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Abstract. The standing slow magneto-acoustic oscillations in cooling
coronal loops are investigated. There are two damping mechanisms which
are considered to generate the standing acoustic modes in coronal mag-
netic loops, namely, thermal conduction and radiation. The background
temperature is assumed to change temporally due to optically thin radi-
ation. In particular, the background plasma is assumed to be radiatively
cooling. The effects of cooling on longitudinal slow MHD modes is ana-
lytically evaluated by choosing a simple form of radiative function, that
ensures the temperature evolution of the background plasma due to radi-
ation, coincides with the observed cooling profile of coronal loops. The
assumption of low-beta plasma leads to neglecting the magnetic field per-
turbation and, eventually, reduces the MHD equations to a 1D system
modelling longitudinal MHD oscillations in a cooling coronal loop. The
cooling is assumed to occur on a characteristic time scale, much larger
than the oscillation period that subsequently enables using the WKB
theory to study the properties of standing wave. The governing equation
describing the time-dependent amplitude of waves is obtained and solved
analytically. The analytically derived solutions are numerically evaluated
to give further insight into the evolution of the standing acoustic waves.
We find that the plasma cooling gives rise to a decrease in the amplitude
of oscillations. In spite of the reduction in damping rate caused by rising
the cooling, the damping scenario of slow standing MHD waves strongly
increases in hot coronal loops.
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waves

1. Introduction

Observation made by SUMER instrument on board SoHO confirms that longitudinal
standing (slow) magneto-acoustic waves have been seen to suffer a rapid damping
(Kliem et al. 2002; Wang et al. 2002, 2003). Modelling for observed oscillations
by SUMER have been carried out by Taroyan et al. (2007), where excitation and
damping mechanisms are investigated. It also presents how standing and propagating
slow MHD waves can be differentiated from each other. The issue of fast damping is
still obscure and attracts a remarkable attention to understand the dominant method
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of damping. The most nominated mechanisms for damping the standing longitu-
dinal oscillations are thermal conduction, radiation and viscosity (Ofman & Wang
2002; De Moortel & Hood 2003; Mendoza-Briceño et al. 2004; Taroyan et al. 2005;
Sigalotti et al. 2007; Al-Ghafri & Erdélyi 2013; Al-Ghafri et al. 2014). Radiation
is found to dominate the damping of cool coronal loops, whereas hot loops are
damped by thermal conduction. For a recent review of standing slow waves in
coronal loops, see Wang (2011).

Plasma cooling has been detected everywhere in the solar atmosphere (Viall &
Klimchuk 2012; 2013). In the absence of coronal heating, the plasma starts to cool
by radiation and thermal conduction (Klimchuk 2012). For example, Aschwanden &
Terradas (2008) have shown that the coronal loops are cooling with the characteristic
cooling time of the order of a few oscillation periods. Morton & Erdélyi (2009,
2010) and Ruderman (2011a, b) investigated the effect of cooling on kink oscillations
of coronal loop. They found that the kink oscillations experience an amplification
due to cooling. Further to this, propagating slow MHD waves in a homogeneous,
radiatively cooling plasma was studied by Morton et al. (2010). Essentially, plasma
cooling is reported to cause a strong damping for longitudinal slow MHD waves.
Recently, Erdélyi et al. (2011) investigated the behaviour of longitudinal magneto-
acoustic oscillations in slowly varying coronal plasma. In particular, the damping
rate is found to undergo a reduction by the emergence of cooling.

Al-Ghafri & Erdélyi (2013) and Al-Ghafri et al. (2014) have studied the effect
of cooling on standing slow MHD waves in hot coronal loops that are damped due
to thermal conduction. In particular, the plasma cooling is assumed by unspeci-
fied thermodynamic source. The individual effect of cooling is found to amplify the
amplitude of oscillating loops. Although the rate of damping caused by thermal con-
duction increases at the beginning, it is noticed to reduce gradually in a hot corona
because of plasma cooling. As thermal conduction approaches infinity, the damp-
ing rate tends to zero. Hence, slow magnetosonic waves propagate almost without
damping at the slower, isothermal sound speed.

