic matter γ ≥ 1.

(v) The redshift Z should be positive, finite and monotonically decreasing in nature
with the increase of r .

(vi) Electric intensity E, such that Er=0 = 0, is taken to be monotonically
increasing.

Under these conditions, we have to assume one of the gravitational potential compo-
nents in such a way that the field equation (8) can be integrated and solution should
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be well behaved. Further, the mass of such a modeled super dense object can be max-
imized by assuming surface density for neutron star ρb = 2× 1014 g cm−3 (Brecher
& Caporaso 1976) and for SQM star ρb = 4.6888 × 1014 g cm−3 (Zdunik 2000;
Fatema & Murad 2013).

4. Boundary conditions in isotropic coordinates

For exploring the boundary conditions, we use the principle that the metric coeffi-
cients gij and their first derivatives gij,k in interior solution (I ) as well as in exterior
solution (E) are continuous on the boundary B (Bonnor & Vickers 1981). The con-
tinuity of metric coefficients gij of I and E on the boundary is known as the first
fundamental form. The continuity of derivatives of metric coefficients gij of I and
E on the boundary is known as the second fundamental form.

The exterior field of a spherically symmetric static charged fluid distribution is
described by Reissner–Nordström metric given by

ds2=
(
1− 2GM

c2R
+ q2

R2

)
c2dt −

(
1− 2GM

c2R
+ q2

R2

)−1

dR2−R2dθ2−R2 sin2 θdϕ2,

(10)
where M is the mass of the fluid ball as determined by the external observer and R is
the radial coordinate of the exterior region. Since equation (10) is considered as the
exterior solution, we shall arrive at the following conclusions by matching the first
and second fundamental forms:
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b
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2
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Equations (11) to (14) are four conditions, known as the boundary conditions in
isotropic coordinates. Moreover, (12) and (14) are equivalent to zero pressure of the
interior solution on the boundary.

5. A new class of solution

Equation (8) is solved by assuming the seed solution as in Pant et al. (2010) and the
electric intensity E in such a manner that the solution can be obtained and physically
viable. Thus we have

e
ω
2 = cosec(a + x), x = br2,

y = dν

dx
and q2 = K

b
x3 · cosec−2(a + x). (15)
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On substituting the above in equation (8), we get the following Riccati differential
equation in y,

dy

dx
= (k − 2) − 2 cot(a + x)y − 1

2
y2 (16)

which yields the following solution:

e
ν
2 = [c1e−sx + c2e

sx]cosec(a + x), (17)

where a, b, c1, c2 and K are arbitrary constants and

s =
√

K

2
− 2 is real for K > 4. (18)

The expressions for density and pressure are given by

8πG
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cosec2(a + x)
(12b cot(a + x) − 12bx cot2(a + x) − 8bx + kbx), (19)
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where
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K

2
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6. Properties of the new solution

The central values of pressure and density are given by
(
8πG

c4
p

)
r=0

= 1

cosec2a

[
−8b cot a + 4b(−c1 + c2)

c1 + c2

]
, (22)

(
8πG

c2
ρ

)
r=0

= 1

cosec2a
[12b cot a] = 6b sin 2a. (23)

The central values of pressure and density will be non zero positive definite, if the
following conditions will be satisfied

c1

c2
<

s − 2 cot a

s + 2 cot a
and sin 2a > 0. (24)

In view of equations (19) and (20), the ratio of pressure-density is given by

p

c2ρ
=

[
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−8b cot(a + x) + 4bL′/L + Kbx

]
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Subjecting the condition that positive value of ratio of pressure-density and less than
1 at the centre, i.e. p0/c

2ρ0 ≤ 1, leads to the following inequality:

(
p

c2ρ

)
r=0

= −2 cot a + c2−c1
(c1+c2)

3 cot a
. (26)

All the values of a which satisfy equation (24) will also lead to the condition
p0/c

2ρ0 ≤ 1. Differentiating equation (20) with respect to x, we get
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where f = −c1s + c2s, g = c1 + c2. Thus it is found that extrema of p occur at the
centre i.e.,

p′ = 0 ⇒ r = 0 and
8πG

c4
(p′′)r=0 < 0 (29)