The present article discusses the combined effects of radiative cooling and thermal
conduction on damping longitudinal standing MHD waves. A function with a simple
form representing the radiation mechanism is taken to ensure that the plasma tem-
perature decreases exponentially with time according to observations. The cooling is
assumed to be weak, with the characteristic cooling time scale much larger than the
oscillation period. The paper is structured as follows: In Section 2 we present our
model and derive the main governing equation with boundary conditions. The ana-
lytical results are obtained with the aid of the WKB theory in Section 3. In Section 4
the individual and combined effects of radiation and thermal conduction are studied
by displaying the analytical solution numerically. Our discussions and conclusions
are presented in Section 5.

2. The model and governing equations

We model a straight coronal loop, in which the magnetic field is uniform and in
the z-direction, i.e. B0 = B0ẑ. The magnetic loop is of length L, with its ends at
z = ±L/2 . The background plasma temperature (pressure) is assumed to change as
a function of time due to radiative cooling; the density is a constant.
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The governing MHD equations for the background plasma take the following form

∂ρ

∂t
+ ∇.(ρv) = 0, (1)

ρ
∂v
∂t

+ ρ(v.∇)v = −∇p + 1

μ0
(∇ × B) × B, (2)

R

μ̃

ργ

(γ − 1)

[
∂

∂t

T

ργ−1
+ (v.∇)

T

ργ−1

]
= ∇(κ‖∇T ) − ρ2Q(T ), (3)

p = R

μ̃
ρT , (4)

∂B
∂t

= ∇ × (v × B). (5)

Here, v, B, ρ, p and T represent the flow velocity, magnetic field, density, pressure
and temperature, respectively; μ0 is the magnetic permeability of free space, R is
the gas constant, μ̃ is the mean molecular weight and γ is the ratio of specific heats.
The thermal conduction term is ∇(κ‖∇T ), where κ‖ = κ0T

5/2 and ρ2Q(T ) is the
general radiation term for optically thin losses.

Note that the radiative loss function is approximated by a piecewise continuous
function (Rosner et al. 1978; Priest 2000), but it is assumed here to take a sim-
ple form to match the observed cooling as described below. The observation shows
that the radiative cooling coronal loops are cooling exponentially (Aschwanden
& Terradas 2008; Morton & Erdélyi 2009, 2010) and the cooling profile has the
form

T = T0i exp

(
− t

τc

)
, (6)

where T0i is the initial temperature at t = 0 and τc is the cooling time scale.
In order to match the observed exponential cooling of the background plasma,

Erdélyi et al. (2011) assigned thermal conduction to be the essential cause of cool-
ing in their model. Further to this, an unspecified thermodynamic source for creating
the plasma cooling was suggested by Al-Ghafri & Erdélyi (2013) and Al-Ghafri
et al. (2014), to investigate longitudinal MHD waves in dissipative time-dependent
plasma. Moreover, Morton et al. (2010) assumed that the plasma is cooling radia-
tively and the radiative loss function has the form δp, where the loss term is assumed
to follow the Newton cooling. Hence, we assume here that the radiation term
ρ2Q(T ) ∼ δp. Therefore, the background plasma state with no background flow
satisfies the equations

v0 = 0, ρ0 = const., =⇒ ∇p0 = 0, (7)

p0 = R

μ̃
ρ0T0, i.e. p0 ∼ T0, (8)

R

μ̃
ρ0

dT0

dt
= −δp0, =⇒ dT0

dt
= −δT0, (9)
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where the 0 index denotes background quantity and δ is a small quantity. Equation (9)
gives the solution

T0 = T0i exp(−δt). (10)

Comparing eq. (10) with eq. (6), it is obtained that δ = 1/τc and this gives a justi-
fication of taking δ to be small, where the observed cooling times are 500 s < τc <

2000 s (Morton et al. 2010).
Now, we linearise the governing eqs (1)–(5) about the background state by writing

all the variables in the form

f (z, t) = f0(t) + f1(z, t),

and neglecting nonlinear terms, where the subscript 1 indicates the perturbed quanti-
ties. Thus, the linearised MHD equations for the longitudinal motion can be reduced
to