Thus the pressure is maximum at the centre and decreases monotonically. Now
differentiating equation (19) with respect to x, we get
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Thus, the density ρ is maximum at the centre and decreases monotonically. The
square of adiabatic sound speed at the centre, (dp/c2dρ)r=0, is given by
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The causality condition is obeyed at the centre for all values of constants satisfy-
ing condition (24). Due to cumbersome expressions of equations (25) and (32), the
trend of pressure–density ratio and adiabatic sound speed is studied analytically after
applying the boundary conditions. Applying the boundary conditions from equations
(11) to (14), we get the values of the arbitrary constants in terms of Schwarzschild
parameters u = GM/c2Rb and radius of the star Rb:

c1 =
[
2s − 1 − d

x
− u − e2

dX

]
d sin(a + x)

esX

4s
, (33)

c1 =
[
2s + 1 − d

x
+ u − e2

dX

]
d sin(a + x)

e−sX

4s
, (34)

X = br2b = 1 − d

2 cot(a + x)
, (35)

where we define a new parameter called the Reissner–Nordström parameter d by

d =
(
1 − 2u + q2

b

R2
b

) 1
2

(36)

whose value is less than 1,

0 < d < 1 for br2b > 0.

The central and surface redshifts are given by

Z0 = sin a

c1 + c2
− 1, Zb = e− νb

2 − 1. (37)

Mass M can be calculated as

M = c2Rb

2G
[1 − d2 + kX2 sin4(a + x)]. (38)

Radius Rb can be determined from surface density ρb in equation (19) as

R2
b = Xc2cosec2(a + x)

8πGρb

[6 sin 2(a +X)−8X −4X cos2(a +X)− kX sin2(a +x)].
(39)

Now the expression for gravitational red-shift z and adiabatic index γ are given as

z = e− ν
2 − 1 and γ = dp

dρ

/
p

ρ
. (40)

7. Discussions and conclusions

It has been observed from Table 1 and Figure 1 that the physical parameters
(p, ρ, p/c2ρ, z) are positive at the centre and within the limit of realistic state equa-
tion and monotonically decreasing while the electric intensity and stiffness parameter
increases from the center to the surface.
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Table 1. The march of pressure, density, pressure–density ratio, square of adiabatic speed of sound,
γ , red shift and electric field intensity within the ball corresponding to K = 6.13 and X = 0.077.

r
rb

8π G
c4

pr2
b

8π G
c2

ρr2
b

p

ρc2
1
c2

(
dp
dρ

)
γ = dp

dρ /
p
ρ Z E · rb

0 0.0147 0.4152 0.0353 0.612 17.344 0.425 0.0000
0.1 0.0144 0.4148 0.0347 0.604 17.429 0.423 0.0013
0.2 0.0136 0.4135 0.0328 0.580 17.698 0.417 0.0053
0.3 0.0123 0.4113 0.0298 0.542 18.199 0.408 0.0122
0.4 0.0106 0.4081 0.0259 0.493 19.032 0.395 0.0220
0.5 0.0086 0.4040 0.0213 0.434 20.386 0.379 0.0351
0.6 0.0065 0.3988 0.0163 0.369 22.651 0.360 0.0519
0.7 0.0044 0.3925 0.0113 0.301 26.747 0.339 0.0728
0.8 0.0025 0.3850 0.0066 0.232 35.447 0.315 0.0983
0.9 0.001 0.3761 0.0026 0.166 62.698 0.290 0.1292
1 0 0.3658 0 0.103 infinity 0.264 0.1660
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Figure 1. The variation of p, ρ,
p

ρc2
, Z, 1

c2

(
dp
dρ

)
, γ , E, etc. from the centre to the surface for

K = 6.13 and X = 0.077 are shown in the following graphs.
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Table 2. Comparison of experimental values of mass and radius for well known quark star XTE
J1739-217 with our calculated values.

Calculated values Observed values
Object Category X K Rb (km)· M

M� Rb (km) · M
M�

XTE J1739-217 Quark star 0.077 6.13 10.906 1.509 10.9 1.51

Our solution is well behaved in all respects for all values of X lying in the range
0 < X ≤ 0.11, K lying in the range 4 < K ≤ 6.2 and Schwarzschild compactness
parameter u lying in the range 0 < u ≤ 0.247. Since our solution is well behaved
for wide ranges of the parameters, we can model many different types of ultra-cold
compact stars like quark stars and neutron stars.

From Table 2, we observe that corresponding to X = 0.077 and K = 6.13 for
which u = 0.2051 and by assuming surface density ρb = 4.6888 × 1014 g cm−3,
the mass and radius are found to be 1.509M�, 10.906 km, respectively which match
with the observed values of mass 1.51M� and radius 10.90 km of the quark star XTE
J1739-217.
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