∂2v1

∂t2
− γp0

ρ0

∂2v1

∂z2
= −(γ − 1)

κ0T
5/2

0

ρ0

∂3T1

∂z3
− δ

∂v1

∂t
. (11)

It is more convenient to use the non-dimensional variables to solve the governing
eq. (11). Hence, we introduce the dimensionless quantities

t̃ = t

P
, z̃ = z

L
, c̃s =

√
T0

T0i

, ṽ1 = v1

csi

, T̃1 = T1

T0i

, c2
si = γRT0i

μ̃
, (12)

where P is the period of the loop oscillation, c̃s is the dimensionless sound speed, csi

is the initial sound speed, and we put P = L/csi . In what follows, we drop the tilde.
Applying non-dimensionalisation for eq. (11), we arrive at

∂2v1

∂t2
− c2

s

∂2v1

∂z2
= −σ

γ
c5
s

∂3T1

∂z3
− ε

∂v1

∂t
. (13)

Here, the dimensionless constants σ and ε represent the strength of thermal conduc-
tion and radiation, and are defined by

σ = (γ − 1)μ̃κ0 T
5/2
0i

RL
√

γ p0i ρ0
, ε = Pδ. (14)

Both quantities σ and ε are found to be small under standard coronal conditions, in
which γ = 5/3, μ̃ ≈ 0.6, R = 8.3×103 m2 s−2 K−1, and κ0 ≈ 10−11 m2 s−1 K−5/2.
If we take L = 100 Mm and T0i = 0.6–5 MK as typical coronal values, then we
obtain 0.0068 � σ � 0.48.

Now, the governing eq. (13) can be written in the form of wave-like equation as

∂

∂t

[
1

c7
s

(
∂2v1

∂t2
− c2

s

∂2v1

∂z2

)]
= σ

γ

∂

∂z2

[
γ

∂

∂t

(
1

c2
s

∂v1

∂t

)
− ∂2v1

∂z2

]
− ε

∂

∂t

(
1

c7
s

∂v1

∂t

)
.

(15)
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Because we are interested in investigating the damping of standing waves, it is
necessary to introduce the boundary conditions at z = ±1/2. Therefore, as the
loop ends are embedded in the dense photosphere, it is suitable to assume that the
perturbed velocity vanishes at these ends,

v1 = 0 at z = ±1/2. (16)

In case of ε = σ = 0 (i.e. in the absence of radiative cooling and thermal con-
duction), eq. (15) represents a simple wave equation with constant sound speed
(see Al-Ghafri & Erdélyi 2013). The effect of cooling and thermal conduction on
longitudinal slow MHD waves will be investigated in the next section.

3. Analytical solution

Now, we aim to solve the governing eq. (15) using the WKB method. Thus, we need
to introduce two slow variables, t1 = εt and σ = εσ̃ , so eq. (15) becomes

∂

∂t1

[
1

c7
s

(
ε2 ∂2v1

∂t2
1

− c2
s

∂2v1

∂z2

)]
= σ̃

γ

∂

∂z2

[
γ ε2 ∂

∂t1

(
1

c2
s

∂v1

∂t1

)
− ∂2v1

∂z2

]

−ε2 ∂

∂t1

(
1

c7
s

∂v1

∂t1

)
. (17)

Then, the WKB theory implies that the solution to eq. (17) has the form

v1(z, t1) = Q(z, t1) exp(iε−1
(t1)), (18)

where the function Q is expanded in power series with respect to ε, i.e.,

Q = Q0 + ε Q1 + · · · . (19)

Substituting eqs (18) and (19) into eq. (17), and taking the largest order terms in ε

(order of ε−3) we obtain
∂2Q0

∂z2
+ ω2

c2
s

Q0 = 0, (20)

where ω = d
/dt1 and Q0 is subject to the boundary conditions

Q0 = 0 at z = ±1

2
, (21)

according to eq. (16). The general solution to the boundary-value problem, eqs (20)
and (21), can be given by the Fourier series, in the form

Q0(z, t1) =
∞∑

n=0

An(t1) cos ((2n + 1)πz) , ωn = (2n + 1)πcs, n = 0, 1, 2, . . . .

(22)

In this study, we are only interested in the fundamental longitudinal mode corre-
sponding to n = 0. Thus, eq. (22) reduces to

Q0(z, t1) = A(t1) cos (πz) , ω = πcs, (23)
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where A = A0 and ω = ω0. Function A(t1) refers to the amplitude of standing
oscillation. In order to find the function A(t1), we collect terms of the order of ε−2.
Then, we obtain the equation

∂2Q1

∂z2
+ ω2

c2
s

Q1 = i

c2
s

[(
9

2
ω + 3

dω

dt1
+ σ̃ω3c3

s

)
Q0 + 3ω

∂Q0

∂t1

+5

2

c2
s

ω

∂2Q0

∂z2
+ c2

s

ω

∂3Q0

∂t1∂z2
− σ̃

γ

c7
s

ω

∂4Q0

∂z4

]
, (24)

where the function Q1 satisfies the boundary conditions

Q1 = 0 at z = ±1

2
. (25)

The Sturm-Lioville problem, eqs (24) and (25), has a non-trivial solution when the
right-hand side of eq. (24) satisfies the compatibility condition. To obtain the com-
patibility condition, we multiply eq. (24) by Q0, integrate with respect to z over
[−1/2, 1/2], and use the integration by parts. Hence, we arrive at

∫ 1/2

−1/2

i

c2
s

[(
9

2
ω + 3

dω

dt1
+ σ̃ω3c3

s

)
Q2

0 + 3ω Q0
∂Q0

∂t1
+ 5

2

c2
s

ω
Q0

∂2Q0

∂z2

+c2
s

ω
Q0

∂3Q0

∂t1∂z2
− σ̃

γ

c7
s

ω
Q0

∂4Q0

∂z4

]
dz = 0. (26)

The solution to eq. (26), with the aid of eq. (23), gives the amplitude of standing
wave in the form

A(t1) = A(0) exp

(−1

4
t1 + σ̃

5

(
γ − 1

γ

)
π2 [c5

s (t1) − 1]
)

. (27)

This equation in terms of the scaled variables can be written as

A(t) = A(0) exp

(−ε

4
t + σ

5ε

(
γ − 1

γ

)
π2 [c5

s (t) − 1]
)

, (28)

where c5
s (t) = exp(−5εt/2). In case of ε = 0, it can be rid of the quantity ε, in

the denominator of the second term in the exponent, using Taylor expansion for the
sound speed.

4. Numerical evaluations

In this section, the analytical solution describing the temporal evolution of longi-
tudinal standing-mode amplitude are studied using numerical evaluations. Typical
coronal conditions are exploited to calculate the wave amplitude numerically. Then,
the results are depicted to show the behaviour of MHD waves in radiatively cooling
coronal loops.
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Figure 1. The amplitude of the standing wave with different values of ε (0.0, 0.1, 0.3, 0.5)
representing the effect of the cooling on the amplitude of standing wave. The time is measured
in units of L/csi .

4.1 The effect of radiative cooling

In the absence of thermal conduction (σ = 0), eq. (28) reduces to

A(t) = A(0) exp

(−ε

4
t

)
. (29)

It is clear from eq. (29), that the amplitude of oscillating loops decreases with time
due to radiative cooling. To give more insight into amplitude variations, we take ε ∈
[0, 0.5] as typical values for solar corona. Figure 1 shows that the cooling causes a
strong damping for the coronal loops. This result is applicable to TRACE loops with
temperature T0 = 1−2 MK, where radiation is the dominant damping mechanism.

In contrast with the result obtained by Al-Ghafri & Erdélyi (2013), who assumed
the cooling by unspecified thermodynamic source, the cooling by radiation brings
about an attenuation in the amplitude of waves, where a strong cooling (ε = 0.5)
leads to a strong damping.

4.2 The effect of thermal conduction

In the absence of cooling (ε = 0) eq. (28), after using Taylor expansion for the sound
speed, becomes

A(t) = A(0) exp

(
−σ

2

(
γ − 1

γ

)
π2 t

)
. (30)

This expression is consistent with its counterpart in Al-Ghafri & Erdélyi (2013).
The amplitude of oscillation is damped and the strength of damping depends on
the value of thermal conduction, σ . Taking into account that thermal conduction,
σ , is calculated in an order of ε to obtain the amplitude expression, eq. (30) is
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Figure 2. The amplitude of the standing wave with different values of σ (0.0068, 0.019,
0.17, 0.48) representing the effect of thermal conduction on the amplitude of standing wave.
The time is measured in units of L/csi .

physically applicable for a small σ . This means that eq. (30) determines the influ-
ence of weak thermal conduction, σ � 1. The variations of amplitude are studied
on initial temperatures T0 = [0.6, 1, 3, 5]6 K, which correspond to σ = [0.0068,

0.019, 0.17, 0.48].
In Figure 2, we present the effect of varying the magnitude of the thermal con-

duction, σ , on the damping rate of the standing acoustic wave. As we can see,
the increase of thermal conduction gives rise to a strong decline in the amplitude
of standing oscillations, due to the presence of thermal conduction. This result is
mostly expected because thermal conduction is the essential cause of damping for
the observed hot coronal loops, especially in the region of temperature T0 ≥ 3 MK.

4.3 Combined effects of radiative cooling and thermal conduction

We now investigate the combined effects of radiation and thermal conduction on
damping the amplitude of standing slow magneto-acoustic oscillations in radiatively
cooling coronal loops using eq. (28).

The temporal evolution of longitudinal standing-mode amplitude for various
values of ε and the initial loop temperature is exhibited in Figure 3. We can see
a remarkable change in the wave amplitude for different temperature regions. For
example, Figures 3(a) and 3(b) indicate that the emergence of cooling enhances the
rate of damping caused by thermal conduction for loops with temperature T0 ≤ 1
MK. On the other hand, the damping rate of wave amplitude starts to decrease due
to the plasma cooling when the loop temperature approaches 3 MK onwards, and the
reduction in damping grows quickly by increasing the amount of cooling. However,
the state of damping is still rising strongly with time, in the absence of cooling, as
displayed in Figures 3(c) and 3(d).

Overall, the scenario of damping in loops with temperature more than 3 MK is in
agreement with that obtained by Al-Ghafri et al. (2014).
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Figure 3. The dependence of the oscillation amplitude on time. Panels (a), (b), (c) and (d)
correspond to T0i = 0.6 MK (σ = 0.0068), T0i = 1 MK (σ = 0.019), T0i = 3 MK (σ = 0.17)
and T0i = 5 MK (σ = 0.48), respectively. The time is measured in units of L/csi .

5. Discussion and conclusion

In this paper, we have investigated the damping of standing longitudinal MHD waves
due to radiation and thermal conduction in cooling coronal loops. The plasma cool-
ing is assumed because of radiation method. The radiative function is postulated to
have the form δp, to match the observed cooling, which has approximately an expo-
nential profile. Subsequently, the temperature in the loop decreases exponentially
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with the characteristic time scale, which is much longer than the characteristic oscil-
lation period. The assumption of the low-beta plasma reduces the MHD equations to
one-dimensional system for standing acoustic waves. We have used the WKB theory
to obtain an analytic solution for the governing MHD equations.

Typical coronal conditions are applied to evaluate the evolution of amplitude with
time numerically. The results show that the radiative cooling enhances the damping
rate of coronal loops with temperature T0 ≤ 1 MK, while in the region of tempera-
ture T0 ≥ 3 MK, the damping is reduced gradually by cooling. In comparison with
radiation mechanism, it is found that thermal conduction is not sufficient to cause
a strong damping for very cool loops. However, the damping of hot coronal loops
are mainly dominated by thermal conduction, where the amplitude of standing slow
MHD waves experiences a rapid damping with time due to lack of cooling.

According to the results, the rate of damping of coronal oscillations seems to
increase continuously with time, until reaching its maximum in the region of temper-
ature 4 � T � 6 MK, and then decreases afterward. Eventually, slow magnetosonic
waves will propagate almost without damping when thermal conduction approaches
infinity.
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